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A distinct development of an exact analytical solution for power-law fluids during the spin-coating proc-
ess is presented for temporal and spatial thickness evolution, after steady state conditions are attained.
This solution leads to the definition of a characteristic time, related to the memory of the initial thickness
profile. Previously obtained experimental data, for several rotation speeds and carboxymetilcellulose
concentrations in water, are quantitatively analyzed through the evaluation of their characteristic times
and compared with theoretical predictions, thus allowing better understanding of thickness profile
evolution and of process reproducibility. © 2014 Optical Society of America
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1. Introduction

Reproducibility is a remarkable property in the
spin-coating process, well known since its early use
for painting plane surfaces [1], and is critical to
optical and microelectronics device fabrication. The
theoretical models for flow description during spin
coating must, therefore, be able to demonstrate this
characteristic aspect at some point.

The Emslie et al. [2] pioneering model, for Newto-
nian flow over an infinite rotating plate, indicates
that thickness loses its memory of the initial profile
with time, reaching a uniform distribution. Experi-
mental procedures, as performed by Washo [3], also
corroborate this fact, showing good reproducibility.

Today, polymers play an important role in the
coating process due to their wide possibilities of
application. Most polymers have a non-Newtonian
behavior, and some of these obey the power-law
model. Some numerical simulations, by Acrivos et al.
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[4] and Jenekhe and Schuldt [5], have shown that
the flow becomes memoryless of the initial thickness
profile, but without reaching uniformity.

Charpin et al. [6] and, more recently, Temple-Boyer
et al. [7] presented an exact solution for the thickness
profile of power-law fluids during spin coating.
Their solution predicts a divergence in the spatial
coordinate that forbids uniformity in the center of
the plate.

On other hand, interferometric optical monitoring
has risen as a powerful and accurate method for
real-time and in situ thickness monitoring in dip-
coating [8—10] and spin-coating [11-14] processes. In
fact, the interferometric monitoring method is able
to provide the typical parameters of the power-law
fluid [15] with good accuracy and reproducibility.
Moreover, the good agreement between the theoreti-
cal model and the experimental data corroborates
the valid employment of the model, which allows
neglecting the divergence and predicting the film
uniformity, as expected.

In this work, a distinct analytical solution for
non-Newtonian power-law fluids is shown in detail.
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This solution leads to the definition of the character-
istic time that is associated with the process repro-
ducibility. Reproducibility of a real process is
investigated and model predictions are compared
with experimental data from carboxymetilcellulose
(CMC) under spin coating.

2. Theory

Consider a constant pressure, axisymmetric, steady
state flux of a power-law fluid over an infinite rotat-
ing plate. In the disk, the equation of motion in cylin-
drical coordinates with radial direction r [6] is
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where w is the rotation speed, 7,, is a component of
the stress tensor, and p is the fluid density. The z axis
is perpendicular to the plate that is in the z =0
position. The free surface is at z = h(r,t), where ¢
denotes time. The viscous shear stress balances the
centrifugal force.

The boundary conditions

v (z2=0)=0 (2)
and

7.(z=h)=0 3)
represent the zero velocity v,(z) of the fluid on the
disk surface [Eq. (2)] and the absence of stress 7,.(2)
in the fluid-air interface [Eq. (3)].

For a fluid that follows the power-law model, the
stress tensor takes the form
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The constant ! represents the power in the model.
The s values for the pseudoplastic case are in the
range of 0 </ < 1. The case [ > 1 is called dilatant.
The Newtonian case is reached for / = 1, and this
is valid for any equation in this paper. K is the
rheological constant, associated with the effective
viscosity defined by the equation
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where K becomes the fluid viscosity for [ = 1.

The velocity in the r direction, by substituting
Eq. (4) in Eq. (1) and using boundary condition (3),
can be written as

v,(2) = (I% wzr)l(HLl) (hHT1 -(h- z)#). (6)

The flux ¢ for a circumference element,

n
a= [ v, @)
0
by using Eq. (6) and boundary condition (2), becomes
=L () ®)
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The flux (8) is substituted into the continuity
equation

oh(r,t) la(rq) _
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and gives the partial differential equation for the
thickness:
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This equation is separable, so its solution can be
written as
h(r,t) = R(r)T () (11)

and, using ¢ as a separation constant, the spatial
and temporal equations take, respectively, the form
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The temporal equation is easily integrated to
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where T, represents the contribution at ¢ = 0. If
[ = 1, then it represents the initial thickness for a
given position.

The spatial Eq. (12) is an inexact ODE, and the in-
tegrand factor can be found. However, we prefer solv-
ing it in a distinct way, through a dimensional
analysis, which may be useful for nonlinear differen-
tial equations without exact solution.

Now, a dimensional analysis is performed in order
to inspire the Ansatz for the spatial solution. Consid-
ering = 1/[s], K = [N][s]'/[m]* and r = [Kg]/[m}’,
the temporal solution takes the dimension 7T =
[m]?/¢+1) As the dimension of the thickness must
be h = [m], the spatial solution has the dimension
R = [m]&D/¢+D according to Eq. (11).

The Ansatz for the spatial solution can be pre-
sented as
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R(r) = Crim. (15)

The initial thickness profile 4, is defined for an
arbitrary position ry, so that, by combining Egs. (14)
and (15) at ¢t =0,

@y -1
C = hy |:r8“)TO] : (16)

The total solution for thickness evolution at arbi-
trary ¢ and r,
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predicts a divergence at r = 0, which can be attrib-
uted to the simplicity of the model, without explicit
consideration of both surface tension and gravity,
which leads to the divergence of the viscosity in that
point. Fortunately the nonuniformity area around
r = 0 is very small and an experimental probe area
can be founded very near the center of the plate.

To determine the value of the separation constant
o, the total solution (17) must satisfy the differential
Eq. (10), so that
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The solution of the partial differential Eq. (10) then
becomes

B[ e
h(r.t) = (%) o [hol +

This is exactly the previously reported solution [7].
In our case, the dimensional analysis arises as a
powerful instrument that leads to the solution.

For large times, for which
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where the characteristic time is defined as
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the thickness evolution loses dependence on its
initial value, as experimentally expected from the
observed process reproducibility, and starts to
depend strongly on the rotation speed, power, and
rheological constant. For [ = 1, the Newtonian case
is recovered and the thickness no longer depends
directly on the spatial position, reaching a uniform
profile after the stationary regime is attained.
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As the power in the Newtonian case (I = 1) is
larger than that for the pseudoplastic case
(0 <l < 1), for the same evolution time, the thickness
for the latter is smaller than that for the former.

3. Experimental

Optospinigraphy [11] allows real-time thickness
monitoring through successive reflectance extrema,
whose distance is associated with a quarter of a
wavelength. Light from a laser diode (4, = 660 nm)
is used in the interferometer, which is coupled to
the spinner and generates for the reflectance, R, a
sinusoidal profile as the fluid film flows outward
in the disk, in accordance with

R = R(cos 9), (22)

where 6§ is the phase variation of the reflected light.
More detailed equipment description and experi-
mental analysis are reported in Ref. [15].

The reflectance signal of a coherent light, at nor-
mal incidence in a fixed position r, changes its phase
& with optical path, during flow, as

6= @nlh, (23)
Ao

where n; is the film refractive index and A is its
thickness.

In ideal conditions, the reflectance amplitude is
reproduced for § = § 4+ 27, or for a physical thickness
variation h — h + Ah. The optical thickness varia-
tion reaches an extremum when

Ahnlzm%o, where m =1,2,3, .... (24

The thickness variation in time is associated with
the occurrence of extrema in the reflectance signal
and is proportional to integer multiples of a quarter
of the wavelength.

The CMC polymer was chosen due to its typical
power-law behavior, previously verified [10], and to
its synthesis simplicity. The refraction indices for
distinct weight concentrations in water were ob-
tained by use of an Abbe refractometer (see Table 1),
and these concentrations were tested under dif-
ferent rotation speeds at controlled temperature
(Temp = 22.4°C) and humidity (Humid = 100%).

The reflectance output, exemplified in Fig. 1, for
distinct concentrations at a fixed rotation speed [15],
exhibits a sinusoidal-like profile, as expected. The
physical thicknesses variations are shown in Fig. 2.

Table 1. Refraction Indices, n;, for CMC Weight
Concentrations, Measured by an Abbe Refractometer

Concentration in Water (% wt.) ny

0.1 1.3332 + 0.0005
0.2 1.3333 4 0.0005
0.5 1.3335 4 0.0005
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Fig. 1.
to lock-in amplifier response polarity).

Each point represents the occurrence of an ex-
tremum in the reflectance signal.

The proposed solution for power-law fluids,
Eq. (19), fits well with the experimental data,
Fig. 2, considering a negative thickness variation
Ah = hy — h and a measuring position, r = r(, nearly
the center. This allows an accurate evaluation of
the flow parameters / and K (see Table 2). These
parameters can also be obtained for other controlled
rotation speeds [15], as in Table 2.

4. Discussion

The characteristic times, calculated from its defini-
tion, Eq. (21), lie in the range of 0.5-1.4 s; see Table 2.
The total times of the flows over the disk, ¢, for the
measured set of CMC concentrations and rotation
speeds, are approximately two orders of magnitude
larger than the characteristic times; see Table 2.
This indicates the precise evaluation of the power [
and of the rheological constant K, according to the
condition (20). The reproducibility in parameter
evaluation can be observed in Table 2, where the
values of K are nearly the same for a given CMC
concentration at different rotation speeds.

As Eq. (24) depends on the thickness variation
Ah = h, - h, for times of the order of the character-
istic time ¢,, thickness variation profiles, as in Fig. 2,
are superimposed, indicating the dominance of
dependency on initial thickness.

t(s)

Reflectance profile for 0.1% wt., 0.2% wt., and 0.5% wt. CMC at a rotation speed of 5000 rpm. (Reflectance signal is inverted due

With increasing time, these profiles split and
evolve separately. This suggests that the dependence
of variation thickness on the rheological constant,
power, and rotation speed becomes increasingly
stronger, as can be seen through Eq. (19). The exist-
ence of this region for a sufficient time period leads
to a precise determination of the power [ and
the rheological parameter K, and this time period
depends on characteristic time value.
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Fig. 2. Physical thickness variation for 0.1% wt., 0.2% wt., and
0.5% wt. CMC at a rotation speed of 5000 rpm.
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Table2. Rheological Constants (K), Powers (/), Characteristic Times (t.), Total Flow Times (t;), and Initial Thicknesses in the Steady State (h,) for
0.1% wt., 0.2% wt., and 0.5% wt. CMC at Several Rotation Speeds «

Concentration in Water (% wt.)  (rpm) h, (pm) l K (Pa-s') t.(s) t:(s)

0.1 2500 16.6 +£ 0.7 0.18 £ 0.02 0.0077 £+ 0.0007 0.81 124.71
0.1 3000 13.7+0.5 0.23 £ 0.02 0.0077 £+ 0.0007 0.97 91.22
0.1 3500 12.1+04 0.26 + 0.02 0.0077 £+ 0.0008 0.8 77.08
0.1 4000 109+0.3 0.28 £+ 0.02 0.0078 £+ 0.0009 0.68 59.79
0.1 5000 9.3+04 0.30 £0.03 0.009 £ 0.001 0.64 59.49
0.2 2500 33+2 0.083 £ 0.007 0.023 £+ 0.002 1.00 141.67
0.2 3000 27 +2 0.11 +£0.01 0.023 £+ 0.003 0.52 113.30
0.2 3500 21+1 0.14 £0.01 0.022 £+ 0.002 0.67 92.23
0.2 4000 17+1 0.15 £ 0.02 0.023 £+ 0.003 0.97 80.13
0.2 5000 145+ 0.6 0.21 £ 0.02 0.022 £+ 0.003 0.58 71.75
0.5 4000 36+3 0.087 £+ 0.008 0.063 £+ 0.006 0.83 117.49
0.5 4500 29 +2 0.094 + 0.008 0.065 + 0.006 1.43 101.63
0.5 5000 24 +£2 0.10 £0.01 0.064 £ 0.007 1.37 88.34

Thickness variations that are approximately
superimposed must have near values for the charac-
teristic time, because they have approximate flow
parameters. In this sense, considering distinct thick-
ness variation profiles, the greatest superimposition
during the initial times represents the nearest
values for the characteristic times. This tendency
can be seen in Fig. 2. Thickness profiles for concen-
trations of CMC 0.1% wt. and 0.2% wt., at 5000 rpm,
have greater superimposition in initial times than
the CMC 0.5% wt. profile. The characteristic times
for the lower CMC concentrations are smaller and
closer than the characteristic time of the CMC
0.5% wt. (see Table 2).

According to Eq. (21), the characteristic time is
inversely proportional to the initial thickness. The
initial thickness is associated with the detection of
the first extremum of the reflectance after steady
state flow is reached. Therefore, a sooner detection of
the first extremum benefits the precision and the
reproducibility of the evaluation of the flow parame-
ters. The detection of the first extremum is related
to factors such as the acquisition rate of the light
detector, the absorption of light by the fluid, and
when the steady state flow is reached. The low char-
acteristic times in comparison with the total flow
time attest to the efficiency of the measure device
and the measurement quality in the determination
of flow parameters.

5. Conclusions

The exact analytical solution to non-Newtonian
power-law fluids, under spin coating whose distinct
development was hereby presented, has provided a
good fitting with the experimental data, leading to
accurate parametric evaluation. Moreover, the solu-
tion allows the definition of a characteristic time,
which is related to the thickness temporal profile and
process reproducibility.

The thickness-variation profiles and the character-
istic times were obtained from experimental data,
using different concentrations of CMC. The low val-
ues obtained for the characteristic times attest to the
process reproducibility, as observed experimentally.
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Similarly to that observed in the Newtonian case
[12,13], for times much larger than ¢, the power-
law process becomes memoryless of initial thickness.

The good fitting attained (Fig. 2), under several
rotation speeds and concentrations, in Table 2 indi-
cates the consistency of the theoretical approach.
The small values obtained for the characteristic time,
as in Table 2, corroborate the rheological precision
of the measurement process after steady state condi-
tions are reached.
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