justifies the denomination image hologram for this kind of
hologram.

Nevertheless, the thickness effect allows restitution of
polychromatic images. In particular, for relatively thin
emulsions and small 8y angles, the spectral filtering is not very
large. For example, fore =7 um, 28 = 25°,n = 1.5, Ag = 0.5
pm, we get from Eq. (2) AN = 0.254 um.

Thus the restituted images are no longer achromatic, as in
the case of ideal image holography. However, they can be
considered polychromatic. Nevertheless, the spectral filtering
effect tends to increase the multiplexing capability.

To estimate storage capacity let us determine the angular
selectivity of the hologram in the case of a monochromatic
restitution. It can be estimated easily from the grating
equation:

nh(sin(f; + AB) + sinfls] = EA[1 + (1/N)],

where we fix the angle of observation 85 = ;.
This results in the following expression for the angular se-
lectivity in a monochromatic restitution of wavelength A:

po DA
ne sin(28;)

Then for a range @ of the restitution angles, if Af is ap-
proximately considered as a constant, the number of super-
posable objects is given by
© _ One sin(260)
No= o 2\ &

In the case of polychromatic restitution, the angular se-
lectivity can be estimated from the incidence angles which give
zero efficiency for the extreme wavelengths in the spectral
band: Ao £ AA.

Let us call By + 60 the incidence angle giving maximum
efficiency for Ag + AA:

4

+ AN

sin(fp + 68) + sinfy = 2 Ao sinfp. (6)
To find the angle which makes the total efficiency zero, one
must add the deviation ¢ with the monochromatic angular
selectivity Af defined by Eq. (4) for Ag + A\

Then the total angular selectivity for the polychromatic
restitution can be written as the sum of a monochromatic
contribution and a polychromatic contribution:

Abior = A + 6005440 + 6005-a%)

The final storage capacity for a polychromatic restitution can
then be estimated as above by calculating

N =B/ (Abor) 7

for each recording configuration. The corresponding nu-
merical results are shown in Table L

The final storage capacity is obviously lower than in
monochromatic reconstruction. Nevertheless, it remains
sufficiently large for several applications in which polychro-
matic illumination is required. The use of thicker emulsions
allows an important number of objects to be stored.

Multiplexed holograms have been recorded on Agfa 8E56
holographic emulsions (7 um thick) and on dichromated gel-
atins (~50 um thick). In each case, up to three different
objects have been superposed on a transmission hologram
modifying the reference recording angle for an object. A
restituted image is shown in Fig. 2.

To get a polychromatic restitution, we have used a 42-W
white-light tungsten source. Figure 3 shows the spectrum of
the source and the two image spectra from transmission ho-
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lograms recorded under the same conditions (28 = 35°, Ay
= (0.514 pm) on holographic emulsion and dichromated gela-
tin, respectively.

These measurements confirm that the spectral filtering
effect remains relatively small but sufficient enough to allow
multiplexing capabilities and polychromatic restitution.

Display applications often require high storage systems with
polychromatic illumination. It has been shown here that use
of the thickness effect in image holography allows notable
multiplexing capabilities without significant degradations in
the restituted images.

Such a compromise between image holography and volume
holography could also be examined in the case of computer-
controlled methods for the recording phase® to simplify the
superposition of a large number of objects.

We wish to thank the Laboratoire d'Optique de Besangon
and the CNET (Lannion) for their cooperation in making
multipsi holograms and producing dichromated gelatins.
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Structural anisotropy! occurs in evaporated thin films
when the condensing molecules have insufficient mobility to
form a tightly packed arrangement. Shadowing causes the
growth of columns which are visible in electron micrographs
of thin-film sections? and, in the case of deposition at an angle
0, tend to grow toward the source at angle tan—1(%;, tand).1:3
In this Letter we discuss measurements of birefringence made
at normal incidence on a number of thin-film materials which
were deposited obliquely.4
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Fig. 1. Birefringence at normal incidence in a silver-silicon oxide-

silver interference filter. The silver reflecting layers were deposited

at normal incidence and the silicon oxide spacer layer was deposited
at 60°. (Transmittance spectra recorded using polarized light).

A typical example of birefringence is given in Fig. 1. The
sample is a Fabry-Perot type metal-dielectric-metal inter-
ference filter formed by depositing silver reflecting layers at
normal incidence and a silicon oxide spacer layer at 60° to the
substrate normal. The traces shown were recorded in a
Cary-14 spectrophotometer with glass-mounted sheet po-
larizers positioned in the reference and sample beams. TE
and TM polarization labels (Figs. 1 and 2) refer to the plane
of incidence of the evaporant molecules. For these polar-
ization directions the transmitted peaks have minimum width
and the polarization-dependent separation is a maximum.

Slight birefringence has also been observed in coatings ro-
tated during deposition for uniform thickness; in one case a
value of A\ = Mg — Arym = 0.3 nm was recorded for a 24-layer
zirconium oxide-silicon oxide narrowband filter. This effect
can be attributed to a nonzero mean deposition angle.

Moisture penetrates into voids in the layers of an optical
coating during air admittance and as the coating ages in the
atmosphere. As a consequence the refractive indices increase
and the peaks of interference filters drift toward longer
wavelengths.5 As the uptake of moisture would be expected
to decrease the magnitude of form birefringence, we measured
and report typical results for birefringence in filters observed
during air admittance in the regions of microscopic water
penetration patches and on immersion in liquids.

A titanium oxide-silicon oxide filter of design A[(HL)*
(H)XLH)4G (deposition angle 27°, Oz pressure 3 X 104
mbar, substrate temperature 250°C, TiOz deposition rate 0.3
nm sec™1, SiO; rate 1.0 nm sec™?!) yielded the following values
for the wavelength of the principal transmission peak:

before air admittance, Artg = 595.0 nm,
ArMm = 590.5 nm,
after air admittance, Atg = 606.0 nm,

AtM = 603.5 nm.

Thus Mg and Ay both shifted toward longer wavelengths
and the difference A\ decreased by nearly 50%.

In one mode of transport water condenses at a pore and
spreads laterally in the layers.®7 Water penetration fronts
are particularly well defined in some metal-dielectric-metal
filters® and can be observed using the method described by
Macleod and Richmond.? Displacements in wavelength
caused by the water can be measured using fringes of equal
chromatic order (FECO).10 A glass-mounted sheet polarizer
located between the collimator lens and the dispersing prism
of the FECO apparatus allows selection of TE and TM po-
larizations. A series of Ag~-MgFo-Ag filters was deposited to
determine the dependence of AX on the deposition angle é.

“columns
-1 %
TE™ 2 x
silver
™~ films —

Fig. 2. TE and TM polarizations refer to the plane of incidence of
the evaporant molecules. The columns which form the microstruc-
ture are also in this plane.
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Fig.3. Birefringence at normal incidence in silver-magnesium flu-

oride-silver interference filters measured in wet regions (microscopic

water penetration spots) and surrounding dry areas. The value of

ATE — ArMm is reduced by the water which penetrates into the mag-
nesium fluoride spacer layers.

The results of measurements made on wet and dry areas of the
filters using the FECO method are given in Fig. 3.

Tmmersion in water or ethanol also reduces the value of AA.
In one experiment a zirconium oxide-silicon oxide filter of
design A[(HL)3(H)*(LH)5]G (deposition angle 27°, Oz pres-
sure 3.8 X 10~4 mbar, substrate temperature 280°C, ZrO2
deposition rate 0.4 nm sec™!, SiO; rate 1.0 nm sec™1) was
placed in a cell containing water and spectrophotometer
measurements showed that A\ decreased from 4.0 to 2.3 nm.
The FECO method applied to the same sample, this time
using a thin layer of water between the filter and an optically
flat cover plate, gave values of 4.0 and 2.0 nm. Refractive-
index oils did not penetrate into the voids in the layers, pre-
sumably due to the larger size of the molecules. Some of the
moisture which enters a coating can be removed!! by heating
or desiccation in vacuum, for example. When water was
pumped from a silver (0°)—cryolite (45°)-silver (0°) filter, AN
increased from 0.3 to 0.7 nm.

All measurements on wet and dry areas of filters gave the
result Mrg > Arm, whereas the birefringence predicted by an
elementary film model of parallel tilted cylindrical columns
of circular cross section is positive uniaxial giving Mg < Arm.
Our measurements indicate that a biaxial model is required
for films deposited obliquely. Additional measurements
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which have been made using off-axis optical probe beams
support the notion of a biaxial model and allow the principal
indices of refraction to be estimated.?2 For modest angles of
deposition the difference between the two models is small and
significant only for optical measurements made near normal
incidence.
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