
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ALAN PINTO SOUZA

Metadata extraction from Scientific
Documents in PDF

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. Carlos Alberto Heuser
Advisor

Prof. Dra. Viviane Moreira
Coadvisor

Porto Alegre, June 2014

“Facts are the air of scientists.
Without them you can never fly.”

— LINUS PAULING

CIP – CATALOGING-IN-PUBLICATION

Souza, Alan Pinto

Metadata extraction from Scientific Documents in PDF / Alan
Pinto Souza. – Porto Alegre: PPGC da UFRGS, 2014.

59 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2014. Advisor: Carlos Alberto Heuser; Coadvisor: Viviane
Moreira.

1. Metadata Extraction. 2. PDF. 3. Machine Learning.
I. Heuser, Carlos Alberto. II. Moreira, Viviane. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

AGRADECIMENTOS

Para explicar os meus agradecimentos, eu preciso contar um pouco da minha trajetória.
Fazer o mestrado em uma Universidade Federal nunca esteve em meus planos. Não
que me faltasse vontade, mas eu nunca achei que tivesse competência suficiente para
ser aprovado. Eu digo isso devido ao fato que durante boa parte da minha graduação eu
estudei em uma Faculdade em que, sinceramente, não me orgulho da forma com que me
dediquei a mesma. Eu tinha que dividir o tempo de estudo com a minha profissão de
músico, o que fazia com que eu tivesse que faltar muitas aulas para viajar a trabalho. De-
pois que eu me formei, decidi que era necessário ingressar em um Mestrado para consertar
todos os erros que eu cometi ao decorrer da minha Graduação. Logo, durante um ano, eu
estudei por conta própria todas as matérias da Graduação novamente. Contei com a ajuda
de um professor particular de Matemática (Gustavo Viegas), pessoa a quem dedico meu
primeiro agradecimento. Fica aqui o meu reconhecimento pelo excelente trabalho que o
Gustavo prestou durante os nossos dois meses de encontros.

Faltando apenas dois dias para acabarem as incrições para o Mestrado da UFRGS
eu decidir que iria participar. Fica aqui meu muito obrigado a Adolfo Duran e Edeyson
Gomes pelas cartas de recomendação. Também, gostaria de agradecer aos meus orienta-
dores Carlos Heuser e Viviane Moreira por terem apostado em meu potencial acadêmico,
mesmo sem terem um histórico relevante da minha vida como estudante. Ao Heuser,
gostaria de agradecer ao desafio que me foi dado de ser, provavelmente, o teu último
mestrando antes da tua aposentadoria. À Viviane, por ter sido muito mais que uma
co-orientadora e contribuindo de igual importância para a qualidade do nosso trabalho.
Gostaria também de agradecer a todos os professores que eu tive durante o primeiro ano
de aulas. Em especial, fica o meu muito obrigado a Aline Villavicencio, Renata Galante,
Markus Ritt e Karin Becker. Eu aprendi muito com vocês e a sabedoria de todos eu quero
carregar para sempre comigo.

Gostaria de agradecer a todos os meus colegas de laboratório. Em especial, fica o meu
muito obrigado a Solange Pertile, Matheus Cadori, Marcelo Caggiani, Diego Tumitan e
Bruno Laranjeira por terem me ajudado durante todo o meu mestrado. Também, gostaria
de lembrar todo o suporte que vocês me deram para que eu conseguisse ser aprovado
na matéria de Complexidade de Algoritmos com o professor Markus Ritt. Com certeza
essa foi uma das matérias mais interessantes e complexas na qual eu participei e, sem o
conhecimento de vocês, tudo teria sido mais difícil.

Eu gostaria de agradecer aos meus colegas de trabalho que me incentivaram para a
inscrição na UFRGS e me apoiaram na realização desse sonho. Em especial agradeço a
Marlon Parizzotto, Tales Chaves, Karina Kohl, Leonardo Tavares, Cristiano Galina, Joan
Bernardes, Guilherme Rotta, Sagiane D’Avila, Farlon Souto e Leandro Farinati.

Eu gostaria de agradecer a minha mulher Driele Sanches que me incentivou 100% do

tempo durante esses 3 anos. Obrigado pela paciência e suporte nos momentos em que
a minha atenção ficou comprometida por conta das incontáveis horas de estudo que eu
precisei dedicar ao Mestrado.

Por fim, gostaria de agradecer aos meus familiares por terem investido na minha ed-
ucação e por terem me apoiado sempre. O meu muito obrigado a minha mãe Maria
Cristina, ao meu pai Sérgio Souza, e a minha irmã Aline Naiana.

ABSTRACT

Most scientific articles are available in PDF format. The PDF standard allows the gener-
ation of metadata that is included within the document. However, many authors do not
define this information, making this feature unreliable or incomplete. This fact has been
motivating research which aims to extract metadata automatically. Automatic metadata
extraction has been identified as one of the most challenging tasks in document engineer-
ing. This work proposes Artic, a method for metadata extraction from scientific papers
which employs a two-layer probabilistic framework based on Conditional Random Fields.
The first layer aims at identifying the main sections with metadata information, and the
second layer finds, for each section, the corresponding metadata. Given a PDF file con-
taining a scientific paper, Artic extracts the title, author names, emails, affiliations, and
venue information. We report on experiments using 100 real papers from a variety of
publishers. Our results outperformed the state-of-the-art system used as the baseline,
achieving a precision of over 99%.

Keywords: Metadata Extraction, PDF, Machine Learning.

RESUMO

Extração de Metadados em Artigos Científicos no Formato PDF

A maioria dos artigos científicos estão disponíveis no formato PDF. Este padrão per-
mite a geracão de metadados que são inclusos dentro do documento. Porém, muitos
autores não definem esta informação, fazendo esse recurso inseguro ou incompleto. Este
fato tem motivado pesquisa que busca extrair metadados automaticamente. A extração
automática de metadados foi classificada como uma das tarefas mais desafiadoras na área
de engenharia de documentos. Este trabalho propõe Artic, um método para extração de
metadados de artigos científicos que aplica um modelo probabilístico em duas camadas
baseado em Conditional Random Fields. A primeira camada visa identificar as secões
principais com possíveis metadados. Já a segunda camada identifica, para cada secão, o
metadado correspondente. Dado um PDF contendo um artigo científico, Artic extrai tí-
tulo, nome dos autores, emails, afiliações e informações sobre a conferência onde o paper
foi publicado. Os experimentos usaram 100 artigos de conferências variadas. Os resul-
tados superaram a solução estado-da-arte usada como baseline, atingindo uma precisão
acima de 99%.

Palavras-chave: Extração de Metadados, PDF, Aprendizagem de Máquina.

LIST OF FIGURES

Figure 2.1: The Markov chain for the fair coin model. 17
Figure 2.2: The Hidden Markov Model. 18
Figure 2.3: The Weather Example . 19
Figure 2.4: An instance of a graphical representation from a simple CRF model.

X random variables are dimmed because it is not generated by the
model. 20

Figure 3.1: An example of HMM model for Metadata Extraction. 26
Figure 3.2: SectLabel Overall Architecture . 29

Figure 4.1: The CRF++ train/test file. 34
Figure 4.2: The CRF++ template file. 34
Figure 4.3: A sample representation of the author information of a given paper. . 35
Figure 4.4: The two-layer CRF generation process proposed in this work. 35
Figure 4.5: A sample paper used to demonstrate the JSON output. 40

Figure 5.1: Distinct Affiliations problem (too close) 46

LIST OF TABLES

Table 3.1: Overall comparison for existing metadata extraction techniques. . . . 32

Table 5.1: Can the two-layer CRF model improve the classification results com-
pared to using a single-layer? . 43

Table 5.2: Can the results hold for a larger dataset? 44
Table 5.3: Can the post-processing algorithms properly identify the relationship

between authors, emails, and affiliations? 46

LIST OF ALGORITHMS

1 Algorithm for entity grouping . 38
2 The Email Matching algorithm . 39
3 The Affiliation Matching Algorithm . 40
4 Algorithm for the identification of the Year feature 53

LIST OF ABBREVIATIONS AND ACRONYMS

HMM Hidden Markov Models

CRF Conditional Random Fields

PDF Portable Document Format

IDM Independent Document Model

OCR Optical Character Recognition

POS Part of Speech

DP Dynamic Programming

ML Machine Learning

JSON JavaScript Object Notation

CONTENTS

1 INTRODUCTION . 13

2 BASIC CONCEPTS . 15
2.1 Document Metadata . 15
2.2 Dynamic Programming . 16
2.3 Hidden Markov Models . 16
2.3.1 Theoretical Foundations . 17
2.3.2 The Weather Example . 18
2.4 Conditional Random Fields . 19
2.4.1 Theoretical Foundations . 20
2.5 Summary . 21

3 RELATED WORK . 23
3.1 Template Matching . 23
3.1.1 Header Metadata Extraction from Semi-structured Documents Using Tem-

plate Matching . 23
3.1.2 Automated Template-Based Metadata Extraction Architecture 24
3.2 Web-base lookup . 25
3.3 Machine Learning . 26
3.3.1 HMM for Metadata Extraction . 26
3.3.2 CRF for Metadata Extraction . 28
3.4 Comparative Analysis . 31
3.5 Summary . 32

4 ARTIC: A TWO-LAYER CRF METHOD FOR METADATA EXTRACTION 33
4.1 Overview . 33
4.2 First-level CRF . 35
4.3 Second-level CRF . 36
4.4 Post-processing . 38
4.4.1 Algorithms . 38
4.4.2 Artic Metadata Output . 39
4.5 Summary . 41

5 EXPERIMENTS . 42
5.1 Experimental setup . 42
5.2 Evaluation against the baseline . 43
5.3 Evaluation using a larger dataset . 44
5.4 Summary . 45

6 CONCLUSION . 47

APPENDIX A DETAILED FIRST-LEVEL FEATURES 49

APPENDIX B DETAILED SECOND-LEVEL FEATURES 52
B.1 Header CRF Features . 52
B.2 Author Information CRF Features . 54
B.3 Footnote CRF Features . 55

REFERENCES . 56

13

1 INTRODUCTION

The metadata of a document are all the information describing the document itself. In
scientific articles, this data usually includes: title, author, affiliation, date of publication,
place of publication, etc. Collecting metadata is a crucial step for assembling a document
repository, which in turn is very important in the document engineering area.

The Portable Document Format (PDF) is a file format that was created with the initial
goal of being independent of application, hardware, and operating system (ROSENTHOL,
2013). This format was developed in the ’90s and is widely used in the scientific literature
as the standard format for publications. PDF allows the generation of the aforementioned
metadata which is directly included within the document. Therefore, it is not necessary
to use an additional file containing the metadata for PDF-based articles.

With the popularization of Internet, many scientific articles have been made avail-
able on the Web. While in the beginning, the articles were scanned and provided as
image-based PDFs, more recently, documents are directly created as text-based PDFs.
The biggest limitation is the lack of metadata or, even when present, it does not provide
complete and reliable information. As a result, many information retrieval and document
engineering systems have difficulties in indexing these files. These facts have been mo-
tivating research that aims at automatically identifying metadata. COUNCILL; GILES;
KAN (2008) rated automatic metadata extraction as one of the most difficult tasks in
document engineering. Research in this topic typically applies one of these three meth-
ods: template matching, web-based lookup (knowledge base), and machine learning (ML)
techniques. A comparison of these methods with an evaluation of existing tools is pre-
sented in (LIPINSKI et al., 2013).

Recent techniques are increasingly using ML algorithms to try to achieve better re-
sults. They usually deal with the problem of metadata extraction as a sequence labeling
task. In (SEYMORE; MCCALLUM; ROSENFELD, 1999; YIN et al., 2004), the authors
address the metadata extraction problem using Hidden Markov Models (HMM). LUONG;
NGUYEN; KAN (2010) created SectLabel, a metadata extraction tool that defines a sin-
gle CRF model to identify 23 different classes, such as: address, affiliation, author, email,
equation, figure, title, etc. SectLabel defines a set of features that allows the CRF model
to identify each of the aforementioned classes. Having a single layer model may affect
the metadata identification process since all features are naturally generic.

In this work we propose Artic, a two-layer CRF model that allows features to be
metadata-specific. The first layer aims at identifying the main sections that may contain
metadata information. For each of the given sections, a second layer will extract the
desired metadata with a more granular level. Experiments yielded an overall precision of
99.84%, which represents a F1 improvement of 6.92% compared to the state-of-the-art
baseline. We summarize our contributions as follows:

14

• Artic employs a two-layer CRF model. We believe that having an additional layer
will improve the metadata extraction process as it allows the use of line-level fea-
tures (first layer) and word-level features (second layer).

• Artic is able to identify the relationship between authors, emails, and affiliations.
This functionality is not provided by the classification model, which is limited to
identify the classes only (e.g Author Name, Affiliation).

• As opposed to a single classification tool, Artic provides the metadata output in a
well-defined format (JSON). This allows anyone to use the metadata as it is, without
the need for extra components to organize the classification results.

The remainder of this work is organized as follows. Chapter 2 gives required back-
ground to understand the techniques for metadata extraction. Chapter 3 explains state-of-
the-art algorithms proposed for each of the tree areas of information extraction. Chapter
4 explains Artic, the two-layer CRF approach proposed in this work. Chapter 5 evaluates
Artic against a baseline and the expected JSON output. Chapter 6 concludes the work
with a summary of the contributions, future works and results.

15

2 BASIC CONCEPTS

This chapter introduces general concepts required to fully understand the techniques for
automatic document metadata extraction.

2.1 Document Metadata

A document metadata is a component that describes information about the document
itself. The term metadata is usually referred as "data about data". This assumption is
ambiguous due to the fact that metadata can also describe structural components. Struc-
tural metadata defines the design and specification about data structures, leading to a
non-ambiguous description of "data about the structure of the data". On the other hand,
a descriptive metadata, also known as metacontent, describes data content (instances)
of the application data itself, with the non-ambiguous description of "data about data
content". The concept of document metadata, in the context of this work, is equivalent
to metacontent. Instances of document metadata are: title, author, affiliation and email
(BRETHERTON; SINGLEY, 1994).

The metadata was motivated by the need to manage exponentially increasing streams
of data from automated systems, which also required interdisciplinary collaboration and
sharing. For example, a book stored in a digital library system usually contains metadata
such as: title, author, year of publication, ISBN, location in the library, etc. To better en-
able the user to find the book, searches are usually performed over the metadata contents.
As a result, the book itself remains unchanged and is not required for the search process.
Now, suppose that the library wants to share all their books with another library for a
collaboration strategy. If the library has been built using metadata, a simple query over
all the books metadata entities would be enough. Hence, metadata is the key component
to ensure that a resource will be easily accessible in the future.

Metadata can be embedded in the document or it can be stored separately. The advan-
tages of storing metadata with the object it describes are: ensure that it will not be lost,
ensure that the document and the metadata will be updated together, and eliminate the
problem of linking between data and metadata (PRESS, 2004). However, some specific
types of documents do not allow embedded metadata. Additionally, storing metadata sep-
arately can simplify metadata management, as it will not need to access the document to
retrieve the desired information. Hence, the most common approach is to store the meta-
data in a separate database which is usually referred as metadata repository or metadata
registry.

16

2.2 Dynamic Programming

Dynamic Programming (DP) is a powerful algorithm technique that implicitly ex-
plores the space of all possible solutions by carefully decomposing bigger problems into
a series of sub-problems. Then, it starts building-up correct solutions to larger and larger
problems (KLEINBERG; TARDOS, 2006). It is drawn from the intuition behind divide
and conquer and it is essentially the opposite of the greedy strategy. DP follows the prin-
ciple of optimality which says that the optimal value of a problem can be obtained by
the optimal values of its subproblems. The core feature of DP is the repeated usage of
pre-computed values.

One very useful problem that can be solved by DP is LCS (Longest Common Sub-
sequence). Given two distinct sequence of characters, such that, X = x1, x2, ..., xn and
Y = y1, y2, ..., ym, where n is the total number of characters from the sequence X and
m is the total number of characters from the sequence Y . We need to find the longest
subsequence length of commons characters in-between X and Y. For example, the LCS
solution for "Stable" and "Table" is 5 and the actual sequence is "table". As we have just
explained, to solve this problem using DP we need to explore the space of all possible
solutions. Two extra indexes (i, j) are required to specify where the start of the common
character is in X and Y , respectively (x1, x2, ..., xi, ..., xn and y1, y2, ..., yj, ..., yn). In
this case xi represents the start common character index in sequence X and, analogously,
yj represents the start common character index in sequence Y . Said that, there are four
possible solutions:

1. if i < n and j < m→ xi = xn−1 and yj = ym−1

2. if i = n and j < m→ xi = xn and yj = ym−1

3. if i < n and j = m→ xi = xn−1 and yj = ym

4. if i = n and j = m→ xi = xn and yj = ym

We can easily join items 1 and 4, as n = m and n − 1 = m − 1 holds. The optimal
function LCS(i, j) = max(LCS(i, j−1), LCS(i−1, j), LCS(i−1, j−1)+ [xi = yj])
is the function that returns the optimal length of the LCS with x1 = i and y1 = j.
At each iteration of LCS recursion, we get the maximum value from LCS(i, j − 1) or
LCS(i−1, j) or LCS(i−1, j−1). Each recursion call represents the three subproblems
we’ve raised above (joining items 1 and 4). The [xi = yj] adds one when xi = yj . The
complexity of this solution is O(nm), where n is the number of characters of X and m is
the number of characters of Y .

2.3 Hidden Markov Models

Hidden Markov Model (HMM) is a technique used for solving sequence labeling
problems. The task of document metadata extraction can be considered as an instance
of this problem (HAN et al., 2003). Hence, some proposals evaluated the use of HMM
to automatically extract metadata information from any sort of document (HETZNER,
2008; SCHEFFER; DECOMAIN; WROBEL, 2001; SCHEFFER et al., 2002).

17

2.3.1 Theoretical Foundations

Natural events usually do not have a standard behavior, but they present random out-
puts thus not allowing trivial predictions. On the other hand, certain regularities can be
defined even for random processes. The probability theory defines mathematical tech-
niques to model regularities in random processes. Mathematical statistics considers the
problem of how the parameters of probabilistic models can be derived from observations.
It is important to emphasize that regularities can only be derived when considering long-
term observations (FINK, 2007).

A Markov chain (also referred as n-gram model) is used especially for the statistical
modeling of chronologically organized data (FINK, 2007; SKULJ, 2009). There are two
types of Markov chains: discrete and continuous. A discrete Markov chain has a finite or
countable set of states. A continuous Markov chain considers time or the space continuous
and is also called continuous-time Markov process. In the context of this work, only
discrete Markov chains will be considered. For the sake of simplicity, further references
of this model will omit the "discrete" prefix.

Markov chains model the state transitions of random processes where the next stage
depends exclusively on the current stage. In other words, given the present, the future
is independent of the past. This "memoryless" feature is known as Markov property. A
random process defines a system which is in a certain stage at some time (t), and the
state transition occurs randomly. The probability associated with each state transition is
formally defined below:

Pr(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) = Pr(Xn+1 = x|Xn = xn)

Markov chains can be easily represented as a directed graph, where the edges are
labeled with the transition probabilities and the nodes are all possible states. Figure 2.1
defines the Markov chain for a "fair coin" tossing experiment. The transition probabilities
are all 0.5 (50%), hence with no bias of any sort.

Figure 2.1: The Markov chain for the fair coin model.

heads tails
0.5

0.5 0.5

0.5

There are some fundamental problems with Markov chains which have motivated the
emergence of a more robust model. One limitation is that the majority of the real-world
problems cannot expect to perfectly observe the complete true state of a system. The
evolvement started with the perception that there are some hidden information that are
not being observed. Hence, the idea is to break up the state of the system into observed
states and hidden (latent) states.

A Hidden Markov Model (HMM) is a two-stage statistical Markov model. The first
state is a discrete random process with a finite state-space, exactly as the Markov chain
model. In the second stage, for each instant of time (t) an emission Ot is generated
(FINK, 2007; RABINER, 1989; RABINER; JUANG, 1986). The probability distribution
for the emissions is dependent only on the current state St and not on previous states or
emissions. Figure 2.2 graphically shows the evolution of a Hidden Markov Model. The

18

edge from St−1 to St is the same transition probability described for the Markov chain.
And, the edge from St to Ot represents the emission probability. From this diagram, it
is clear that the transition probability of the hidden state St at time t, given the values of
the hidden state S at all times, only depends on the value of the hidden variable St−1: the
values at time t − 2 and before have no influence (Markov property). Additionally, the
observation value Ot only depends on the value of the hidden state St (both at time t).

Figure 2.2: The Hidden Markov Model.

St−1 St St+1

Ot−1 Ot Ot+1

The formal definition of the emission probability is given below:

P (Ot|O1, O2, ..., Ot−1, S1, S2, ..., St) = P (Ot|St)

A HMM has three required parameters. The first is the emission probabilities, which is
the only observable entity of a HMM. The second parameter is the transition probabilities
which remain "hidden" (main reason behind the term Hidden Markov Model derivation).
Finally, there should exist the start probabilities for the model initialization (t = 1). In or-
der to define the values of these three parameters, a manual analysis can be performed over
the observations, which is time-consuming and impracticable for large datasets. Hence,
there should be an algorithm which automatically computes the emission, transition, and
initial set probabilities. A widely used technique to solve this problem is the Baul-Welch
algorithm (BAGGENSTOSS, 2001; FINK, 2007).

Given the formal definition of a Hidden Markov Model as λ = (O, S, π), where O
is the observation sequence, S is the sequence of states, and π is the initial state proba-
bilities (t = 1), the practical usage of λ is to find a state sequence I so that P (x|I, λ) is
maximized, where x is the observation sequence. A very common solution is to use the
Viterbi algorithm, which applies a dynamic programming approach to solve this sequence
labeling problem (FINK, 2007; FORNEY G.D., 1973).

2.3.2 The Weather Example

Consider two remote friends (Paul and Mike) which only communicate by chat. They
usually talk in a daily basis about what they did that day. Suppose that Mike is only
interested in performing three activities: going to the beach, shopping, and cleaning the
house. Mike’s decision on what to do depends exclusively on the weather on that given
day. Paul has no clear information about the weather where Mike lives, but he knows
some general tendency. Paul is trying to guess the weather conditions based on what
Mike tells him about his activities. This problem can be modeled as a Hidden Markov
Model.

Assuming the weather operates as a discrete Markov chain, there are two possible
states: Rainy and Sunny. As Paul has no clear definition about the weather, its conditions

19

(states) are completely hidden from him. Since Mike is telling Paul about his daily activ-
ities, those are the observations. Paul knows the general weather trends, and what Mike
likes to do on average. In other words, the parameters of the HMM are known. As a re-
sult, we can represent this problem using the formulation defined in the previous section.
The required parameters, transition probabilities (Pr) and emission probabilities (P) are
given below:

λ = (O, S, π)

O = (Beach, Shop, Clean)

S = (Rainy, Sunny)

π = (Rainy : 0.6, Sunny : 0.4)

Pr = (Rainy : {Rainy : 0.7, Sunny : 0.3},
Sunny : {Rainy : 0.4, Sunny : 0.6})

P = (Rainy : {Beach : 0.1, Shop : 0.4, Clean : 0.5},
Sunny : {Beach : 0.6, Shop : 0.3, Clean : 0.1})

In the above definition, π represents Paul’s belief about the initial state of the system. All
he knows is that it tends to be rainy on average in Mike’s city. The transition probability
Pr represents the climate changes. For example, there is just 30% chance that tomorrow
will be sunny if today is rainy. The emission probability P represents Mike’s intention to
perform a certain activity on each day. If it is rainy, there is a 50% chance that he is at his
apartment cleaning the house. Conversely, if it is sunny, there is a 60% chance that he is
at the beach. Figure 2.3 contains the graphical model of this weather problem.

Figure 2.3: The Weather Example

Start

Rainy Sunny

Beach Shop Clean

0.6 0.4

0.7
0.3

0.1 0.4 0.5

0.6
0.4

0.6 0.3 0.1

2.4 Conditional Random Fields

Conditional Random Fields (CRF) are a class of probabilistic framework usually ap-
plied in pattern recognition. There are some advantages in using CRF in replacement of
HMM, especially for the task of sequence labeling. The first limitation of HMM is that

20

it requires the enumeration of all possible observations. As demonstrated in Figure 2.3,
the simple weather example enumerates all the three possible observations (Beach, Shop,
and Clean) and these observations are part of the model together with the emission prob-
abilities. For most of real-world applications, enumerating all possible observations is
impossible (WALLACH, 2004). Another important limitation of HMM is the assumption
that the observation element, at any given instant of time, may only directly depend on
the state or label at that time. This observation independence constraint is not valid in
most cases, and it is not different in sequence labeling. When labeling sequence data,
the previous observation (e.g. a word) has strong influence in the label of the next ob-
servation (JOHN LAFFERTY ANDREW MCCALLUM, 2001). CRF overcomes both
aforementioned issues and studies have shown that CRF achieved a better performance
when compared to HMM (JOHN LAFFERTY ANDREW MCCALLUM, 2001). Hence,
some techniques evaluated the use of CRF for the task of document metadata extrac-
tion (LUONG; NGUYEN; KAN, 2010; PENG; MCCALLUM, 2004, 2006; SARAWAGI;
COHEN, 2004).

2.4.1 Theoretical Foundations

In what follows, X is a random variable over data sequences to be labeled, and Y is
a random variable over the label sequences. Every Yi ∈ Y assumes a label from a finite
alphabetW . In the context of sequence labeling problem, an instance of this model would
have X ranging over natural language sentences and Y ranging over part-of-speech tags,
with W containing the set of all possible part-of-speech tags (JOHN LAFFERTY AN-
DREW MCCALLUM, 2001).

A CRF may be viewed as an undirected graph globally conditioned on X . Formally,
G = (V,E) where V corresponds to each of the random variable Yi ∈ Y . Then (X, Y)
is a conditional random field in case, when conditioned on X , the random variables Yi
obey the Markov property with respect to G: p(Yi|X, Yj, i 6= j) = p(Yi|X, Yj, i ∼ j),
where i ∼ j means that i and j are neighbors in G. Thus, a CRF is a random field globally
conditioned on the observation X (WALLACH, 2004). The structure of the graph G may
be arbitrary and it represents the conditional independences in the label sequences which
are being modeled. However, the most common representation encountered is a first-order
chain in which nodes correspond to elements of Y (Yi), as illustrated in Figure 2.4.

Figure 2.4: An instance of a graphical representation from a simple CRF model. X
random variables are dimmed because it is not generated by the model.

Yi−1 Yi Yi+1

Xi−1 Xi Xi+1

The graph G may be used to factorize the joint distribution over elements Yi ∈ Y
into a normalized product of strictly positive potential functions. Each potential function
operates on a subset of the random variables represented by vertices in G. The absence of
an edge between two vertices implies that the random variables (nodes) are conditionally

21

independent given all other random variables in the model. As a result, the potential
functions must ensure that conditionally independent random variables do not appear in
the same potential function. One solution is to have the potential functions operating
on a set of random variables (vertices) that form a maximal clique in G. In Figure 2.4,
each potential function will operate on pairs of adjacent label variables (e.g. Yi and Yi+1)
(WALLACH, 2004).

JOHN LAFFERTY ANDREW MCCALLUM (2001) define the probability of a par-
ticular label sequence Y given the observation sequence X (joint distribution) to be a
normalized product of potential functions in the following form:

p(Y |X) = exp(
∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i)) (2.1)

where tj(yi−1, yi, x, i) represents the transition feature function of the entire observation
sequence and the labels at positions i and i − 1; sk(yi, x, i) represents the state feature
function of the label at position i and the observation sequence; λj and µk are parameters
to be estimated from training data (WALLACH, 2004) and to be explained latter in this
section.

When defining feature functions, a set of real-valued features b(x, i) are provided
expressing some useful characteristics that help constructing the model. An example of
such feature is given below:

b(x, i) =

{
1 if the observation at position i contains the world "Author"
0 otherwise

Each feature function contains the value of one of these defined features. Hence, all
feature functions are also real-valued. For example, in the context of POS tagging, the
following transition feature function can be defined:

tj(yi−1, yi, x, i) =

{
b(x, i) if Yi−1 = NP and Yi = NNP

0 otherwise

The parameter estimation problem is to determine the parameters λj and µk of Equa-
tion 2.1 from training data, which is formally defined as θ = (λ1, λ2, ..., λj;µ2, µ2, ..., µk).
Assuming the training data as (x(k), y(k)), the product of (2.1) over all training sequences,
as a function of θ, is known as the likelihood, denoted by p(y(k)|x(k), θ). Maximum
likelihood training chooses parameter values such that the logarithm of the likelihood,
also known as log-likelihood, is maximized (WALLACH, 2004). As it is not possible
to manually determine the parameter values that maximize the log-likelihood, iterative
techniques are considered, such as iterative scaling (DARROCH; RATCLIFF, 1972) or
gradient-based methods (WALLACH, 2002). WALLACH (2004) proposes another proce-
dure to identify the maximum-likelihood parameter values using a dynamic programming
method, which is similar to the forward-backward algorithm for HMM. In order to iden-
tify the most probable label sequence Y , given an observation X , the Viterbi algorithm
can be applied, exactly as used in HMM model (FORNEY G.D., 1973).

2.5 Summary

This chapter explained the base concepts required to understand the techniques ap-
plied in document metadata extraction. Section 2.1 described the different types of meta-
data, in special the metacontent that describes "data about data content" and do not take

22

the document structure into consideration. Section 2.2 explained Dynamic Programming
which is a powerful programming technique to solve complex problems efficiently. LCS
is a one common problem solved by DP. We will use this technique to solve some com-
plex problems in the task of metadata extraction. Sections 2.3 and 2.4 described two
probabilistic frameworks that are commonly applied in metadata extraction, which is an
instance of the sequence labeling problem. Chapter 3 will summarize some algorithms
and techniques to solve the problem of document metadata extraction.

23

3 RELATED WORK

This chapter explains the existing techniques for the task of metadata extraction from
scientific documents. According to LIPINSKI et al. (2013), existing solutions are divided
into tree different sub-areas: template matching, web-base lookup, and ML. The following
sections discuss each of the aforementioned approaches, enumerating different algorithms
and their results.

3.1 Template Matching

Solutions that use template matching try to build an apriori structure (template) for the
metadata candidates based on known properties of the desired content. With the defined
template, a post-processing method is applied to identify the metadata that match each
template. For example, to identify the title of a given article, a simple template would
be the biggest font with bold style on the first page. Then, the post-processing procedure
would load an article, get the first page and look for the line that matches the title’s tem-
plate. The next subsections describe the two state-of-the-art algorithms that use template
matching to identify document metadata.

3.1.1 Header Metadata Extraction from Semi-structured Documents Using Tem-
plate Matching

HUANG et al. (2006) propose a method for header metadata extraction from docu-
ments stored in the PDF format. The document is considered as string with format and
the defined templates are used to guide a finite state automaton to extract the metadata of a
given article. In this article, they have defined templates for title, author(s), affiliation(s),
abstract, and keywords. These elements have been formally referred as header metadata.
The template definition for each header metadata is given below:

• Title: location is always on the upper portion of the first page, with the biggest
font size. Position is always in the middle of the line, centered and with bold font.

• Authors: location is always immediately under the title. Font size is always
smaller than title font. Font is always the same for all authors. Break symbols
are " ", "," or "and". They can be listed in one or more columns.

• Affiliations: location is always immediately under the authors’ list and before
the abstract. Classical words are "university", "department", "@", etc. Font is
always the same for all affiliations. Only one affiliation appears when all authors
are associated with it, or affiliations mapping to authors are listed separately (one
affiliation per author).

24

• Abstract: location is always immediately under the affiliations’ list. Keyword is
always in bold style and the content usually contains "abstract". Abstract is always
before the keywords or introduction (when the keywords are missing). The abstract
is optional.

• Keywords: location is always immediately under abstract and before introduction.
It usually starts with "keywords". The keywords are optional.

In order to build a flexible solution, the templates can be redefined to match the dif-
ferent document layouts. The authors used XML Schema to formulate the templates. To
match the template, a template matching model is created which is basically a finite state
automaton where, the internal states, are the defined metadata. Additionally, there is an
initial state start and the end state end. Finally, there is a state any representing that the
data stream does not match any template.

Experiments used 400 scientific articles downloaded from digital libraries of ACM,
IEEE, ELSEVIER, and LNCS. The sample is evaluated according to precision, recall,
F-Measure, and accuracy. Precision is the fraction of the right metadata in the number
of metadata extracted. Recall is the fraction of the correct metadata in the number of
metadata which is considered correct. Accuracy is the fraction of the correct metadata in
the number of all extracted metadata. Partially correct results are considered as wrong.
For example, if all authors are not properly identified, this is considered partially correct
yielding a negative score in the performance evaluation. In this article, the authors used
mainly the accuracy measure to evaluate the system. Title demonstrated to have the most
accurate result (96.3%), due to its standard structure. Affiliation(s) and Author(s) pre-
sented the lowest accuracy (71.9% and 80.2%, respectively) due to the dynamic nature of
these elements. Those metadata have the most complex structural descriptions with many
uncertainties. This was the main reason for the low accuracy results, according to the
authors. Abstract and Keywords presented accuracy of 88.4% and 84.7%, respectively.
The overall accuracy of the entire system was 84.3%, considering all metadata items.

3.1.2 Automated Template-Based Metadata Extraction Architecture

FLYNN et al. (2007) propose a two-level template matching algorithm. The first level
classifies documents by layout and the second level provides a template for each layout.
With this multi-level approach, templates are independent from one another. Different
layouts usually end-up with complex sets of rules when using the same set of templates,
leading to maintenance and scaling issues. This solution also overcome this layout het-
erogeneity problem, because the templates are layout-specific.

The overall process receives a PDF document as input, which can be either text-based
or image-based. The document is then processed by an Optical Character Recognition
(OCR) software and converted to an application-specific format (XML). In their process,
they consider that documents may contain Report Document Page (RDP), which is a stan-
dard form to provide metadata. Hence, the first extraction process is to recognize any RDP
forms present. Any documents without recognized forms enter the non-form extraction
process. This process generates a candidate extraction solution from the available tem-
plates. After the candidates are extracted, the post-processing phase handles cleanup and
normalization of the metadata. The last automated step is the validation phase, which
uses an array of statistical tests, and determines the acceptance criteria to the extracted
metadata. Any document that fails to meet the validation criteria is flagged for human
review and correction.

25

The authors examined only the first and last five pages of a document, considering that
the metadata can only be found in these pages. To model the document, an Independent
Document Model (IDM) has been developed which was based on the OmniPage 14 OCR
software output. The main structural components of this model are pages, regions, para-
graphs, lines and words. The geometric boundaries of each of the structural elements are
included as attributes. Style information, for example font style and size, is recorded at
the line and word levels. Alignment and line spacing are recorded at paragraph elements.

A group of documents from which the metadata can be extracted using the same tem-
plate, is called class. The members of a class can be selected based on structural or visual
similarity. The proposed solution used several different layout schemes in order to sepa-
rate the incoming document into the appropriate class for extraction. The defined template
than extracts the document metadata candidates which go into the output processing to the
final validation and cleanup.

Regarding the experiments, they used 9825 documents from the DTIC collection and
728 from the NASA collection. To test the ability of the system in selecting the appropri-
ate template, they have manually classified the DTIC collection into 37 separate classes
with at least 5 documents. Templates have been defined for 11 largest classes and test
the ability of the extractor to correctly identify the proper class. They have achieved 87%
classification accuracy. The overall accuracy for metadata extraction was 66% for DTIC
collection and 64% for NASA collection. The authors justified the low accuracy due to
the limited number of written templates. Assuming that all the necessary templates are in
place, they expect accuracy in the 90% range.

3.2 Web-base lookup

Techniques that use web-base lookup try to identify the smallest unit of information
from the document itself, usually using template matching, and then retrieve the complete
information from a universal database, such as online services like Google Scholar, IEEE,
and ACM.

AUMÜLLER (2009) proposes an algorithm that builds a fingerprint for a PDF article
and then submits a query to an online metadata repository. The results are matched to
identify the correct metadata entry. The first step is to convert the PDF to text and build
a fingerprint, i.e. the query terms that are likely to locate the article in any metadata
repository. As Google Scholar indexes the fulltext and not only the metadata of articles,
it is possible to query in this service using any identified text fragment from the given
document. The algorithm proposed takes a fragment from the beginning of the document
which usually contains discriminative content, such as title, authors and abstract. Before
submitting the fingerprint to the search engine, a pre-processing phase is performed with
the goal of removing undesired content from the input, for example superscripts, special
characters, numbers, among others. If no match is found, it might be due to some extra
information placed in the beginning of the document. In this case, a second query is
performed with just the document title.

As querying the search engine will usually result in multiple entries, the correct entry,
if available, has to be matched to the given document. To find the correct entry, the
author looks for the title string contained in the fulltext returned from the search engine.
They evaluated the proposed algorithm with 91 articles from the proceedings of VLDB
2007. For this set, they have achieved 100% accuracy. On the other hand, if the metadata
repository does not contain the PDF article, the algorithm cannot give a proper solution.

26

3.3 Machine Learning

ML techniques build statistics frameworks, usually based on training samples, to avoid
creating undesired assumptions about the document layout and content. The algorithms
learn from the given samples to automatically identify metadata from real-instance doc-
uments. Solutions usually apply sequence labeling problems to the task of metadata ex-
traction where the labels are the configured metadata (e.g. title, author, affiliation) and
the observations are the document entries with their given features (e.g. font size, weight,
etc...). Two probabilistic models can be found in the literature applied in this area: HMM
and CRF. The next subsections aim to describe algorithms that use these techniques to
solve the task of document metadata extraction.

3.3.1 HMM for Metadata Extraction

SEYMORE; MCCALLUM; ROSENFELD (1999) centered around the task of ex-
tracting information from the headers of computer science research articles using a single
HMM model. The authors focus on the automatic creation of the model using the training
samples. Unlike their work, other systems use either one state per class or hand-built mod-
els assembled by manually inspecting the training examples. The header of the research
article consists of title, author names, affiliations, and addresses.

The solution is to label each word of a header as belonging to a class such as title,
author, data, or keyword. This is achieved by modeling the entire header with one HMM.
In the HMM model, each state is associated with a class to be extracted. Each state
emits words from a class-specific distribution. It is possible to learn the class-specific
distributions and the state transition probabilities from training data. The words from the
header are treated as observations. To retrieve the most-likely state sequence the Viberbi
algorithm has been used. An example of a HMM model annotated with class labels and
transition probabilities is shown in Figure 3.1.

Figure 3.1: An example of HMM model for Metadata Extraction.

(SEYMORE; MCCALLUM; ROSENFELD, 1999)

From this constructed model, it is possible to notice that, from the start state, there is
a probability of 86% that the first word belongs to a title class, and 88% chance that the
next word continues to belong to that class.

In order to build a HMM, one must decide how many states the model should contain,
and what transitions between states should be allowed. A simple solution is to have one
state per class, and to have a fully-connected model (transitions from any state to any
other state). However, this model may not be optimal in all cases. Studies have shown

27

that, when a specific hidden sequence is expected, multiple states per class might get
better results.

An alternative to assigning one state per class is to learn the model structure from
training data. Each word in the training data is assigned its own state. A transition is
placed from the start state to the first state of each training instance, as well as between
the last state and the end state. Based on this model structure, the authors propose two
merge techniques. First, combine all states that share a transition and have the same
class label. For instance, adjacent title states are merged into a single title state with self-
transition loop. The probability of this transition is the expected state duration. Second,
merge any two states that have the same label and share transitions from or to a common
state.

Model structure can be learned automatically from training data using a technique like
Bayesian model merging (STOLCKE, 1994). This techinique finds the model structure
that maximizes the probability of the model M given some training data D, by iteratively
merging states until a threshold is achieved. The authors used the Bayesian merging
model so that learning the appropriate model structure for metadata extraction can be
accomplished automatically.

Once the model has been defined, the transition and emission parameters need to be
estimated from training data. Building labeled data is time-consuming, since manual
effort is required. However, it is valuable to define those data, since the transitions and
word occurrences in a class can be used to calculate the maximum likelihood estimation
for the parameters. On the other hand, unlabeled data can be used with the Baum-Welch
training to exercise the model parameters. Baum-Welch training suffers from the fact that
it finds local maxima, and is thus sensitive to initial parameter settings.

Regarding the experiments, 1000 headers were manually tagged with class labels, di-
vided into 500-header, 23.557 word tokens labeled for the training set and a 435-header,
20.308 word tokens for the test set. 65 of the headers were discarded due to formatting
issues. 5000 unlabeled headers, composed of 287.770 word tokens were designated as un-
labeled training data. Performance was measured by word classification accuracy, which
is the percentage of header words that are emitted by a state with the label of the words’
true label.

The authors tested four different models: full, self, ML and smooth. The full model
is a fully-connected solution where all transitions are assigned uniform probabilities, re-
lying only on the emission distributions to choose the best path. This model achieved
a maximum accuracy of 64%. The self model is similar, except that the self-transition
probability is set according to the maximum likelihood estimation from the labeled data.
The accuracy of this model reaches to 89.4%. The ML model sets all transition para-
maters to their maximum likelihood estimation, and achives the best results of 92.4%.
The smooth model adds an additional smoothing count of one to each transition. The
smooth technique did not improve the accuracy, staying with maximum accuracy of 92%.

YIN et al. (2004) use a bigram HMM for automatic metadata extraction from bibli-
ographies with various styles. Different from the traditional HMM, which uses only the
word frequency, this model also considers both words’ sequential relation and position
information in text fields.

In the model proposed by SEYMORE; MCCALLUM; ROSENFELD (1999), it is
unlikely that two words with the same frequency in the same state have equal impor-
tance. This happens because it ignores any sequential relationship among multi-words.
For example, phrases like "Technical Report" will have the same probability as "Report

28

Technical", even though the occurrence of "Report Technical" is unusual. The Bigram
HMM overcomes this problem using a modified model for computing emission probabil-
ity, while keeping the structure of the HMM unchanged. The emission probability for this
new model can be calculated as follows, where q means a given state and σ means a given
word:

P (σ|q) =
{

P (q ↓ σ) σ appears in the beginning of q
P (q ↑ σ) = P (σ|σ−1, q) σ appears in the inner of q

where P (q ↓ σ) denotes state q emits word σ as the beginning word, and P (q ↑ σ) denotes
q emits σ as the inner word. σ−1 means the word before σ. YIN et al. (2004) propose
a modification to the Viterbi algorithm for the bigram HMM, including the beginning
emission probability and the inner emission probability into account.

Due to insufficient training data, bigram HMM may not see some bigram or words,
leading to a less-powerful model. The authors applied a smoothing method, known as
back off-shrinkage (BIKEL et al., 1997) to overcome this problem.

In their experiments, 713 bibliography entries were extracted from 250 articles. These
entries have been hand-labeled to build the training set. The authors used 4-fold cross
validation. The final metric is the average of the four experimental results. Precision is
the number of tokens correctly tagged using bigram HMM by the number of tokens tagged
using bigram HMM. Recall is the number of tokens correctly tagged using bigram HMM
by the number of tokens tagged by experts. In the same set, the authors have used their
bigram model, the traditional HMM and a rule-based techinique. Bigram HMM makes
an improvement in precision more than three percentages than traditional HMM, with an
overall precision of 90%.

3.3.2 CRF for Metadata Extraction

LUONG; NGUYEN; KAN (2010) propose a method to detect the logical structure of a
document from PDF files using CRF. Also, the authors made use of a richer representation
of the document that includes features from an Optical Character Recognition (OCR) tool.
The proposed algorithm not only identifies metadata such as title, authors, abstract, but
also the logical structure of the document (sections, subsections, figures, tables, equations
footnotes, and captions).

The metadata extraction problem has been modeled as a sequence labeling task with
the input document as a sequence of lines L = l1, l2, ..., ln. Each line li needs to be
assigned a correct label from a set of classes C = c1, c2, ..., cm. To classify a line li,
features of the line itself are used. Additionally, evidence from previous classifications
l1, l2, ..., li−1 are also considered. The authors assume that each document line contains
text belonging to only one category.

State and transition functions are represented using binary features as illustrated be-
low:

b(x, i) =

{
1 if 1st word of line xi is "University"
0 otherwise

Given b(x, i), the state and transition functions can be defined as following:

s(yi, x, i) =

{
b(x, i) if label yi = affiliation

0 otherwise

29

t(yi−1, yi, x, i) =

{
b(x, i) if yi−1 = author and yi = affiliation

0 otherwise

Regarding the implementation, the open-source CRF++ package 1 has been used. The
input to this package is of the form "value1, value2, ..., valuemcategoryi" for each line
li(i = 1, n), where categoryi is the known class used at training time and value1, .., valuem
is the set of feature values. CRF++ automatically converts the given attributes to binary
features b(x, i).

The system is composed of two main components: Logical Structure (LS), and a
subordinating part, Generic Section (GS). The LS component receives the full-text article
as input, while the GS component takes only the header lines. During training time, an
OCR engine run through the given article to obtain raw text data together with XML
layout information. Both the LS and GS extracted features, together with the manually
labeled data, go through the CRF training process to build the corresponding models.
At test time, data is represented as a set of lines {l1, l2, ..ln} together with XML layout
information. The LS classifier labels each line with the corresponding categories, such
as title, author, etc. Labels classified as "headers" are passed on to the GS classifier that
performs section labeling. The output is the set of lines with their corresponding labels
for the LS classifier and the set of header lines with their corresponding section label for
the GS classifier. Figure 3.2 illustrates this process.

Figure 3.2: SectLabel Overall Architecture

LUONG; NGUYEN; KAN (2010)

For the LS component, each line of text can be assigned to one category from a set
of 23 possibles values: address, affiliation, author, bodyText, categories, construct, copy-
right, email, equation, figure, figureCaption, footnote, keywords, liteItem, note, page,
reference, sectionHeader, subsectionHeader, subsubsectionHeader, table, tableCaption,
and title. For the GS component, the authors have defined a set of 13 categories to char-
acterize scholarly document’s sections: abstract, categories, general terms, keywords, in-
troduction, background, related work, methodology, evaluation, discussion, conclusions
acknowledgements and references.

1http://crfpp.googlecode.com/svn/trunk/doc/index.html.

30

Regarding the defined features, they are divided into two main areas: raw text and
OCR-based. Raw text are the minimum set of features used to classify the lines of a
document when no rich OCR features are provided.

The LS classifier features have two levels: token and line. The token-level has the
feature for the first n tokens in each line (set to 4 experimentally). The line-level has the
features that capture the aspects of the line text as a whole. The line-level features have
been defined as follows:

• Location: relative position of each line within a document.

• Number: detects the occurrence of patterns specific to hierarchies ("1.1" and
"1.1.1").

• Punctuation: checks if the line contains email addresses or web links.

• Length: the length of each line in terms of tokens.

The features of the GS classifier are the header position, first and second words, and
the whole header. The position feature encodes the absolute and relative positions of the
header in a document. The first and second word feature models the individual tokens
of the header, for example "Abstract" and "Previous Work". The whole header uses con-
catenated header as a single feature. This works as a memoization of all headers in the
training data.

Raw text features for some metadata produce acceptable results, but in header cate-
gories (e.g. title, author, and affiliation) results are usually confused by the CRF models.
According to the authors, this happens due to the common properties of these metadata,
for example, capitalization patterns and lengths. Additionally, inferring structure directly
in PDF documents is difficult as they have many different formats to interpret and model.
Hence, the authors decided to handle these documents as a sequence of page images. An
OCR engine is then executed to obtain richer format information, for example, font, spac-
ing and spatial layout of elements on the page. The authors used Nuance OmniPage 16
which provides a XML with the mapping features. This XML is normalized to become
features of the CRF model.

OCR-based features have been divided into two groups: stationary and differential.
Stationary features are extracted directly from the OCR output, as opposed to differential
ones that model state changes between two consecutive lines. The stationary features have
been defined as follows:

• Location: position of the text line within the page. More broadly, raw text location
feature measures the position of the line with respect to the whole document.

• Format: font information such as font size, bold and italic.

• Object: models special line attributes, such as bullet, picture and table.

With the defined stationary features, there is no direct information to the CRF engine
to infer if two consecutive lines are of the same format. Hence, differential features have
been defined as follows:

• Format: to explicitly mark if the current line has the same format as the previous
line. The defined properties are: font size, bold, italic, font face and alignment.

31

• Paragraph: to detect blocks of text lines belonging to the same paragraph.

A series of experiments have been conducted by the authors. The tests were per-
formed for the LS and GS component separately. For LS module, 40 scientific articles
have been used, where the majority of them in the ACM format. The authors manually
assigned categories to each line of these articles using the 23 logical section categories.
For GS module, 211 scientific articles were used and, also, manually assigned using the
13 generic section categories.

Let TP denote the number of correctly assigned text lines (true positives), FN for false
negatives. FP for false positives and TN for true negatives. Then precision (P), recall (R)
and F1 can be calculated as follows:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2× P ×R
P +R

They perform 10-fold cross-validation for both LS and GS modules. The overall
performance of the system for the LS and GS classifier was 93.38% and 95.82% (F1),
respectively. SectLabel project is available as a sub-package of ParsCit, an open-source
project for citation extraction (COUNCILL; GILES; KAN, 2008).

3.4 Comparative Analysis

The algorithms presented in this study report are the state-of-the-art solutions for the
task of metadata extraction. To the best of our knowledge, there is no other technique
except those presented in this work: template matching, web-base lookup, and ML.

The template matching algorithms presented the worst results. The main limitation
of this technique is the creation of rule-sets which are tightly coupled to the document
layout. Usually, the metadata templates end-up with complex rule-sets that are difficult to
maintain and scale. On the other hand, template matching techniques are straight-forward
to implement and do not require prior knowledge on probabilistic frameworks, as opposed
to ML approaches. Hence, if a solution does not require many different layouts, and, also,
does not require constant changes in the defined templates, one may consider using the
template matching technique.

Web-base lookup algorithms presented excellent accuracy, but the technique is strongly
dependent on a remote document repository. If you are building an application to extract
your local PDF metadata, this kind of solution will not be of much help. Additionally,
one of the main purposes of automatic metadata extraction research is the difficult of find-
ing good source of information. Hence, web-base lookup algorithms depend on metadata
repositories which are currently being enhanced by this area of study, generating an un-
desired cyclic-dependency. Conversely, if an application is being developed for a context
where the documents are publicly available like ACM and IEEE, then this solution may
be the best among the three existing techniques.

ML solutions presented the best results, especially the ones using Conditional Ran-
dom Fields. The main advantage of this method is that there is no apriori assumption
made for the document. For example, assuming that the biggest font in the first page
is always the title is a strong condition inferred in the document. ML technique relies
in the probabilistic models to make those analysis based on the training samples. The
drawback of this methodology is that the training data usually need to be manually anno-
tated, which is time-consuming and tedious. Also, if the documents change frequently,
the model needs to be re-trained to account for the new document layouts. Hence, new

32

training samples should be defined and annotated. Another limitation of ML algorithms
is that the definition of the exact model structure to maximize the system performance is
not a trial task. The defined features are of crucial importance for the model performance.
For this reason, most of the algorithms use OCR engines to retrieve what is called as rich
document features. As a result, if a given OCR engine does not perform well, the system
performance will be also affected.

Table 3.1 summarizes the pros and cons of existing solutions and their overall accu-
racy. It is important to emphasize that the performance results did not consider the same
set of documents, thus not allowing a fair comparison. The reported accuracy serves only
as a high-level performance measure of the given solutions.

Table 3.1: Overall comparison for existing metadata extraction techniques.

Description Huang et al.
(Template Matching)

Aumueller
(Web-base lookup)

Seymore et al.
(HMM)

Luong et al.
(CRF)

Simplicity X X
Scalability X X

Manual Labeling X X
Online service

dependence
X

OCR dependence X

3.5 Summary

This chapter described the state-of-the-art solutions for metadata extraction from doc-
uments, which are mostly scholarly articles from scientific literature. There are three main
approaches that existing algorithms may fit into: template matching, web-base lookup and
ML. The reported results have shown that ML approaches usually get better results when
compared to the other techniques, especially the algorithms that use CRF. The next chap-
ter aims to explain the proposed method for this work.

33

4 ARTIC: A TWO-LAYER CRF METHOD FOR METADATA
EXTRACTION

This chapter is divided into four sections. Section 4.1 gives an overview of the method
proposed in this work. Section 4.2 explains the details of the first-level layer. Similarly,
Section 4.3 explains the details of the second-level layer. Finally, Section 4.4 describes
the post-processing algorithms applied to the CRF results in order to provide the metadata
output in a well-defined data structure (JSON).

4.1 Overview

Artic employs a two-layer CRF model so as to allow the creation of metadata-specific
features. The first layer identifies larger components (sections) that may contain metadata
information. These sections are defined as classes in the CRF engine with five possi-
ble values: Header, Title, Author Information, Body, and Footnote. The
Header usually holds important information about the conference/journal in which the
paper has been published. The Title class represents the title of the paper. Author
information contains data about the authors, such as: name, affiliation, and email.
The Body class does not include useful data for the task of metadata extraction. We do
not perform any analysis over this class. Footnote usually contains information about
the publisher, conference, and possibly some additional information about the authors
(e.g. email and affiliation). For some of these sections, a second CRF layer was created.
This extra layer allows us to extract the actual metadata and define features specific for the
section. The second layer of the CRF model will be executed for the Header, Author
Information, and Footnote. The Title class does not require another CRF level
because it contains only one semantic value, which is the title of the paper.

For each layer, we need to provide the probabilistic framework with evidences that
will help identify the class that maximizes the result of the model. These evidences are
called features (e.g. font size, format, and alignment). The features of a given section do
not affect other sections, and if the feature is present in one section that does not mean
that that same feature will appear in another section. To implement the CRF model, we
used CRF++1. These features need to be structured in a way that they can be interpreted
by the CRF++ engine. The training and test files should be of the form "value1, value2,
..., valuem classi", where classi is assigned to one of the aforementioned classes. This
framework also requires a template file which describes the semantics of these columns
and, also, enables the creation of the context windows. These windows allow the CRF en-
gine to look at the previous/next occurrences to infer about the current state. The template

1http://crfpp.googlecode.com/svn/trunk/doc/index.html

34

file works like a matrix, each single column in the test and/or training file receives its def-
inition in the template, which comes in the form of "Ui : %x[0, j]", where i is the feature
identifier, 0 is the current line being observed (use -1,-2,+1,+2 to refer to previous/next
lines), and, j is the column index.

Figure 4.1: The CRF++ train/test file.

Figure 4.1 shows an example of the train/test file, and, Figure 4.2 shows an example
of the corresponding template file definition. Let us assume that the current line being
considered is "line_6". Then, in the template engine, 0 represents the current line. When
analyzing U19:%x[-2,1], for example, -2 represents "line_4" and 1 represents the feature
(alignment). In "line_4" (Figure 4.1), alignment has the value set to "left".

Figure 4.2: The CRF++ template file.

After the CRF model labels the input with the corresponding classes, post-processing
algorithms are applied in order to group the data that belong to the same class. The CRF
model is able to classify all author names, but it is not able to group the names that belong
to the same author. For example, a common representation for the authors of a paper is
given in Figure 4.3.

35

Figure 4.3: A sample representation of the author information of a given paper.

Figure 4.4: The two-layer CRF generation process proposed in this work.

In this scenario, the CRF engine is able to identify all the words that are likely to make
up an author name. In Figure 4.3, these words are: Hang, Li, Yunbo, Cao, Jun, and Xu.
One of the tasks of the post-processing component is to execute an algorithm that will
group the words that belong to the same author. The expected result after executing this
algorithm is: Hang Li, Yunbo Cao, and Jun Xu. Similar algorithms are required to group
the affiliations and emails. Details of all the algorithms applied in the post-processing
component are given in Section 4.4. Figure 4.4 illustrates the whole process performed in
this work.

4.2 First-level CRF

When dealing with metadata extraction, the important information is usually present
only in the first page. Due to this reason, this work considers only the first page for
analysis. The first-level of the model classifies each line into the five classes decribed as
follows:

• Header: usually is located at the top of the page and contains information regard-
ing the paper itself, such as: venue, publication year, pages, among others.

• Title: contains the title of the paper. Papers which has the title spreading over two
or more lines, each line should be assigned to this class. The location is usually at
the top of the page with the largest font size.

• Author Information: contains information about the author, such as: first name,
last name, email, affiliation, and address. This class, in most of the cases, appears
after the title.

36

• Body: represents non-relevant information for the task of metadata extraction.
In this work, abstract, keywords, and other structural components (e.g. section
headers, body text, etc...) are not extracted.

• Footnote: contains information regarding copyright, conference, pages, publica-
tion year, authors’ affiliation, address, etc. The location is usually at the bottom-left
of the page with a small font size.

In order to distinguish among classes, features must be defined. These features will
give the CRF engine evidences to help decide, for a given line Li,j , its corresponding class
Ci,j , where i represents the line and j represents the page. Some of the first-level features
are: Alignment, Bold, Underline, Italic, and Font Size. The detailed de-
scription of each feature is given in Appendix A.

4.3 Second-level CRF

The second-level of the CRF model extracts the metadata for the Header, Author
Information, and Footnote. Body and Title classes do not require a second
layer.

The Header CRF model identifies the metadata for the Header section which is
usually at the top of the first page of the paper. This model explores the words in the lines
that have been identified as belonging to the Header class in the first-level of Artic. Each
word is classified into the five different classes below:

• Conference Name: if the word belongs to the list of conference/journal name.

• Conference Year: if the word represents the conference year.

• Conference Date: if the word belongs to the conference date which is usually at
the form "Month DAY_START-
DAY_ENDS" (e.g. Jan 5-10).

• Conference Location: if the word belongs to the conference location which is
usually at the form "City, Country" (e.g. Florence, Italy).

• Publisher: if the word represents the publisher. Currently, Artic has been tested
with papers from ACM, IEEE, Springer and Elsevier.

• Other: if the word does not represent any useful information for the task of meta-
data extraction (e.g. copyright). We do not perform any further analysis over this
class.

In order to distinguish one class from another, features were defined in a similar fash-
ion to the ones implemented in the first-layer. These features will help identify for a given
word Wi,j , its corresponding class Ci,j , where i is the current word in line j. Some of
the Header CRF features are: Word Content, Character Length, Month,Year,
and Country. The detailed description of each feature is given in Appendix B.1.

The Author Information CRF model identifies the metadata for the Author
Information section which usually follows the Title section. This model explores
the words of the lines that have been identified as Author Information class in the
first-level of Artic. Each word is classified into the four classes below:

37

• Author Name: if the word represents an author name. At this point, we do not
identify individual authors. The post-processing algorithms will be responsible for
grouping the authors by their names.

• Affiliation: if the word is part of the author’s affiliation. The metadata that is
usually contained in this section are: university, company, department, address, and
telephone. At this point we do not assign affiliation to their corresponding authors.
The post-processing will be responsible for matching affiliations and authors.

• Email: if the word is an email. At this point, we do not assign any email to
any author. The post-processing algorithms will be responsible to match the given
authors with their corresponding email.

• Other: if the word does not represent any useful information for the task of meta-
data extraction (e.g. "and" word, special characters, and superscript). We do not
perform any further analysis over this class.

The Author Information CRF features include Word Content, Possible
Affiliation, and Possible Email. The detailed description of each feature is
given in Appendix B.2.

The Footnote CRF model deals with identifying metadata for the Footnote section
which is usually at the bottom left of the first page of the paper. This model will explore
the words of the lines that have been identified as Footnote class in the first-level of
Artic. Each word is classified into the classes below:

• Conference Name: if the word belongs to the list of conference/journal name.

• Conference Year: if the word represents a conference year.

• Conference Date: if the word belongs to the conference date which is usually at
the form "Month DAY_START-
DAY_ENDS" (e.g. Jan 5-10).

• Conference Location: if the word belongs to the list of conference locations
which is usually in the form "City, Country" (e.g. Florence, Italy).

• Publisher: if the word represents the publisher. Currently, Artic supports ACM,
IEEE, and Elsevier.

• ISBN: if the word is represents an ISBN number (e.g. 978-1-60558-01/08/04).

• Email: if the word represents an email.

• Other: if the word does not represent any useful information for the task of meta-
data extraction (e.g. copyright). We do not perform any further analysis over this
class.

Word Content, Possible Email, and ISBN are among the Footnote CRF fea-
tures. The detailed description of all features is given in Appendix B.3.

38

4.4 Post-processing

The last step in Artic is to get the results from the CRF model and apply algorithms
that output the metadata in a well-defined format. The CRF provides the classes for the
given lines and words. The task of the post-processing step is to use that information to
build the output data. The output format is JSON 2.

4.4.1 Algorithms

The first algorithm is for entity grouping. The goal of this algorithm is to group all the
words that belong to the same class, i.e., authors names and affiliation. Algorithm 1 shows
the logic applied for such grouping. The first step is to create an empty map with the group
index as the key and an array of words as the map value (Line 1). Every new entry in this
map holds a different entity. For example, if the map has four entries while identifying
authors, this means that the algorithm has identified four different authors. The core step
of this method is in lines 4 and 6. The method getGroupIndex takes the group map
and the current word to return the group index that this word belongs to. The calculation
is based on the HORIZONTAL_BOUNDARY and V ERTICAL_BOUNDARY
parameters. Those parameters were experimentally set to 20% and 30%, respectively. If
groupIndex is null (line 8), it means that the current word does not have any group to be
attached to. As a result, a new index has to be created in the group map (line 9 to 11). If
groupxIndex is found, the current word is added to the array of words of the group with
groupIndex key (lines 13 and 14).

Algorithm 1 Algorithm for entity grouping
Require: List of words identified as Author Name or Affiliation.

1: groupMap = new Map(int, Words[]);
2:
3: for all the words do
4: groupIndex = getGroupIndex(groupMap,word,
5: HORIZONTAL_BOUNDARY,
6: V ERTICAL_BOUNDARY);
7:
8: if groupIndex == null then
9: wordsOfIndex = new Array();

10: wordsOfIndex.add(word);
11: groupMap(groupMap.size(), wordsOfIndex);
12: else
13: wordsOfIndex = groupMap.get(groupIndex);
14: wordsOfIndex.add(word);
15: end if
16: end for
17: return groupMap

The second algorithm is the email matching. The purpose of this algorithm is to
match the identified emails to their corresponding authors.

Algorithm 2 performs the logic required to match authors and emails. From line
2 to 21 the matching is done by calculating the edit distance between the email and

2http://json.org.

39

Algorithm 2 The Email Matching algorithm
Require: the list of authors and list of emails.

1:
2: for each email in emails do
3: for each author in authors that does not have email do
4: distance = DynamicProgramming.distance(
5: email, author.name);
6: if distance <=MAX_DISTANCE then
7: author.email = email;
8: break;
9: else

10: names[] = author.name.split(””);
11: for each name in names do
12: distance = DynamicProgramming.distance(
13: email, name);
14: if distance <=MAX_DISTANCE then
15: author.email = email;
16: break;
17: end if
18: end for
19: end if
20: end for
21: end for

the author name using Dynamic Programming. If the edit distance is smaller than or
equal to MAX_DISTANCE, we found the author for the current email (lines 6 and 7).
MAX_DISTANCE has been experimentally set to 20%. If this is still not satisfactory,
we try to use each token in the name of the author instead of the full name (from line 10
to 18). Emails that do not match any author are ignored.

The last algorithm is the affiliation matching. The goal of this algorithm is to
match the identified affiliations with the corresponding authors. Algorithm 3 shows the
logic applied to match affiliations and authors. The logic is very similar to the author
name grouping (Algorithm 1). The getGroupIndex function is also used, the map is
affiliationMap and, for each author, we identify the best matching affiliation index.
The values for HORIZONTAL_BOUNDARY and VERTICAL_BOUNDARY have been ex-
perimentally set to 17% and 70%, respectively. If the index is found, we assign this
affiliation to the current author. We do not use any affiliation that we could not match to
an author, thus being completely ignored from the final output.

4.4.2 Artic Metadata Output

This subsection shows a sample paper and its expected output using the proposed
solution in this work. Figure 4.5 contains a paper with 4 authors published at SIGCSE in
2009. This paper has the ACM format with two columns. The size of the author and email
list matches, thus we don’t expected the DP algorithm to run at this time (assignment will
by declaration order). On the other hand, we need to group author names, affiliations
and match the identified affiliations with the corresponding authors. We expect to have 3
distinct affiliations at the end of the execution of the affiliation grouping algorithm.

40

Algorithm 3 The Affiliation Matching Algorithm
Require: Affiliation and Authors Name map.

1:
2: for each author in authorsMap do
3: index = getGroupIndex(affiliationMap, author,
4: HORIZONTAL_BOUNDARY,
5: V ERTICAL_BOUNDARY);
6: if index ! = null then
7: author.affiliation = affiliationList[index];
8: end if
9: end for

Figure 4.5: A sample paper used to demonstrate the JSON output.

The expected JSON output is presented in Listing 4.1.

41

Listing 4.1– The expected JSON output for the sample paper.
{

"title": "Embedding Computer Science Concepts
In K-12 Science Curricula",

"authors": [
{

"name": "Chi-Cheng Lin",
"email": "clin@winona.edu",
"affiliation": "Department of Computer Science

Winona State University
Winona. MN 555987"

},
{

"name": "Mingrui Zhang",
"email": "mzhang@winona.edu",
"affiliation": "Department of Computer Science

Winona State University
Winona. MN 555987"

},
{

"name": "Barbara Beck",
"email": "barbara.beck@roch.edu",
"affiliation": "Department of Biology

Rochester Community
and Technical College
Rochester, MN 55904"

},
{

"name": "Gayle Olsen",
"email": "golsen@winona.edu",
"affiliation": "Department of Nursing

Winona State University
Rochester, MN 55904"

}
],
"venues": [

{
"name": "SIGCSE",
"publisher": "ACM",
"date": "March 3-7",
"year": "2009",
"location": "Chattanooga, Tennessee, USA",
"isbn": "978-1-60558-183-5/09/03"

}
]

}

4.5 Summary

This chapter explained the proposed solution for the task of metadata extraction.
The work is divided into pre-processing, CRF models, and post-processing. The pre-
processing is responsible to extract the rich text information from the paper by converting
the PDF into Image and running an OCR engine that outputs the paper as an XML for-
mat. The CRF models is the core contribution with a two-layer approach to overcome
the main limitations of the state-of-the-art solution. The post-processing algorithms han-
dle the grouping and clean-up functionalities. This last part also outputs the paper in a
well-defined data structure (JSON). The next chapter will show the results of this work
by performing a series of experiments to validate our approach.

42

5 EXPERIMENTS

The purpose of the experiments presented here is to answer the following questions: (i)
Can the two-layer CRF model improve the classification results compared to using a
single-layer? (ii) Can the results hold for a larger dataset? And, finally, (iii) Can the
post-processing algorithms properly identify the relationship between authors, emails,
and affiliations?

The following sections are divided as follows. Section 5.1 explains how the experi-
ments were structured, providing data and metrics to support our evaluations. Section 5.2
compares the proposed approach against the baseline. Section 5.3 validates the proposed
solution against the JSON gold-standard.

5.1 Experimental setup

We have selected SectLabel as our baseline due to their good results reported in (LU-
ONG; NGUYEN; KAN, 2010). Also, SectLabel has an open-source tool1 that allowed us
to have easy access to the dataset that was used to validate their proposed solution. Please
refer to Chapter 3, for more details on how SectLabel works.

The dataset used in our experiments consists of of 100 scientific papers from IEEE,
Elsevier, Springer and ACM. This set of papers already includes the 40 papers used by
SectLabel. The remaining 60 papers were selected by eight postgraduate students from
our institution. In addition to the papers, the students also provided the expected output,
in JSON format, for each metadata identified by them in the papers. We refer to that
as JSON gold-standard. In order to extract richer information from the PDF we convert
the pages into images and run an OCR engine. The information provided by the OCR
engine includes: coordinates, format, font size, font type, etc. The output of the OCR
is a XML file. Based on the XML document we build the CRF components using the
CRF++ format. OmniPage Professional Version 182 was used to perform all OCR-related
operations. The choice for this tool was made based on their usage in the academic area
and their good reported results. Also, we have manually annotated the corresponding
classes for each of the CRF levels using the CRF++ format. We refer to that as Classes
gold-standard. When selecting the papers, we advised the participants to cover as many
different formats as possible. We believe this helps ensuring that the proposed method is
not restricted to a specific article format.

For the validation procedure, we applied the same strategy as SectLabel. We used 10-
fold cross validation for all the experiments performed in this work. K-fold validation is

1https://github.com/knmnyn/ParsCit/tree/master/bin/sectLabel
2http://www.nuance.com/for-individuals/by-product/omnipage/index.htm.

43

a commonly used strategy. The systems were evaluated based on the F1 measure, which
is defined as follows. Let us assume that TP denotes the number of correctly assigned
classes (true positives), FP denotes the number of incorrect classification (false positives),
and FN denotes the number of incorrect classifications in reverse order (false negatives).
For example, assuming that we are evaluating the Title class. TP would be the correct
hits. FP would be the wrong hits, the actual class would be Author Information,
for example, and it was classified as Title. FN would be the misses, e.g. if the actual
class was Title, and was classified as Author Information. Then, precision (P),
recall (R) and F1 are calculated as follows:

P =
TP

TP + FP
,R =

TP

TP + FN
,F1 =

2× P ×R
P +R

In other words, precision can be thought as "from what the method classified as
Title, what was actually Title". In a similar way, recall can be thought as "from
what should have been assigned as Title, how many were classified as such by the
method".

5.2 Evaluation against the baseline

The goal of the first experiment is to test whether the two-layer CRF model improves
the classification results compared to SectLabel single-layer strategy. For this test we used
the same 40 papers which have been used by the baseline in the experiments reported
in (LUONG; NGUYEN; KAN, 2010). The comparison is done using the Classes gold-
standard. The set of metadata identified by Artic differs from the set of metadata identified
by SectLabel. As a result, for this experiment, we compared just the classes that both
systems provide. SectLabel results were extracted from the original paper (LUONG;
NGUYEN; KAN, 2010), but we had to combine some of their classes to match ours. For
example, Artic Affiliation class already includes the address as part of the metadata. So,
we have combined SectLabel Address and Affiliation classes by taking the average over
their F1 results.

Table 5.1 presents the results for both methods using a total of five classes (Title,
Author Name, Email, Affiliation, and Footnote). Artic’s averageF1 is 99.84%,
which represents a relative gain of 6.92% compared to SectLabel. Also, the classes
Affiliation and Footnote presented the biggest improvements when applying the
two-layer CRF model.

Table 5.1: Can the two-layer CRF model improve the classification results compared to
using a single-layer?

Class SectLabel Artic
(Single-layer) (Two-Layer)

Title 100.00 % 100.00 %
Author Name 97.74 % 99.41 %

Email 97.64 % 100.00 %
Affiliation 89.15 % 99.83 %
Footnote 82.34 % 100.00 %

Average (F1) 93.37 % 99.84 %

44

Table 5.2: Can the results hold for a larger dataset?
Class Artic Artic

(40 papers) (100 papers)
Title 100.00 % 100.00 %

Author Name 99.41 % 98.91 %
Email 100.00 % 100.00 %

Affiliation 99.83 % 99.64 %
Venue Name 85.20 % 85.94 %
Venue Year 100.00 % 100.00 %
Venue Date 100.00 % 98.89 %

Venue Publisher 100.00 % 100.00 %
Venue Location 93.86 % 96.60 %

ISBN 100.00 % 98.82 %
Average (F1) 97.83 % 97.88 %

5.3 Evaluation using a larger dataset

The second experiment performed in this work was to evaluate the behavior of the
system with a larger dataset. The test used 100 papers, as described in Section 5.1. This
time, we have included all 10 classes that Artic identifies. The comparison here is still
in the classification level, meaning the Classes gold-standard. Table 5.2 summarizes the
results of this experiment. The average F1 with 40 papers was 97.83%, and, for 100
papers, it was 97.88%. These numbers demonstrate that the results hold while for a larger
number of papers. Venue name presented the lowest F1 among all the classes that Artic
identifies. We have analyzed the cases in which Artic failed and most of them occurred
when the name of the venue is in full (e.g. International Conference on ML) rather than
abbreviated (e.g. ICML).

The last experiment aims at verifying if the post-processing algorithms can properly
identify the relationship between authors, emails, and affiliations. We have run Artic with
the 100 paper dataset and compared the generated JSON against the gold-standard pro-
vided by the annotators (JSON gold-standard). One problem that occurred during this
experiment was the comparison between the generated output and gold-standard JSONs.
For instance, Listing 5.1 shows an example of a gold-standard JSON element for author
information. Similarly, Listing 5.2 shows a hypothetical automatically generated JSON
for this author element. One may observe that the author’s last name has been erroneously
identified as another author. Similarly, the author’s first name was appended by a number
2 (i.e., an undesired superscript). Also, the University name has been divided in two. The
challenge here is how to calculate precision, recall, and F1 for this comparison. In other
words, how close these two JSONs are from each other? To the best of our knowledge,
there is no tool that can compare two JSONs. As a result, we developed a method that
does just that. We resorted to similar comparisons made in another area, i.e. Plagiarism
Detection, to develop this assessment. In (POTTHAST et al., 2010), an evaluation frame-
work provides a model to calculate precision and recall for plagiarism detection systems.
We have implemented a similar approach which is explained as follows.

Let C be the set of classes that Artic provides. Let Wc be the set of words of a class
c ∈ C from the gold-standard JSON. Similarly, let Gc be the set of words of a class c ∈ C

45

from the generated JSON. Precision, Recall and F1 for a given class c is given as follows:

Pc =

∑
g∈Gc

g ∩Wc

|Gc|

Rc =

∑
w∈Wc

w ∩Gc

|Wc|
,

F1c =
2× Pc ×Rc

Pc +Rc

where ∩ means the number of matching characters from the best match in Wc or Gc.
Listing 5.1– The gold-standard JSON element.

{
"authors": [{

"name": "Alan Souza",
"email": "apsouza@inf.ufrgs.br",
"affiliation": "Cal University"

}]
}

For example, precision, recall and F1 for the Author Name are calculated as follows:

Pname =
4

5
, Rname =

4

9
, F1name =

2× 0.8× 0.44

1.24
= 0.57

Listing 5.2– The possible generated JSON element.
{

"authors": [{
"name": "Alan2",
"email": "apsouza@inf.ufrgs.br",
"affiliation": "Cal"

}, {
"name": "Souza",
"affiliation": "University"

}
]

}

Table 5.3 compares the post-processing results against the classification step. The
post-processing results were extracted by applying the above formula for each of the 10
classes in Artic. After executing the post-processing algorithms, the average F1 presented
a relative loss of 5.34%. The results for author name and email are still below our ex-
pectations, while affiliation had itself a relative loss of 11.30%. During our experiments,
we observed different affiliations that are positioned very close too each other, thus not
allowing the heuristic framework to detect that those are actually distinct entities. We
believe that this was the main factor that affected the affiliation performance. Figure 5.1
shows an example of this problem.

5.4 Summary

This chapter presented the experiments performed in this work. Artic outperformed
SectLabel (baseline) by 6.92% with an overall precision of 99.84% for the classification

46

Figure 5.1: Distinct Affiliations problem (too close)

Table 5.3: Can the post-processing algorithms properly identify the relationship between
authors, emails, and affiliations?

Class Artic Artic
(Classification) (Post-Processing)

Title 100.00 % 100.00 %
Author Name 98.91 % 95.78 %

Email 100.00 % 92.57 %
Affiliation 99.64 % 88.38 %

Venue Name 85.94 % 77.40 %
Venue Year 100.00 % 97.94 %
Venue Date 98.89 % 95.27 %

Venue Publisher 100.00 % 97.22 %
Venue Location 96.60 % 83.86 %

ISBN 98.82 % 98.14 %
Average (F1) 97.88 % 92.65 %

step. We also tested Artic with a larger dataset (100 papers) and results were not affected.
The last experiment tested the post-processing algorithms. Results have shown a relative
loss of 5.34% when compared to the classification step. Chapter 6 will conclude the work
by discussing the limitations and presenting future works.

47

6 CONCLUSION

The first step of Artic is to extract information (evidences) from the PDF in order to build
the features that will be further used by the CRF model. We tried a set of tools to extract
data such as: font size, alignment, font family. To the best of our knowledge, the most
effective way is to use an OCR engine that will convert the PDF into image and output a
XML with all rich text features inside. Among all the OCR engines available, we chose
OmniPage 18 Professional due to its good reported results in the academic area. The
limitation here is that OmniPage is for Windows only, which restrains our pre-processor
to run in a specific operating system. Another issue is that if the OCR fails to recognize
some words, this may lead to classification errors. One benefit of using an OCR tool is
that we can basically support any format that the tool provides, not only PDF. We tried
to run Artic using a paper with Microsoft Word format and the results were promising.
The Artic dataset includes 100 papers. While the number is more than double the size of
the state-of-the-art solution, we still consider 100 papers a small set as compared to the
number of different paper styles available online. Also, manually annotating these papers
took us considerable time. Another possible future work is to evaluate the possibility of
leveraging this set of papers and build a broader dataset minimizing human intervention.

The post-processing algorithms try to identify the relationship between authors, emails,
and affiliation. At this level, we do not introduce any ML, but, in contrast, we apply some
heuristics to identify the components that should be grouped together. The main limita-
tion is when we do not find the group index for a specific element (e.g. author name is off
the boundaries for existing authors in the index). In this scenario, some information may
be completely ignored in the JSON output. DO et al. (2013) presents a method to match
author and affiliations using Support Vector Machines (SVM). A possible future work is
to evaluate the use of ML techniques also at the post-processing level.

This work presented Artic, a metadata extraction approach based on a two-layer CRF
model. The first-layer focuses on identifying the line-level structural components that
may contain metadata information: Title, Author Information, Header, and
Footnote. The second-layer analyzes, for each structural component, the words that
may belong to a specific metadata element. Artic identifies a total of 10 metadata ele-
ments: Title, Author Name, Author Email, Author Affiliation, Venue Name, Venue Year,
Venue Date, Venue Publisher, Venue Location, and ISBN. Author data can be found at the
Author Information layer. Similarly, Venue data can be found either at Header or
Footnote levels. Additionally, Artic provides a post-processing component that links
authors, emails, and affiliation based on pre-defined heuristics.

48

We carried out an evaluation composed of three experiments. Artic was compared
against our baseline (SectLabel) and against a gold-standard with the expected JSON
output. A total of 100 real PDF articles were used as test and training set in a 10-fold
cross-validation setting. Artic presented a relative gain of 6.92% compared to SectLabel.
The post-processing algorithms represented a relative loss of 5.34% compared to Artic
classification step. A possible future work would consider using ML techniques also at
the post-processing level.

Artic has been released as an open-source tool for anyone interested in re-using the
components developed during this work. Links to all 100 papers used in our experi-
ments together with their annotations and JSON output set can be found in the website
https://github.com/alansouzati/artic-poc. We have submitted a paper for DocEng 2014
conference which will be held in Fort Collins, USA and has a Qualis of B1.

49

APPENDIX A DETAILED FIRST-LEVEL FEATURES

• Identifier: the line identifier, starts with "line_0" and goes until "line_n", where
n is the last line of the page. This could be a good indicator for the classes as their
location usually does not change.

• Alignment: the line alignment with four possible values: left, center, right, or
justified. We expect this feature to be very useful for the identification of the Title
(usually centered).

• Bold: boolean that represents whether the line is bold (true) or not (false). This
feature could be a good evidence for identifying Title which usually are in bold.

• Underline: boolean that represents if the line contains any underlined words. This
could be important to the Footnote that usually represents information with un-
derline.

• Italic: boolean that represents if the line contains any word in italic. This feature
could be useful to identify Footnote as this class usually contains the elements
in italic.

• Font Size: the font size normalized into four different values: small, normal,
medium, or large. The normalization process calculates the average font size for
the given page, and, for each line, it assigns a value depending on the distance to
the average font size. The values can be: small if it is more than 10% smaller
than the average; normal if its difference in relation to the average size is less than
10%; medium if the size is from 10% to 45% larger than the average; and big if
the size is over 45% larger than the average font size. All values have been set
based on empirical observations of the training data. This feature could be very
useful to identify Title, Author Information, and Footnote. Title
usually has the biggest font size, Author Information usually has medium,
and Footnote usually has small.

• Top position: the normalized line location with respect to the top position. The
normalization process retrieves the large- st top position and creates buckets of 8
bits, which means that each bucket will have a size of biggestTop/8. Then, for
each line, the current top position will be set depending on the bucket it belongs to.
For example, if the current top location fits into the first bucket, its top position will
be 0, if it fits into the second bucket, its top position will be 1, and so on. This could

50

be very useful to identify Header which most probably have their top position set
to 0.

• Left position: the normalized line location with respect to the left position. The
normalization process is almost the same as for the top position, the only difference
is that it considers the left location instead of the top one. This feature could help
to identify Footnote which usually has the left position set to 0.

• Possible Email: boolean that indicates whether the current line has any "@" sign.
This feature is important to identify Author Information. If the line contains
an email it is a good indication to belong to the Author Information class.

• Number of Words: the normalized number of words for the current line with
four possible values: zero, few, medium, or many. The normalization process first
extracts the words for the given line. Zero represents an empty line. Few if the line
has between 1 and 4 words. Medium if the line between 5 and 9 words. Many if
the line has more than 9 words. All values have been experimentally set based on
the training data. The number of words could help to identify Body class, which
usually has many words.

• Paragraph Information: represents information about the paragraph. There are
three possible values: header, new, or same. The header paragraph represents all
lines before Abstract or Introduction. "New" represents a new paragraph, and
"same" means that the line belongs to the same paragraph as the previous line.
This feature has been implemented based on (LUONG; NGUYEN; KAN, 2010).
This feature could help identify the transitions between classes. When we have a
different class, it is likely for it to have different paragraph information.

• Formatting Information: represents information about the line format and can
take two different values: new or same. "New" represents that the current line has a
different format than the previous one. "Same" represents that the line has exact the
same format as the previous one. The format has been defined as a concatenation of:
font size, bold, italic, font face, and alignment. This feature has been implemented
based on (LUONG; NGUYEN; KAN, 2010). This feature could help to identify
the transitions between classes. A new format could be a good indication of a new
class.

After defining all the classes and features, the last step of the first-level component
consists of defining the CRF++ template file. Listing A.1 shows the complete template
for the first-level component. From line 1 to 24 all the features are defined. From line 26
to 52 all the context windows are defined. These windows were set manually based on the
training data. Line 55 gives extra weight when both alignment and font size matches in
multiple lines (e.g. Title class usually has center alignment and big font size). Similarly,
Line 58 gives extra weight when both line identifier and top position matches in multiple
lines.

51

Listing A.1– CRF++ template file for the first-layer model

1: #identifier
2: U0:%x[0,0]
3: #alignment
4: U1:%x[0,1]
5: # bold
6: U2:%x[0,2]
7: # underline
8: U3:%x[0,3]
9: # italic
10: U4:%x[0,4]
11: # fontSize
12: U5:%x[0,5]
13: # top
14: U6:%x[0,6]
15: # left
16: U7:%x[0,7]
17: # contains @
18: U8:%x[0,8]
19: # number of words
20: U9:%x[0,9]
21: # paragraph information
22: U10:%x[0,10]
23: # format information
24: U11:%x[0,11]
25:
26: #font size window
27: U12:%x[-2,5]
28: U13:%x[-1,5]
29:

30: #bold window
31: U14:%x[-1,2]
32: U15:%x[-2,2]
33: U16:%x[1,2]
34: U17:%x[2,2]
35:
36: #alignment window
37: U18:%x[-1,1]
38: U19:%x[-2,1]
39: U20:%x[1,1]
40: U21:%x[2,1]
41:
42: #paragraph window
43: U22:%x[-1,10]
44: U23:%x[-2,10]
45: U24:%x[1,10]
46: U25:%x[2,10]
47:
48: #format window
49: U26:%x[-1,11]
50: U27:%x[-2,11]
51: U28:%x[1,11]
52: U29:%x[2,11]
53:
54: # align/font size
55: U30:%x[0,1]/%x[0,5]
56:
57: # identifier/top
58: U31:%x[0,0]/%x[0,6]

52

APPENDIX B DETAILED SECOND-LEVEL FEATURES

B.1 Header CRF Features

• Word Content: the original text of the word without spacing. This feature is
very useful for identifying the Publisher (e.g. ACM, IEEE) and Conference
Names (e.g. DocEng, WWW). These words tend not to vary (i.e. the same words
are used in most papers), thus allowing us to use the word as a feature for the CRF
engine. In the first-level of our CRF model, we did not use the value of the line
because it is not useful for that level.

• Word Identifier: the word identifier, starts with 0 and goes till n, where n is the
last word of the line. We believe that the location of the word within the line is
relevant for the detection of classes. For example, Conference Name is usually
one of the first words of the line.

• Line Identifier: the line identifier, starts with 0 and goes till n, where n is the last
line of the page. This feature could be relevant because Header class usually is
found in one of the first lines of the page.

• Character length: the normalized number of characters for the current word with
four possible values: zero, few, medium, or many. The normalization process first
extracts the characters for the given word. Zero represents an empty word. Few
if the word between 1 and 4 characters. Medium if the word has between 5 and
9 characters. Many if the word has more than 9 characters. All values have been
experimentally set based on the training data. The number of characters could help
identify the Other class, which usually has lines full of characters.

• Numeral: boolean that represents if the word content is composed only by num-
bers. This feature is very useful when identifying days and years for the confer-
ence/journal. We remove all special characters from the word before checking for
the pattern. For example, the word "$5,00" is considered a valid numeral entry
in our method because we remove "$" and "," from the character sequence before
applying the pattern.

• Possible Conference: boolean that represents if the word is a possible conference
name by having the substring "conference" or "conf" (e.g. "International Confer-
ence on Database Systems"). Also, we currently maintain a list of about 1700 CS
conferences around the world. If the given word is found in the conference list,

53

we also classify this word as a possible conference. Before applying the filter, we
convert the word to lowercase.

• Month: boolean that identifies if the word represents a
month. We keep a list with all possible months in lowercase format. Also, we
add the short and full value for the month (e.g. Jun and June). Before performing
any checks, we remove all special characters from the word and apply the lowercase
function. For example, the word "JuNe," is considered a valid month.

• Year: boolean that identifies if the word holds the conference/journal year. The
logic executed for this feature is presented in Algorithm 4.

Algorithm 4 Algorithm for the identification of the Year feature
Require: Word without spaces and special characters.

1: year = false
2: if isNumberal() && word.length() == 4 then
3: possibleY ear = word.toInt()
4: if possibleY ear > 1850 && possibleY ear <= CURRENT_Y EAR then
5: year = true
6: end if
7: end if
8: return year

The "Year" feature will only be valid if the "Numeral" feature is valid too. Also, the
length of the word should be 4, as described in step 2. Another important condition
for any article’s year is to be in some certain interval. Currenly, we are identifying
papers published after 1850 and before the current year (step 4).

• Country: boolean that represents if the word is part of a country name. We keep a
list of country names in lowercase format. Again, we remove all special characters
and convert to lowercase. For example, the word "StaTes..." is a valid country
feature. The word "States" is part of the country name "United States of America".
This is very important to detect Conference Location.

• Special Character: boolean that represents if the word contains any special char-
acter. This feature is important when identifying the conference location and con-
ference dates.
These classes usually include special characters like comma, dots, and colons. This
feature could be useful to identify
Conference Name, Conference Location, and
Conference Date, as they usually include special characters as part of their
data.

• Website: boolean that identifies if the word represents a URL (e.g. www.google.com).
This feature is useful for
Other class, if we find a website pattern we currently classify them as Other.

The CRF++ template file for the Header layer is shown in Listing B.1. From line 1
to 23 all the features are defined. From line 25 to 27 the country window is defined. As

54

explained earlier, the conference location is usually of the form "City, Country". As a
result, we decided to set the country window for two words behind. Line 30 gives extra
weight when both numeral and year matches in multiple lines (e.g. good evidence for
Conference Year).

Listing B.1– CRF++ template file for the Header layer

1: #word
2: U0:%x[0,0]
3: # position withn the line
4: U1:%x[0,1]
5: # line identifier
6: U2:%x[0,2]
7: # number of letters
8: U3:%x[0,3]
9: # is numeral
10: U4:%x[0,4]
11: # is conference
12: U5:%x[0,5]
13: # is month
14: U6:%x[0,6]
15:

16: # possible year
17: U7:%x[0,8]
18: # is a country
19: U8:%x[0,9]
20: # has special character
21: U09:%x[0,10]
22: # website
23: U10:%x[0,11]
24:
25: #country window
26: U11:%x[-2,9]
27: U12:%x[-1,9]
28:
29: # numeral and year
30: U13:%x[0,4]/%x[0,8]

B.2 Author Information CRF Features

• Word Content, Word Identifier, Line Identifier, Character Size, Website: The
same implementation as the Header CRF.

• Font Size, Possible Email: implemented following the same algorithm as the one
implemented in Appendix A.

• Possible Affiliation: boolean that indicates whether the current word is likely to
belong to the affiliation block. In order for this feature to be valid, it has to match
at least one of these criteria: be a possible university, or a possible country, or a
possible department, or a possible continent. To be a possible university, the word
should be equal to "University" or "Faculty". The logic for the country is the same
that the one executed in the Header CRF. A possible department is a word that
matches at least one of these cases: department, dept, center, laboratory, division,
school, group, community, or academic. We keep a list of all continents, if the given
word matches any of these values it will be classified as a possible affiliation too.

• Word Format: represents information about the word formatting. Same imple-
mentation as the one describe in A, but for the word-level.

The CRF++ template file for the Author Information layer is shown in Listing B.2.
From line 1 to 18 all the features are defined. From line 20 to 25 all windows are defined.
The format window, looks at the previous format to infer about the current one. The
affiliation window considers the next two words also as candidates for belonging to the
same class (e.g. University of California). Line 28 gives extra weight when both format
and font size matches in multiple lines.

Listing B.2– CRF++ template file for the Author Information layer

55

1: # word
2: U0:%x[0,0]
3: # position withn the line
4: U1:%x[0,1]
5: # line identifier
6: U2:%x[0,2]
7: # number of letters
8: U3:%x[0,3]
9: # possible email
10: U4:%x[0,4]
11: # possible affiliation
12: U5:%x[0,5]
13: # website
14: U6:%x[0,6]

15: # format
16: U7:%x[0,7]
17: # font size
18: U8:%x[0,8]
19:
20: #format window
21: U9:%x[-1,7]
22:
23: #affiliation window
24: U10:%x[1,5]
25: U11:%x[2,5]
26:
27: #format and font size
28: U12:%x[0,7]/%x[0,8]

B.3 Footnote CRF Features

• Word Content, Word Identifier, Line Identifier, Character Size, Month, Possi-
ble Conference, Country, Year, Website, Publisher, Numeral: the same imple-
mentation as described in Header CRF.

• Possible Email, Possible Affiliation: the same implementation as described in
Author Information CRF.

• Day: boolean that indicates if the word matches the following pattern DAY-DAY
(e.g. 05-10).

• ISBN: boolean that indicates whether the word matches the following ISBN for-
mat XXX-X-XXXXX-XX/XX/XX (e.g. 978-1-60558-01/08/04). For some papers,
the ISBN comes immediately followed by the fee, like
978-1-60558-01/08/04$5.00. The regular expression applied for this feature also
supports ISBN with this particular scenario.

The CRF++ template file for the Footnote layer is shown in Listing B.3. From line 1
to 32 all the features are defined. We did not identify any possible window that could be
applied for the Footer section.

Listing B.3– CRF++ template file for the Footnote layer

1: # word
2: #U0:%x[0,0]
3: # position withn the line
4: U1:%x[0,1]
5: # line identifier
6: U2:%x[0,2]
7: # characterSize
8: U3:%x[0,3]
9: # month
10: U4:%x[0,4]
11: # conference
12: U5:%x[0,5]
13: # days
14: U6:%x[0,6]
15: # country
16: U7:%x[0,7]

17: # year
18: U8:%x[0,8]
19: # website
20: U9:%x[0,9]
21: # isbn
22: U10:%x[0,10]
23: # publisher
24: U11:%x[0,11]
25: # email
26: U12:%x[0,12]
27: # numberOnly
28: U13:%x[0,13]
29: # possibleAffiliation
30: U14:%x[0,14]
31: # issn
32: U15:%x[0,15]

56

REFERENCES

AUMÜLLER, D. Retrieving Metadata for Your Local Scholarly Papers. In: BTW, 2009.
Proceedings. . . [S.l.: s.n.], 2009. p.577–583.

BAGGENSTOSS, P. A modified Baum-Welch algorithm for hidden Markov models with
multiple observation spaces. Speech and Audio Processing, IEEE Transactions on,
[S.l.], v.9, n.4, p.411 –416, may 2001.

BIKEL, D. M. et al. Nymble: a high-performance learning name-finder. In: APPLIED
NATURAL LANGUAGE PROCESSING, 1997. Proceedings. . . [S.l.: s.n.], 1997. p.194–
201. (ANLC ’97).

BRETHERTON, F.; SINGLEY, P. Metadata: a user’s view. In: SCIENTIFIC AND STA-
TISTICAL DATABASE MANAGEMENT, 1994. Proceedings. . . [S.l.: s.n.], 1994. p.166
–174.

COUNCILL, I. G.; GILES, C. L.; KAN, M. yen. ParsCit: an open-source crf reference
string parsing package. In: LREC, 2008. Proceedings. . . [S.l.: s.n.], 2008.

DARROCH, J. N.; RATCLIFF, D. Generalized iterative scaling for log-linear models. In:
THE ANNALS OF MATHEMATICAL STATISTICS, 1972. Proceedings. . . [S.l.: s.n.],
1972. v.43, p.1470–1480.

DO, H. H. N. et al. Extracting and Matching Authors and Affiliations in Scholarly Docu-
ments. In: JCDL, 2013. Proceedings. . . [S.l.: s.n.], 2013. p.219–228.

FINK, G. A. Markov Models for Pattern Recognition: from theory to applications.
Secaucus, NJ, USA: [s.n.], 2007.

FLYNN, P. et al. Automated template-based metadata extraction architecture. In: INTL
CONF. ON ASIAN DIGITAL LIBRARIES, 2007. Proceedings. . . [S.l.: s.n.], 2007.
p.327–336.

FORNEY G.D., J. The viterbi algorithm. Proceedings of the IEEE, [S.l.], v.61, n.3,
p.268 – 278, march 1973.

HAN, H. et al. Automatic document metadata extraction using support vector machines.
In: JCDL, 2003. Proceedings. . . [S.l.: s.n.], 2003. p.37 – 48.

HETZNER, E. A simple method for citation metadata extraction using hidden markov
models. In: JCDL, 2008. Proceedings. . . [S.l.: s.n.], 2008. p.280–284.

57

HUANG, Z. et al. Header metadata extraction from semi-structured documents using
template matching. In: INTEL CONF. ON THE MOVE TO MEANINGFUL INTER-
NET SYSTEMS: AWESOME, CAMS, COMINF, IS, KSINBIT, MIOS-CIAO, MONET
- VOLUME PART II, 2006. Proceedings. . . [S.l.: s.n.], 2006. p.1776–1785.

JOHN LAFFERTY ANDREW MCCALLUM, F. P. Conditional Random Fields: prob-
abilistic models for segmenting and labeling sequence data. ScholarlyCommons, [S.l.],
2001.

KLEINBERG, J. M.; TARDOS, É. Algorithm design. [S.l.]: Addison-Wesley, 2006. I-
XXIII, 1-838p.

LIPINSKI, M. et al. Evaluation of Header Metadata Extraction Approaches and Tools for
Scientific PDF Documents. In: JCDL, 2013. Proceedings. . . [S.l.: s.n.], 2013. p.385–386.

LUONG, M.-T.; NGUYEN, T. D.; KAN, M.-Y. Logical Structure Recovery in Scholarly
Articles with Rich Document Features. IJDLS, [S.l.], v.1, n.4, p.1–23, 2010.

PENG, F.; MCCALLUM, A. Accurate information extraction from research papers using
conditional random fields. In: HLT-NAACL04, 2004. Proceedings. . . [S.l.: s.n.], 2004.
p.329–336.

PENG, F.; MCCALLUM, A. Information extraction from research papers using condi-
tional random fields. Inf. Process. Manage., [S.l.], v.42, n.4, p.963–979, July 2006.

POTTHAST, M. et al. An Evaluation Framework for Plagiarism Detection. In: COLING,
2010. Proceedings. . . [S.l.: s.n.], 2010. p.997–1005.

PRESS, N. Understanding Metadata. [S.l.: s.n.], 2004.

RABINER, L. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, [S.l.], v.77, n.2, p.257 –286, feb 1989.

RABINER, L.; JUANG, B. An introduction to hidden Markov models. ASSP Magazine,
IEEE, [S.l.], v.3, n.1, p.4 –16, jan 1986.

ROSENTHOL, L. Developing with PDF: dive into the portable document format. 1.ed.
[S.l.]: O’REILLY, 2013.

SARAWAGI, S.; COHEN, W. W. Semi-Markov conditional random fields for informa-
tion extraction. In: IN ADVANCES IN NEURAL INFORMATION PROCESSING SYS-
TEMS 17, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.1185–1192.

SCHEFFER, T.; DECOMAIN, C.; WROBEL, S. Active Hidden Markov Models for In-
formation Extraction. In: Advances in Intelligent Data Analysis. [S.l.]: Springer Berlin
Heidelberg, 2001. p.309–318. (Lecture Notes in Computer Science, v.2189).

SCHEFFER, T. et al. Learning Hidden Markov Models for Information Extraction
Actively from Partially Labeled Text. 2002.

SEYMORE, K.; MCCALLUM, A.; ROSENFELD, R. Learning Hidden Markov Model
Structure for Information Extraction. In: AAAI WORKSHOP ON MACHINE LEARN-
ING FOR INFORMATION EXTRACTION, 1999. Proceedings. . . [S.l.: s.n.], 1999.
p.37–42.

58

SKULJ, D. Discrete time Markov chains with interval probabilities. Int. J. Approx. Rea-
soning, [S.l.], v.50, n.8, p.1314–1329, Sept. 2009.

STOLCKE, A. Bayesian learning of probabilistic language models. [S.l.: s.n.], 1994.

WALLACH, H. Efficient Training of Conditional Random Fields. 2002.

WALLACH, H. M. Conditional Random Fields: an introduction. ScholarlyCommons,
[S.l.], 2004.

YIN, P. et al. Metadata Extraction from Bibliographies Using Bigram HMM. In: INTL
CONF. ON ASIAN DIGITAL LIBRARIES, 2004. Proceedings. . . [S.l.: s.n.], 2004.

