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Velhas Árvores 

Olha estas velhas árvores, mais belas

Do que as árvores novas, mais amigas:

Tanto mais belas quanto mais antigas,

Vencedoras da idade e das procelas...

O homem, a fera, e o inseto, à sombra delas

Vivem, livres de fomes e fadigas;

E em seus galhos abrigam-se as cantigas

E os amores das aves tagarelas.

Não choremos, amigo, a mocidade!

Envelheçamos rindo! envelheçamos

Como as árvores fortes envelhecem:

Na glória da alegria e da bondade,

Agasalhando os pássaros nos ramos,

Dando sombra e consolo aos que padecem! 

Olavo Bilac
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Resumo

Entender  padrões  de diversidade e  composição de espécies  ao longo de múltiplas  escalas

espaciais  constitui  um  dos  principais  objetivos  em  ecologia  e  biogeografia.  A  relativa

importância dos mecanismos responsáveis por estruturar as comunidades de plantas e como

eles interagem para influenciar estes padrões têm sido foco de intensos debates. No presente

estudo, foram utilizados dados do Inventário Florístico Florestal de Santa Catarina a fim de

investigar  os  padrões  de  diversidade  de  espécies  de  árvores  e  suas  relações  com  a

heterogeneidade ambiental sob uma das perspectivas oriundas da teoria de metacomunidades,

conhecida como “sorteio de espécies”. A predição chave deste ponto de vista é a de que a

composição  de  espécies  varia  em  resposta  a  diferenças  nas  condições  ambientais  entre

manchas de hábitat. O presente estudo é focado nessa predição e objetivou entender como

processos relacionados a filtros ambientais interagem direta e indiretamente sobre os padrões

de diversidade em uma área de 95000 km 2 (dados de 432 unidades amostrais). Foi utilizada

modelagem de  equações  estruturais  (PLS Path  Modeling),  a  fim de  investigar  os  efeitos

interativos  da  topografia,  clima,  balanço  de  água  e  energia  e  geometria  das  manchas  de

floresta  sobre  os  padrões  de  alfa  (α)  e  beta  (β)  diversidade  de  uma metacomunidade  de

floresta  atlântica  no  sul  do  Brasil.  Fatores  relacionados  a  filtros  ambientais  mostraram

substanciais efeitos sobre a diversidade alfa e beta. A quantidade total da variação na beta

diversidade explicada pela filtragem de hábitat foi alta (64%), corroborando a predição testada

no nível de metacomunidades. Os fatores mais importantes para explicar a diversidade beta

foram: extremos climáticos, balanço de água e energia e alfa diversidade, enquanto tamanho

da mancha e balanço de água e energia foram os fatores chaves para a alfa diversidade. O

teste de Mantel parcial mostrou que os efeitos ambientais ocorrem amplamente independente

de efeitos espaciais, reforçando a predição testada. O estudo provê forte suporte empírico para
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a  predição  de  que  a  beta  diversidade  reflete  primariamente  processos  determinísticos

associados  com o nicho das  espécies  e  suas  respostas  às  condições  ambientais  na  escala

espacial considerada.

Palavras-chave:  diversidade  alfa,  Floresta  Atlântica  subtropical,  diversidade  beta,

modelagem de equações estruturais, sorteio de espécies, variação climática.
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Abstract

Understanding patterns of species diversity and composition across multiple scales is one of

the main purpose in ecology and biogeography. The relative importance of the mechanisms

that structure plant communities and how they interact to influence these patterns remains a

topic of hot debate. In the present study, we use data from the Forest Inventory of Santa

Catarina to investigate the patterns of species diversity of subtropical Atlantic forests and its

relationships  with environmental  heterogeneity on a  metacommunity  perspective  (species-

sorting).  The  key  prediction  of  this  viewpoint  is  that  community  composition  varies  in

response to differences in environmental conditions among habitat patches. Our study focused

on  this  perspective,  aiming  to  understand  how  environmental  filtering  processes  interact

directly and indirectly on diversity patterns in an area of 95000 km 2 (data from 432 forest

plots). We employed  structural equation modeling (PLS Path Modeling) to disentangle the

interactive  effects  of  topography,  climate,  water-energy  balance,  and  geometry  of  forest

patches upon the alpha and beta diversity of a subtropical forest metacommunity in southern

Brazil. Factors related to environmental filtering showed substantial effects upon tree alpha

and beta diversity. The total amount of variation in beta diversity explained by environmental

filtering  was  high  (64%) and was  even more  when  together  with  alpha  diversity  (73%),

corroborating the prediction of species-sorting model at the metacommunity level. Climatic

extremes,  water-energy  balance  and  alpha  diversity  were  the  key  determinants  of  beta

diversity and patch size and water- energy balance the key determinants of alpha diversity in

the South Brazilian Atlantic  forests.  Partial  mantel test  showed that environmental effects

occurred largely independent of spatial effects, reinforcing the tested prediction. Our study

provides  strong  empirical  support  for  the  prediction  that  beta  diversity  primarily  reflects

deterministic factors associated with species 
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niches and their responses to environmental conditions in the studied spatial scale.

Keywords:  alpha  diversity,  subtropical  Atlantic  forest,  beta  diversity,  structural  equation

modeling, species sorting, climatic variation
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Apresentação

A presente dissertação consiste em um artigo científico, pautado na investigação do

papel relativo dos filtros ambientais para os padrões de diversidade alfa (α) e beta (β) em

comunidades de árvores da Floresta Atlântica no Sul do Brasil, sob uma perspectiva da teoria

de metacomunidades. O objetivo principal foi testar a predição de que a β-diversidade reflete,

principalmente, processos determinísticos associados ao nicho das espécies e suas relações

com condições ambientais. 

Na introdução geral  são descritos  alguns resultados  prévios,  com a finalidade de

contextualizar a Floresta Atlântica no Estado de Santa Catarina. Além disso, são discutidos

assuntos relacionados aos processos que determinam os padrões de diversidade de espécies ao

longo de múltiplas escalas espaciais.

O manuscrito que consiste o capítulo principal da dissertação encontra-se formatado

de  acordo  com  as  normas  do  periódico  “Perspectives  in  Plant  Ecology,  Evolution  and

Systematics”, ao qual será submetido, com exceção de tabelas e figuras que foram incluídas

ao longo do texto para facilitar a compreensão dos resultados apresentados.

Finalmente, no item considerações finais, são discutidos alguns aspectos acerca do

conhecimento gerado, suas contribuições, perspectivas e sugestões para a área de pesquisa.
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General Introduction

Subtropical Atlantic Forest

Brazilian subtropics hosts an important and singular portion of the Atlantic Forest,

one of  the world’s biodiversity  hotspots (Mittermeier  et  al.  2004).  In this  region,  species

composition differs considerably from the Atlantic forest at lower latitudes, where tropical

species find the end of their distribution range (Oliveira-Filho et al. 2013). The subtropical

portion  of  the  Atlantic  Forest  biome  is  known  by  the  outstanding  heterogeneity  of  its

vegetation, which is commonly classified into three main forest types: Seasonal Forests (SF,

encompassing  semideciduous  and  deciduous  forest),  Mixed  Araucaria Forest  (MAF) and

Rain Forests (RF), as well as associated ecosystems such as mangroves, coastal forests and

grasslands (Veloso et al. 1991, Oliveira-Filho et al. 2013). 

Only more recently the subtropical Atlantic Forest has been the target of in-depth

studies,  which  provided  important  advances  for  the  understanding  of  compositional

differences among forest types and the mechanisms that act in structuring the tree community

(Jarenkow and Budke 2009, Bergamin et al. 2012; Gonçalves and Souza 2013, Oliveira-Filho

et al. 2013). In Santa Catarina state, part of the region covered by subtropical Atlantic Forest,

the  recent  achievement  of  the  Forest  Inventory  (Inventário  Florístico  Florestal  de  Santa

Catarina, IFFSC, (http://www.iff.sc.gov.br) contributes with detailed data (Vibrans et al. 2010)

of the main three forest types that occur in this area (as showed in Figure 1). Land use change

and habitat  fragmentation  have  gradually  reduced the  quality  and extent  of  these  forests.

Currently, only 29% of  original  forest  cover  remains  in SC.  RF originally  covered about

29.282 km2 of the surface of the state, MAF 42.851 km2 and SF 7.670 km2 (Klein 1978).

Today, their cover were reduced to 40%, 24% and 16% of original forest cover, respectively



7

(Vibrans et al. 2013). 

Analyses conducted with IFFSC data (own unpublished results; see Appendix A for

methods) confirm that the composition among the main three forest types (rain, seasonal and

Araucaria forest) differs strongly (NPMancova,  F= 42,28,  R²= 0.16,  p=0.0009). Along the

first ordination axis in the NMDS, a clear difference in floristic composition between RF, with

plots concentrated at the left, and the other forest formations, concentrated at the right, can be

observed,  with  SF  plots  situated  at  upper  extreme along  the  second  axis  (Fig.  2).  Some

indicator species that best characterize the different forest types are: (1) for RF: Alchornea

triplinervia (Spreng.) Müll. Arg., Matayba intermedia Radlk., Nectandra oppositifolia  Nees

& Mart., Psychotria vellosiana Benth., Euterpe edulis Mart., Guapira opposita (Vell.) Reitz,

Cecropia glaziovii Snethl., Hieronyma alchorneoides Allemão and Guatteria australis A. St.-

Hil.;  (2)  for  SF:  Luehea  divaricata Mart.,  Nectandra  megapotamica  (Spreng.)  Mez,

Machaerium stipitatum (DC.) Vogel, Balfourodendron riedelianum (Engl.) Engl., Nectandra

lanceolata  Nees & Mart., Chrysophyllum gonocarpum (Mart. & Eichler ex Miq.) Engl. and

Myrocarpus frondosus   Allemão and (3) for MAF: Araucaria angustifolia  (Bertol.) Kuntze,

Dicksonia sellowiana Hook., Ilex paraguariensis A. St.-Hil., Cinnamomum amoenum (Nees)

Kosterm. and Ocotea pulchella (Nees & Mart.) Mez (see Appendix B for a complete list of

the indicator species).
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Figure  1:  Geographical location of the study area in southern Brazil and spatial distribution of the different
forest types as delimited by Klein (1978). 
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Determinants of tree species diversity

Understanding patterns of species diversity and composition across multiple scales

has long been recognized as one of the main purpose in ecology and biogeography (Scheiner

and  Willig  2005).  The  relative  importance  of  the  mechanisms that  structuring  plant

communities and how they interact to influence these patterns remains a topic of hot debate.

Three major classes of community assembly mechanisms have been suggested: (1) niche-

based  processes  such  as  habitat  filtering  (Diamond  1975,  Weiher  and  Keddy  1992;  (2)

stochastic processes (neutral)  (Hubbell  2001)  and (3) regional-historical processes such as

Figure 2: Non-metric multidimensional scaling ordination (NMDS) of the plots of subtropical Atlantic Forest in
Santa Catarina state, southern Brazil. RF, Rainforest; SF, Seasonal Forest; MAF, Mixed Araucaria Forest.
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speciation,  dispersal,  evolutionary  adaptation,  and  habitat  specialization  (Ricklefs  1987,

Ricklefs and Schluter 1993). 

One way to investigate the role of these mechanisms, specially of niche-based and

neutral  processes,  for determining patterns of species diversity is  to  examine them across

multiple scales with a particular focus on β-diversity (variation in species composition among

sites in a given geographic area) (Whittaker 1972, Anderson et al. 2011), which links local (α)

and regional  (γ) diversity. A useful and stimulating framework to organize approaches on

multiple scales in ecology is the metacommunity concept: a set of local communities that are

potentially linked by dispersal of one or more interacting species (Holyoak and Mata 2008).

Although  still  in  its  infancy,  metacommunity  thinking  provides  several  different  sets  of

testable propositions that evoke different mechanisms of community assembly to explain the

patterns of diversity across multiple scales (Leibold et al. 2004, Leibold 2011).   

Even though some studies have emphasized the importance of stochastic process for

the determination of species diversity patterns (Hubbell 1999, Chase 2010, Chase and Myers

2011),  evidences  giving  support  to  the  stronger  role  of  deterministic  processes  related  to

environmental heterogeneity continues to grow (e.g. Gilbert and Lechowicz 2004, Cottenie

2005, Myers et al. 2013, Brown et al. 2013). Nevertheless, ecologists seem to agree that both

stochastic (neutral) and deterministic (niche-based) processes may operate simultaneously to

shape diversity patterns (Ricklefs and Schluter 1993, Vellend 2010, Chase and Myers 2011)

and that they are, at the same time, strongly affected by the choice of sampling scale and

location (Garzon-Lopez 2014).

Environmental  heterogeneity  can  affect  species  diversity  throughout  different

mechanisms  that  are  hierarchically  interconnected  and  operate  at  different  scales,  in

consequence  of  variation  of  parameters  such  as  topography,  soil,  climate,  water-energy

dynamics and disturbances (Whittaker et al. 2001, Willig et al. 2003, Siefert 2012). These
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factors and mechanisms act as filters and determine which species from the regional species

pool can establish in the local community (Keddy 1992)

In  the  Brazilian  Atlantic  Forest,  a  number  of  studies  recently  contributed  to  the

analysis of the mechanisms that are structuring forces for compositional patterns of the tree

community, particularly in the southern part of the region (Oliveira-Filho and Fontes 2000,

Bergamin et  al.  2012, Gonçalves and Souza 2013, Oliveira-Filho et  al.  2013). Altogether,

these studies demonstrated the primary importance of climate as driver to variation in the

species  composition.  Despite  these  recent  efforts,  little  is  known  about  how  different

environmental processes interact, directly and indirectly as well as simultaneously, to affect

community dynamics across spatial scales. 

In  the  present  study, we use  data  from the  IFFSC to  investigate  the  patterns  of

species  diversity of  subtropical  Atlantic  forests  and its  relationships  with  environmental

heterogeneity.  A  metacommunity  perspective  (Leibold  2011)  and  Structural  Equation

Modeling (SEM; Bollen 1989, Kaplan 2000) were used to disentangle the relative importance

of  different  processes  and  parameters  associated  to  environmental  filtering,  such  as

topography,  climate  and  metrics  that  related  to  landscape  heterogeneity,  for tree  species

diversity, considering both α- and β-diversity. SEM constitutes a scientific method which is

highly  indicated  for  the  analysis  of  ecological  systems,  e.g.  in  studying  networks  of

relationships  among  observed  and  latent  variables,  as  it  presents  strong  and  explicit

connections between empirical data and theoretical ideas (Grace et al. 2010). We used the

partial least squares (PLS) approach to structural equation modeling , known as PLS Path

Modeling (PLS-PM, Tenenhaus et al.  2005, Esposito Vinzi et  al.  2010a). PLS-PM can be

understood  as  a  component-based  estimation  method,  which  has  been applied  as  a  more

flexible alternative to covariance-based SEM (CB-SEM). Unlike the CB- SEM, PLS-PM does

not  aim at  reproducing the  sample covariance  matrix  under  the statistical  assumptions  of
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multivariate normal distribution and independent observations (Esposito Vinzi et al., 2010a).

Thus, PLS-PM is a variance-based model strongly oriented towards prediction .

 The results are presented in the following chapter, formatted in the form of a paper

to be submitted to “Perspectives in Plant Ecology, Evolution and Systematics”. We expect that

these  results  contribute  to  a  better  understanding  how  environmental  filtering  processes

interact  to  affect  tree  community  assembly  at  multiple  spatial  scales  in  South  Brazilian

Atlantic Forest.
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ARTICLE: Interactive effects of environmental filtering predict beta-diversity patterns in a

subtropical forest metacommunity
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Abstract

The  metacommunity  framework  offers  a  possibility  to  better  understand  how  ecological

processes influence patterns of species diversity along environmental gradients. The species-

sorting perspective predicts that community composition varies in response to differences in

environmental  conditions  among  habitat  patches.  Our  study  focused  on  this  perspective,

aiming to understand how environmental filtering processes interact directly and indirectly on

diversity  patterns  in  an  area  of  95000  km2 (data  from  432  forest  plots).  We employed

structural equation modeling (PLS Path Modeling) to disentangle the interactive effects of

topography, climate, water-energy balance, and geometry of forest patches upon the alpha and

beta diversity of a subtropical forest metacommunity in southern Brazil. Factors related to

environmental filtering showed substantial effects upon tree alpha and beta diversity. The total

amount of variation in beta diversity explained by environmental filtering was high (64%) and

was even more when together  with alpha diversity  (73%), corroborating the  prediction of

species-sorting model at the metacommunity level. Climatic extremes, water-energy balance

and alpha diversity were the key determinants of beta diversity and patch size and water-

energy balance the key determinants of alpha diversity in the South Brazilian Atlantic forests.

Partial mantel test showed that environmental effects occurred largely independent of spatial

effects, reinforcing the tested prediction. Our study provides strong empirical support for the

prediction that beta diversity  primarily reflects deterministic factors associated with species

niches and their responses to environmental conditions in the studied spatial scale.

Keywords:  alpha  diversity,  Atlantic  forest,  climatic  variation,  species  sorting,  structural

equation modeling. 
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Introduction

A metacommunity is defined, in the broadest sense, as a set of communities that are

potentially  linked  by  dispersal  of  multiple  species  (Leibold  et  al.,  2004).  Although  the

metacommunity framework is still in early stages of development, it gathers a set of testable

propositions  which  differ  in  the  relative  importance  given  to  dispersal,  environmental

filtering,  stochastic  mechanisms  of  colonization  and extinction,  and biotic  interactions  in

community assembly (Holyoak et al., 2005; Leibold, 2009; Meynard et al., 2013). By this, the

metacommunity framework expands the field of community ecology to consider the way in

which these ecological processes determine patterns of species distributions, composition or

diversity  at  multiple  spatial  scales,  i.e.,  at  the  local  (within  communities)  and  regional

(between communities) level (Chase et al., 2005; Holyoak et al., 2005; Logue et al. 2011).

Thus,  metacommunity  dynamics  are  determined  by  the  sum  of  both  local  and  regional

processes (Holyoak and Mata, 2008).

The metacommunity framework explicitly encompasses four perspectives, each one

evoking different mechanisms of community assembly as well as specific propositions and

predictions  (see  Leibold,  2011),  especially  regarding  the  role  of  dispersal  and  of  local

environmental  heterogeneity  in  community  assembly:  (i)  the  patch  dynamics  (PD) model

emphasizes  colonization  and  extinction  processes  in  patches  with  identical  environmental

conditions; (ii) the mass-effects (ME) model highlights the role of dispersal in maintaining

source-sink relations in different patches; (iii) the neutral model (NM) stresses the importance

of both chance demographic events and chance dispersal events; and (iv) the species-sorting

(SS) model emphasizes the role of environmental heterogeneity among patches with distinct

environmental conditions that affect the fitness of species. The ME and SS perspectives are
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the  most  commonly  tested  and  supported  metacommunity  perspectives  in  the  ecological

literature (Cottenie, 2005; Logue et al., 2011), on the other hand, knowledge on how different

ecological processes interact to affect diversity patterns at multiple spatial scales still is rather

fragmentary.

Increasingly, ecologists seem to agree that both stochastic (neutral) and deterministic

(niche-based)  processes  may  operate  simultaneously  at  different  spatial  scales  to  shape

diversity  patterns  (Ricklefs  and  Schluter,  1993;  Vellend,  2010;  Chase  and  Myers,  2011).

However, the evidence in favor of deterministic processes is strong. Several recent studies

have  supported  the  higher  importance  of  environmental  filtering  in  maintenance  of  tree

coexistence and diversity in tropical and temperate forests (e.g. Gilbert and Lechowicz, 2004;

Keppel et al., 2011; Brown et al., 2013; Myers et al., 2013; Siefert et al., 2013). Specifically,

variation  in  environmental  characteristics  (i.e.  environmental  heterogeneity)  can  affect

diversity  through  different  factors  that  are  hierarchically  interconnected  and  operate  at

different scales,  such as topography, edaphic conditions,  climatic conditions,  water-energy

dynamics and disturbances (Whittaker et al.,  2001; Willig et  al.,  2003). These factors and

processes  act  as  filters  and  determine  which  species  from the  regional  species  pool  can

establish in the local community (Keddy and Weiher, 1999).

Here, we focus on the SS perspective in order to improve the understanding of how

environmental filtering processes interact directly and indirectly to affect patterns of alpha (α)

and beta  (β)  diversity  in  a  subtropical  forest  metacommunity. Whittaker’s components  of

diversity  are  designed to  measure how diversified the species  are  within a  site,  and how

diversified the sites  within a  region are regarding species  composition (Legendre and De

Cáceres, 2013). We expect that these components of diversity can provide signs of the indirect

and direct effects of environmental processes operating within and between communities. We

depict  these  processes  in  terms  of  topography  (elevation,  aspect  and  slope),  forest  patch



17

geometry  (area,  shape  and  connectivity),  climate  (annual  trends,  seasonality  and extreme

factors), and water-energy balance (evapotranspiration).  Particularly, the integration of traits

of landscape variability into the metacommunity framework is essential because landscape

configuration alters ecological processes that govern and distinguish metacommunity models

(Biswas and Wagner, 2012). Following Leibold (2009), we define the SS perspective as the

variation in community composition determined by the optimization of fitness among species

across  discrete  areas  of  habitat  (patches)  that  vary  in  environmental  conditions.  The  key

prediction of this viewpoint is that community composition should depend on environmental

effects  independent  of  spatial  effects  (e.g.  dispersal),  thus  local  community  composition

should strongly  track local  environmental  conditions  (Leibold,  2009,  2011).  According to

Leibold (2011), dispersal is important in SS only because it provides the stream of potential

colonists  that  allows community composition to  track environmental  changes  in time and

space.  Thus,  dispersal is  considered to  be sufficiently high to allow species to  fill  niches

within environmentally heterogeneous habitat patches because of niche diversification (Logue

et  al.,  2011).  Specifically, the  SS  model  presents  five  propositions,  as  follows:  dispersal

affects  colonists,  interactions  among  species  are  direct  and  indirect,  interactions  in  local

communities depend on local environments, coexistence requires stabilizing effects in local

communities,  and  stochastic  demography  is  important  for  allowing  coexistence  (Leibold,

2011).

To  disentangle  the  interactive  effects  of  the different  environmental  filtering

processes  on  tree  alpha  and  beta  diversity  at  metacommunity  level,  we  built  structural

equation models using tree community data from 432 forest plots distributed in a total area of

95000 km2 in subtropical southern Brazil. We started from a conceptual structural model that

assumes all potential associative and predictive relationships among ecological factors and

tree species diversity on the local and the metacommunity scale (Fig. 1). Specifically, our aim
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was to test  the prediction that  variation in community composition among forest plots (beta

diversity) reflects strong environmental effects, so that spatial niche separation between tree

species  occurs  along  gradients  of  environmental  conditions  (i.e.  species  occupy  patches

according to their habitat requirements). We thus expect that environmental factors explain

most of the total variation in community composition and that, therefore, the unexplained

variation (or residual variance) that can be assigned or not to spatial effects, should be low in

the model.

Figure 1: Conceptual structural model illustrating predictive relationships among predictor and response
latent  variables  (straight  arrows)  and  associative  (correlational)  relationships  among predictor  latent
variables (curved arrows).
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Materials and Methods

Study region

The  study  region  comprises  the  state  of  Santa  Catarina  located  in  subtropical

southern Brazil  (Fig.  2),  at  the southern limit  of the Brazilian Atlantic Forest,  one of the

world’s biodiversity hotspots (Mittermeier et al., 2004). This region encompasses important

environmental gradients in geology, topography and climate (Leite and Klein, 1990). In terms

of geology, from East to West, the region is formed by: (i) Holocene sediments, which are

situated along most of the coast and in the major river valleys; (ii) a strip of the crystalline

basement  rock,  mostly Precambrian;  (iii)  Gondwanic sedimentary  rocks;  and (iv)  basaltic

rocks of the western highland (Scheibe,  1986).  The soils  are highly variable,  from sandy

textured to very clayey textured soils (Embrapa, 2004), with the predominance of Cambisols,

Ferralsols and Nitisols (Embrapa, 2006). The Serra Geral and the Serra do Mar mountain

ranges mark, respectively, the southern and northern section of the Atlantic escarpment of the

highland, representing the highest elevations of the state (Klein, 1984). About 56% of the

surface of Santa Catarina is covered by areas in altitudinal range of the 300-900 m, 20% by

ones 900 m above sea level and 23% by ones with maximum elevation about 300 m (Nimer,

1989).

The vegetation makes part of the Atlantic Forest biome, and is commonly classified

into three main forest types (Klein, 1978; IBGE, 2012): (1) Rain Forest (RF), situated in the

coastal mountain range up to 200 km inwards; (2) Mixed Araucaria Forest (MAF) on the

highland, on the edges of the sierras and in the northwestern portion of the state, spanning the

cooler higher elevations. Here, forests occur in mosaics with grasslands; and (3) Seasonal
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Forest (SF) in the western part of the region  along the Uruguai river and its tributaries, in an

altitudinal range from 150 to 800 m. Currently, only 29% of original forest cover remains in

SC (Vibrans et al., 2013). RF originally covered about 29.282 km2 of the surface of Santa

Catarina,  MAF 42.851 km2 and SF 7.670 km2 (Klein,  1978).  Today, their  cover has been

reduced to 40%, 24% and 16% of original forest cover, respectively (Vibrans et al., 2013). 

Climate in the region corresponds to Cfa (temperate humid with hot summers and

temperature  of  the  hottest  month  >  22  °C)  and Cfb  (warm summers  with  hottest  month

temperature < 22 °C)  (Peel et al., 2007). Cfa predominates throughout most of the region,

while Cfb occurs at higher altitudes in the highlands and in the northwestern part of the state.

Mean annual temperature is 17.5 °C, and ranges (in mean) from 24 °C in summer to 13 °C in

the winter, where frosts are common and snowfalls may occur in the highest areas (Nimer,

1989). Precipitation is evenly distributed throughout the year, with mean annual equal to 1660

mm, ranging from 1314 mm to 2305 mm.

Figure 2: Geographical location of 432 forest plots embedded in Atlantic forests (Rain, Mixed Araucaria and
Seasonal forests) in the state of Santa Catarina, southern Brazil. Grey areas indicate the remaining forest patches
according to Fundação SOS Mata Atlântica (2013).
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Tree species data

Tree  species  data  were  obtained  from  the  Forest  Inventory  of  Santa  Catarina

(Inventário  Florístico  Florestal  de  Santa  Catarina,  IFFSC;  http://www.iff.sc.gov.br),  a

government database built with support from the Regional University of Blumenau (FURB),

the  Federal  University  of  Santa  Catarina  (UFSC),  the  Agricultural  Research  and  Rural

Extension Company of Santa Catarina (EPAGRI) and the Brazilian Forest Service (SFB). The

forest  plots  were systematically  distributed at  a  10 × 10 km grid across the entire  state's

territory and 5 × 5 km in the SF (the forest type most reduced in cover), overlaid to land use

map based on classification of SPOT-4 images from 2005. Each forest plot is composed by a

cluster of four crosswise subunits of 1.000 m2 (20 × 50 m) allocated at four cardinal points, at

30 m away from a central point. We used a total of 432 forest plots. The number of them per

forest type is proportional to its total area, with 202 forest plots for RF, 154 for MAF and 76

for SF (Fig. 2). Within each plot, all trees (including tree ferns) over > 10 cm diameter at

breast height (at 1.3 m above ground) were measured and identified (see Vibrans et al., 2010

for details about sampling design and methods).

Environmental descriptors 

We summarized  environmental filtering processes through six  blocks of variables:

topography, forest patch geometry, climatic trends, seasonality, extreme climatic factors, and

water-energy  balance  (Supplementary  Material  Appendix  1,  Table  A1).  Each  block  of

environmental predictors represents a latent variable (LV) in our structural equation modeling

framework.  Here we define latent  variable  (or  construct)  as  an unobservable variable for

which we have no direct measurements, but which is represented by a number of (measured)
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observed variables (Bollen, 1989). It is assumed that an observed variable, referred to herein

as manifest variable (MV), contains information that reflects or indicates some aspect of their

LV (Grace, 2006; Grace et al., 2010). In our case, each LV is a linear combination of the

corresponding MVs, which measure different aspects (but at few dimensions) of the same

latent concept (Esposito Vinzi et al., 2010a).

We used the LV topography to depict  environmental  conditions  prevailing within

each forest  plot,  as topographic variables can be considered as a proxy for  microclimatic

conditions (De Cáceres et al., 2012). To characterize the broad-scale environmental conditions

in  the  study  region,  we  used  the  LVs  related  to  climatic  heterogeneity  (climatic  trends,

seasonality,  climatic  extreme)  and  to  evapotranspiration  (water-energy),  an  indication  of

energy supply, water balance and plant productivity (Fisher et al.,  2011). Additionally, we

used forest patch geometry to represent patch quality, which is an important aspect in the SS

perspective (Leibold et al., 2004), and also to illustrate anthropogenic influences related to

habitat  fragmentation and disturbance.  As ecological  systems are spatially  and temporally

heterogeneous, the inclusion of features of the landscape such as area, shape and connectivity

of the patches is fundamental once the landscape patterns as perceived by the organisms affect

several fundamental metacommunity processes (Biswas and Wagner, 2012).

All  topographic and climate variables  were obtained from the WorldClim Global

Climate with spatial resolution equivalent to 30 arc-seconds (~ 1 km) (Hijmans et al., 2005).

The variables related to water-energy balance were gathered from the Global Aridity and PET

Database (Trabucco and Zomer, 2009). Annual evapotranspiration (AET) is an index of actual

water flux related to habitat  productivity (Rosenzweig,  1968), potential  evapotranspiration

(PET)  is  proportional  to  the  ability  of  the  atmosphere  to  remove  water  through

evapotranspiration, and Global Aridity Index (GAI) is expressed as a generalized function of

precipitation  and  PET,  which  may  be  used  to  quantify  precipitation  availability  over
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atmospheric water demand (Trabucco and Zomer, 2009). Finally, predictors related to patch

geometry  were  obtained  from  the  IFFSC database.  These  variables  were  measured in  a

circular area (buffer) of 2800 m radius (ca. 2460 ha) around the centre of each forest plot.

Patch area measures the forest habitat availability inside the buffer, patch core area measures

the forest portion excluding their edge, which was defined by a fixed distance of 50 m, and

patch  shape  is  an  index  that  assesses  the  geometric  complexity  (curvilinear,  compact,

elongated or rounded forms) of a forest patch in comparison to a circular patch. The value of

the index is equal to 1 when a patch is circular; the more it deviates from the circular pattern,

the greater the value of the index will be.

Species diversity

We  measure  tree  species  diversity  within  and  between  forest  plots  through

Whittaker’s  components  of  diversity  (Whitaker,  1972).  We  defined  alpha  diversity  (α-

diversity) as the local diversity within plots and beta diversity (β-diversity) as the variation in

community  composition  among  plots in  the  study  region,  i.e.,  the  compositional

differentiation  among  the  forest  patches  of  our  metacommunity.  The  LV  α-diversity was

composed by three diversity measures accounting for the effective number of species present

at individual forest plots.  The effective number of species or Hill numbers of order  q (Hill,

1973) is the number of equally common species needed to produce the observed value of a

diversity index (which is determined by q, Jost et al., 2011). The value of  q determines the

sensitivity of the measure to species relative abundances, thus we used q = 0 to consider all

species  equally  (species  richness),  q =  1  to  emphasize  common  species  (exponential  of

Shannon entropy) and q = 2 to emphasize dominant species (inverse Simpson concentration).

The LV β-diversity was represented by the first two axes of a principal coordinates analysis
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(PCoA)  of  vegetation  data  based  on  the  Hellinger  distance  matrix.  Hellinger  distance

(Legendre and Gallagher, 2001) is an appropriate alternative for the β-diversity assessment, as

it  assigns  low weights  to  rare  species  to  measure  the  dissimilarity  between  each pair  of

sampling  units  (Legendre  and  De  Cáceres,  2013). Hill  numbers  were  calculated  in  the

package ‘vegan’ using function ‘renyi’ (Oksanen et al., 2013), in the R environment (R Core

Development Team, 2013).

Structural equation modeling

We  used the partial  least  squares (PLS) approach to structural equation modeling

(SEM, Bollen, 1989; Kaplan, 2000), known as  PLS Path Modeling (PLS-PM, Tenenhaus et

al.,  2005;  Esposito  Vinzi et  al.,  2010a) in order  to  test  the validity  of a set  of predictive

relationships among  LVs  (Fig.  1).  Overall,  SEM constitutes a scientific framework highly

indicated for studying networks of relationships involving MVs and LVs due to its strong and

explicit connection between empirical data and theoretical ideas (Grace, 2006; Grace et al.,

2010).

PLS-PM can be understood as  a  component-based estimation method,  which has

been applied as a more flexible alternative to covariance-based SEM (CB-SEM). Unlike the

CB-SEM, PLS-PM does  not  aim at  reproducing  the  sample  covariance  matrix  under  the

statistical  assumptions  of  multivariate  normal  distribution  and  independent  observations

(Esposito Vinzi et al.,  2010a). Thus, PLS-PM is a variance-based model strongly oriented

towards prediction (i.e. it attempts to maximize the explained variance for both the MVs and

LVs), while CB-SEM is a covariance-based model strongly oriented to optimize the statistical

accuracy  of  the  estimated  parameters  (Chin  and Newsted,  1999;  Tenenhaus  et  al.,  2005;

Esposito Vinzi et al., 2010a). While CB-SEM is based on the classical parametric inferential
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framework, PLS-PM is based on nonparametric resampling procedures such as Bootstrap and

Jackknife  (Chin,  1998).  PLS-PM provides  the  so-called  ‘latent  variable  scores’ that  have

beneficial  characteristics  for  prediction,  and  then  the  endogenous  variable’s  scores  are

regressed on the latent predictor variables scores (Esposito Vinzi et al., 2010a; Henseler and

Sarstedt, 2013). The path coefficients in PLS-PM are calculated as the standardized regression

coefficients of a (multiple) linear regression of each endogenous LV on the predictor LVs

(Esposito Vinzi et al., 2010a). Overall, the path coefficients measure the strength and direction

of direct (simple paths) and indirect (compounds paths) effects among LVs. As mentioned

before, a LV is an unobservable variable (construct) that is indirectly described by a set of

MVs  (Tenenhaus  et  al.,  2005).  In  the  statistical  sense,  we  measured  the  LVs  as  linear

combinations of its own MVs. Thus, PLS-PM is referred to as a component-based method

because LVs are calculated as a weighted sum of their MVs, similar to what is done in PCA

(Sanchez, 2013).

The PLS-PM framework encompasses two sets of linear equations models: (i) the

structural model (or inner model) relating some endogenous LVs to other LVs (according to

Fig. 1),  and (ii) the measurement model (or outer model) relating the MVs to their own LV

(Wold, 1985; Lohmöller, 1989). Basically, there are two ways to relate MVs to their own LV:

the reflective way and the formative way (Tenenhaus et  al.,  2005).  In the reflexive mode

(outwards directed), each MV ‘reflects’ (is an effect of) the same latent concept, thus any

block of MVs must be homogeneous and unidimensional. In the formative mode (inwards

directed), the LVs are ‘generated’ (caused) by its own MVs, where they are a linear function

of its LV plus a residual term. This implies considering the block of MVs as full dimensional

with the LVs being formed by as many dimensions as there are MVs in a block (Esposito

Vinzi et al., 2010b). In many real applications, the LVs are neither unidimensional (reflexive)

nor full dimensional (formative), which implies use an estimation capable to yield solutions
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somewhere between the reflexive and formative ways (Esposito Vinzi et al., 2010b). Here we

used the PLScore mode, which is an intermediate form between the reflexive and formative

modes, where the blocks are multidimensional but with fewer dimensions than the number of

MVs (Esposito Vinzi and Russolillo, 2013; Esposito Vinzi et al., 2010b). PLScore mode is

oriented  to  maximize  correlations  among  LVs,  using  PLS regression  (PLS-R,  Tenenhaus,

1998) to compute the outer weights. We employed PLS-R within the outer estimation phase as

a  more  stable  and  better  interpretable  alternative  to  OLS  regression  in  the  presence  of

multicollinearity among MVs (Esposito Vinzi et al., 2010a). PLS-R regression decomposes

both  predictors  (X)  and  responses  (Y)  as  a  product  of  a  common  set  of  orthogonal

components (X-scores), which are predictors of Y and also model X, and also a set of specific

loadings  (Abdi,  2003).  The  orthogonality  of  the  PLS  components  eliminate  the

multicollinearity problem inside of LVs. We chose the number of PLS components for each

LV through cross-validation (Wold et al., 2001). When the number of PLS components equals

1,  the  outer  estimation  is  just  like  a  reflexive  mode,  while  when  the  number  of  PLS

components equals the number of MVs in the LV, the outer estimation is just like a formative

model (Esposito Vinzi et al., 2010b).

We checked the quality of the outer model (or measurement model) by means of their

coefficients of loading (i.e. correlation between a LV and its own MVs) and communality,

which is only the squared loading (i.e. fraction of variance of the MVs explained by their own

LV) (Tenenhaus et al., 2005). In this procedure, we retained in the accepted model only MVs

with  loading higher  than  0.7 (Esposito  Vinzi  et  al.,  2010a).  As  communality  is  simply  a

squared loading, a loading equal to 0.7 means that 0.72  ≈ 50% of the variance in an MV is

captured by its LV (Sanchez, 2013). We assessed the quality of the inner model (or structural

model)  by  examining  the  following  coefficients:  coefficient  of  determination,  R2 (i.e.  the

amount of variance in a endogenous LV which is explained by the predictor LVs), redundancy
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(i.e. the amount of variance of MVs in an endogenous LV that is predicted by the predictor

LVs associated to endogenous LV), goodness-of-fit index (GoF, Tenenhaus et al., 2004) and

the relative GoF (GoFrel, Esposito Vinzi et al., 2010a). GoF represents the geometric mean of

the average communality and the average R2, and the GoFrel contrasts the communalities of a

PLS-R with the communalities of a PCA, and the R2 values of a PLS-R with the R2 values of a

CCoA. We used these indexes to provide measures of overall prediction performance for the

whole model as well as for the outer and inner models separately (see Henseler and Sarstedt,

2013, for more details). We examined the cross-loadings matrix as a criterion of discriminant

validity (Chin, 1998). By this criterion, the loading of each MV is expected to be larger than

all of its cross-loadings, thus if an MV has a higher correlation with another LV than with its

respective  LV, the  appropriateness  of  the  model  should  be  reconsidered  (Henseler  et  al.,

2009).  All  raw  variables  were  submitted  to  standardization:  we  scaled  the  MVs  to  unit

variance by dividing them by their standard deviations, and centered them by subtracting their

averages (Wold et al., 2001).

Model  validation  procedure  was  based on bootstrap  resampling,  where  bootstrap

confidence intervals were obtained by 1000 iterations in order to assess the precision of the

PLS-PM parameter estimates, i.e., the outer weights, the loadings, the path coefficients, the R2

values and the total effects (Tenenhaus et al., 2005;  Esposito-Vinzi et al., 2010a). Bootstrap

validation for direct effects (standardized path coefficients) is shown in results. The initial

PLS path models were performed in the package ‘plspm’ (Sanchez et al.,  2013), in the R

environment  (R  Core  Development  Team,  2013),  and  the  final  PLS  path  model  was

implemented in the PLSPM module of the XLSTAT software (Addinsoft SARL, 2013), which

allowed us to use advanced options not available in R.
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Mantel test

Complementarily, we used  partial  Mantel  test  (Legendre  and Legendre,  1998)  to

verify if the observed beta diversity patterns were consistent with the species-sorting model or

if  significant  spatial  patterns,  that  could be consistent  with any of  the other  perspectives,

existed. We tested the spatial correlation between the ecological distance (beta diversity) and

the environmental distance while controlling for spatial distance (i.e., independent of spatial

distance),  and  tested  the  correlation  between  the  beta  diversity  and  the  spatial  distance

independent of environmental distance. To assess how much the correlations decreased by

controlling  the  effect  of  spatial  distance,  we  used  simple  Mantel  tests.  The  standardized

Mantel  statistic rM (analogous  to  a  Pearson’s  r  coefficient)  was  computed  according  to

Legendre and Legendre (1998). The ecological distance was based on a Hellinger distance

matrix, environmental distance on a Euclidean distance matrix of the standardized variables

used in PLS-PM, and spatial  distance on a Euclidean distance matrix of the geographical

coordinates  of  the  forest  plots.  The  geographical  coordinates  in  a  spherical  system

(latitude/longitude)  were  centered prior  to  the  computation  of  Euclidean  distance  matrix

(Borcard et al., 2011). The Mantel test was performed in the package ‘vegan’ (Oksanen et al.,

2013), in the R environment (R Core Development Team, 2013).
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Results

A total of 660 tree species were recorded in the 432 IFFSC forest plots in southern

Brazil. The number of species was higher in Rain Forest (572) than in the Mixed Araucaria

Forest (370) and Seasonal Forest (205). The number of species was weakly correlated with

the number of individuals sampled in the whole data set (r = 0.35) as well as in each forest

type, as follows: Rain Forest (r = 0.49), Mixed  Araucaria Forest (r = 0.13) and Seasonal

Forest (r = 0.28). 

The prediction performance of the PLS-PM was high for the outer, inner and global

models (Table 1). In general, the coefficients presented in table 1 showed that manifest and

latent variables were well predicted by the PLS-PM framework. The fit of the outer, inner and

global  models  improved substantially  when weak manifest  variables  (with loading  < 0.7)

were excluded. The following manifest variables were discarded: slope, aspect, patch shape

index,  patch  connectivity,  precipitation  seasonality,  mean  temperature  of  wettest  quarter,

precipitation of driest month, precipitation of driest quarter, precipitation of coldest quarter

and  global  aridity  index.  These  variables  were  weakly  correlated  with  alpha  and  beta

diversity.  The  R2 coefficient  showed  that  endogenous  latent  variables  were  acceptably

predicted by the explanatory latent variables  (Table 1).  The R2 values  provided an unbiased

estimate of the proportion of variance explained; adjusted R2 provided very similar values to

R2. The average communality coefficient indicated that variance of the manifest variables was

well reproduced by its respective latent variable (average communality ≥ 0.50, Table 1). 
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Table 1: (a) Overall Prediction performance of the PLS Path Modeling measured through the goodness-of-fit
index (GoF) and the relative goodness-of-fit index (GoFrel) for the global model and for the measurement
(outer) and structural (inner) models. Shown are the GoF indexes obtained by 1000 bootstrap resamples (Mean
boot.), the bootstrap standard error (Std. error), and the 95% bootstrap confidence interval. (b) Global fit of
each regression equation relating each endogenous latent variable to their predictor latent variables is shown
through R2 and adjusted R2 coefficients,  global quality measure of the outer model is shown through the
average communality (Av. com.), and global quality measure of the inner model by the average redundancy
(Av. red.).

(a) Value Mean boot.
Std.

error

Lower

(95%)

Upper

(95%)
Global GoF 0.690 0.692 0.017 0.660 0.727

GoFrel 0.860 0.875 0.028 0.801 0.917

GoF outer model 0.957 0.953 0.013 0.925 0.979

GoF inner model 0.900 0.919 0.026 0.840 0.951

Mean 0.851 0.860 0.021

(b) Type R2 adj. R2 Av. com. Av. red.

Topography Exogenous -
Patch size Exogenous 0.954
Climatic trends Endogenous 0.947 0.947 0.500 0.470
Seasonality Endogenous 0.503 0.502 0.596 0.300
Extreme climatic 

factors
Endogenous 0.981 0.981 0.588 0.577

Water-energy balance Endogenous 0.779 0.778 0.939 0.732
Alpha diversity Endogenous 0.350 0.342 0.790 0.276
Beta diversity Endogenous 0.734 0.730 0.500 0.367
Mean 0.716 0.713 0.666 0.454

Factors related to environmental filtering showed substantial effects upon tree alpha

and beta diversity. In relation to alpha diversity, environmental filtering explained 35% of the

total variation (Table 1). Topography, patch size, seasonality and water-energy balance had a

direct significant effect on alpha diversity (Table 2, Fig. 3). Alpha diversity decreased with

increasing topography. Topography had an indirect path on alpha diversity mediated through

climatic  trends (Table 3).  Alpha diversity  increased with increasing patch size and water-

energy balance through a direct  path,  while  it  decreased with increasing  seasonality. The

model  showed an indirect  path mediated through topography and climatic  trends,  but  the

relations between patch size, water-energy balance and alpha diversity can not be explained
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through any other relations in the model.

Table  2:  Direct  effects  of  the  predictor  latent  variables  upon the  response  latent  variables  (alpha  and  beta
diversity)  measured through standardized path coefficients  (SPC).  Shown are the standard error  of the path
coefficients  (Std.  error),  the  significance  test  of  the  coefficients  (t)  and  probability  (Pr  > |t|),  the  bootstrap
coefficients obtained by 1000 bootstrap resamples (Mean boot.), the bootstrap standard error (Std. error), and the
95% bootstrap confidence interval.

Alpha diversity SPC
Std.

error
t Pr > |t|

Mean

boot.

Std.

error

boot.

Lower

(95%)

Upper

(95%)

Topography –0.748 0.205 –3.652 0.000 –0.781 0.236 –1.267 –0.322
Patch size 0.385 0.045 8.605 0.000 0.383 0.043 0.291 0.471
Climatic trends –0.560 0.333 –1.681 0.094 –0.797 0.652 –2.438 0.116
Seasonality –0.246 0.100 –2.451 0.015 –0.235 0.094 –0.407 –0.044
Extreme climatic 

factors
0.047 0.283 0.166 0.868 0.254 0.532 –0.535 1.592

Water-energy balance 0.200 0.085 2.366 0.018 0.214 0.100 0.039 0.438

Beta diversity SPC
Std.

error
t Pr > |t|

Mean

boot.

Std.

error

boot.

Lower

(95%)

Upper

(95%)

Topography 0.316 0.133 2.375 0.018 0.404 0.187 0.078 0.824
Patch size –0.204 0.031 –6.556 0.000 –0.182 0.046 –0.272 –0.090
Climatic trends 0.204 0.214 0.950 0.343 0.603 0.677 –0.178 2.443
Seasonality –0.090 0.065 –1.399 0.162 –0.076 0.062 –0.195 0.053
Extreme climatic 

factors
–0.493 0.182 –2.713 0.007 –0.812 0.549 –2.288 –0.167

Water-energy balance 0.241 0.055 4.419 0.000 0.151 0.134 –0.152 0.350
Alpha diversity –0.384 0.031 –12.345 0.000 –0.370 0.032 –0.431 –0.305

The  total  amount  of  variation  in  beta  diversity  explained  by  factors  related  to

environmental filtering together with alpha diversity was high (R2 = 0.73, Table 1). However,

environmental  filtering  alone  explained  a  large  fraction  of  variation  in  community

composition among forest plots (R2 = 0.64, complete model not shown). Topography, patch

size,  extreme  climatic  factors,  water-energy  balance  and  alpha  diversity  had  a  direct

significant  effect  on  beta  diversity  (Table  2,  Fig.  3).  The  structural  model  showed  both

indirect  and direct paths (effects)  between topography, patch size,  extreme factors,  water-

energy  balance  and  beta  diversity,  and  a  direct  path  between  alpha  and  beta  diversity.
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However, both extreme factors and water-energy balance had a low indirect effect on beta

diversity (see Table 3). Beta diversity increased with increasing topography (elevation) inside

forest  plots  (Fig.  4).  Topography had an indirect  path on beta diversity mediated through

extreme climatic factors and annual climatic trends (Table 3). Beta diversity decreased with

increasing patch size (Fig. 4). The model showed an indirect path for patch size mediated

through alpha diversity. Beta diversity decreased with increasing extreme factors, increased

with increasing water-energy balance and decreased with increasing alpha diversity (Fig. 4).

These three last relations can not be explained through any other relations in the model.  

Table 3:  Direct, indirect and total effects of the structural relationships among latent variables for the PLS Path
Modeling. Direct effects are given by the standardized path coefficients, indirect effects as the product of the
path coefficients through an indirect path, and the total effects as the sum of both the direct and indirect effects.

Relationship
Direct

effect

Indirect

effect
Total effect

Topography → Climatic trends –0.973 0.000 –0.973

Topography → Seasonality 1.970 –1.335 0.635

Topography → Extreme climatic factors –0.078 –0.887 –0.965

Topography → Water-energy balance 0.000 –0.120 –0.120

Topography → Alpha diversity –0.748 0.320 –0.428

Topography → Beta diversity 0.316 0.355 0.672

Patch geometry → Alpha diversity 0.385 0.000 0.385

Patch geometry → Beta diversity –0.204 –0.148 –0.352

Climatic trends → Seasonality 1.372 0.000 1.372

Climatic trends → Extreme climatic factors 0.929 0.036 0.965

Climatic trends → Water-energy balance 0.883 1.229 2.183

Climatic trends → Alpha diversity –0.560 0.145 –0.415

Climatic trends → Beta diversity 0.204 0.086 0.290

Seasonality → Extreme climatic factors 0.026 0.0000 –0.1592

Seasonality → Water-energy balance 1.016 –0.003 1.013

Seasonality → Alpha diversity –0.246 0.204 –0.042

Seasonality → Beta diversity –0.090 0.247 0.157

Extreme climatic factors → Water-energy balance –0.098 0.0000 –0.098

Extreme climatic factors → Alpha diversity 0.047 –0.020 0.027
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Extreme climatic factors → Beta diversity –0.493 –0.034 –0.527

Water-energy balance → Alpha diversity 0.200 0.0000 0.200

Water-energy balance → Beta diversity 0.241 –0.077 0.164

Alpha diversity → Beta diversity –0.384 0.0000 –0.384

We found a significant correlation between beta diversity and environmental distance

independent of the spatial proximity of the forest plots (partial Mantel rM = 0.45, P = 0.001).

The correlation in question was little reduced by partialling out the effect of spatial distance.

The Mantel correlation (rM) between beta diversity and environmental distance was 0.55 (P =

0.001), indicating that environmental effects occurred largely independent of spatial effects,

corroborating with the species-sorting model. On the other hand, we found a weak correlation

between  beta  diversity  and  spatial  proximity  independent  of  the  environmental  distance

(partial rM = 0.07, P > 0.05), where partialling out the effect of the environment resulted in a

quite reduced correlation, indicating that environmental variables were spatially structured.

The Mantel correlation between beta diversity and spatial proximity was 0.37 (P = 0.001).
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Figure 3:  PLS Path Modeling showing the strength and direction of the postulated relationships among latent
variables. Direct effects are shown through standardized path coefficients. 
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Figure  4:  Significant  relationships  between  predictor  and  response  (beta  diversity)  latent  variables.  These
relationships are shown via standardized latent variables scores obtained in PLS Path Modeling.
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Discussion

Beta diversity and the species-sorting perspective of metacommunity theory

Overall, this study contributes to our understanding regarding how factors related to

environmental  filtering  interact  directly  and  indirectly  to  affect  tree  diversity  patterns  in

subtropical  forests.  Our results  support  the ideas  behind the species-sorting model,  which

apparently worked well to explain beta-diversity patterns at the metacommunity level. The

species-sorting  perspective  predicts  that  community  composition  varies  in  response  to

differences in environmental conditions among habitat patches. This perspective has much in

common with niche theory, which predicts that beta diversity varies deterministically along

environmental gradients, but not along spatial gradients among communities that share the

same  species  pool  (Chase  and  Myers,  2011).  Although  both  approaches  predict  that

composition of communities should depend on environmental effects independent of spatial

effects, environmental distance and spatial proximity together can, to some extent, influence

beta  diversity  patterns  at  the  metacommunity  level  as  postulated  by  the  mass-effects

perspective in metacommunity theory (Leibold,  2011).  When the spatial  proximity affects

both species and environment, we expect that habitat patches situated at short distances are

more likely to be similar in terms of species composition and environmental conditions than

those located further apart (Legendre, 1993). The results of the partial Mantel test suggest that

environmental  effects  are independent  of  the  spatial  proximity  of  the  forest  plots,

corroborating with the species-sorting model, and reinforce the idea that deterministic (niche-

based)  processes  seem to  play  a  key  role  in  structuring  tree  beta  diversity  in  the  South

Brazilian Atlantic forests.
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It  is  important  to  point  out  that  although  spatial  effects  are  often  interpreted  as

dispersal limitation in the neutral and mass-effects perspectives, these effects can arise simply

in consequence of the omission of important environmental variables (that are themselves

spatially  structured)  in  the  model  (Anderson et  al.,  2011;  Dray et  al.,  2012)  or  due  to  a

mismatch between the scale of analysis and the scale of species–environment relationships

(De Knegt et al., 2010). Thus, the inferences on the role of niche-based vs. neutral processes

in community assembly can be limited by possible confounding factors (Peres-Neto et al.,

2012).

Among the four metacommunity models which have been described in literature,

there is a variety of empirical evidence for  species-sorting and mass-effects (Holyoak and

Mata, 2008; Loeuille and Leibold, 2008; Logue et al., 2011). A compilation of 158 data sets

by Cottenie (2005) found that 69 metacommunities (44%) best fit the species-sorting model,

46 (29%) a combination of species-sorting and mass-effects models, and only 13 (8%) the

neutral or patch dynamics models; 19 data sets could not be uniquely associated with these

three types, and 11 had no significant components. Independent of the perspective evoked, we

suppose that most of the metacommunities should display some significant environmental

component  due  to  differences  in  fitness  among species  in  consequence  of  environmental

constraints. Conceptually, species sorting is the variation in community composition that is

determined by the  optimization  of  fitness  among  species  across  patches  (Leibold,  2009).

Unlike  under  the  neutral  perspective,  here  dispersal  only  is  important  to  allow  that

compositional  changes  follow  changes  in  local  environmental  conditions  (Leibold  et  al.,

2004). Therefore, if variation in fitness in response to environmental constraints allows for

different  species  in  different  habitat  patches,  dispersal  can  maintain  persistent  local

populations, even in patches where they are at a disadvantage regarding their fitness (Vellend,

2010).
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Determinants of tree alpha and beta diversity

We found that factors related to environmental filtering explained a large fraction of

the total variance of beta diversity compared to alpha diversity at the metacommunity level.

These  results  indicate  that  spatial  scale  dictates  the  perception of  which  processes

predominate. Thus,  our  results  suggest  that  beta  diversity  was  well  predicted  by  coarse-

grained  environmental  drivers  (e.g.  climate)  that  operate  at  large  spatial  scales

(regional/continental), but alpha diversity not. The high unexplained variation we observed

for alpha diversity may be attributed in part  to the low representativeness of fine-grained

drivers in our study. Patch area,  patch core area and patch shape were the only variables

closest to the fine-resolution available here. However, only area and core area (both combined

in one latent variable) showed to play some role in determining local diversity. The positive

relation  between  available  patch  area  and  local  diversity  we  found  is  consistent  with

ecological  theory  (Ewers  and  Didham,  2006).  In  general,  habitats  with  larger  area  and

consequently high  structural  heterogeneity  are  expected  to  contain a  large fraction of  the

landscape-wide species pool (Tscharntke et al., 2012). Thus, large forest patches contain the

greatest local diversity as well as the greatest number of rare and shade-tolerant tree species

(Hill et al., 2003).

In  a  recent  meta-analysis  from  63  published  studies  that  analyzed  vegetation–

environment relationships, Siefert et al. (2012) demonstrated that the importance of climate

factors  relative  to  edaphic  factors  increased  with  increasing  spatial  extent  and  grain,

suggesting that vegetation–environment relationships depend on the scale of observation. In

our model, the good ability to predict variation in community composition was likely possible

only due to the large spatial extent covered by the study region (95.000 km2), which in turn

favored our analysis to capture primarily climatic variation. Recently, Garzon-Lopez et al.
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(2014) showed that species-specific spatial aggregation due to dispersal limitation was clearly

a ‘confounding factor’ in the detection of environmental effects.  They found that dispersal

constraints decreased the number of significant habitat associations for tropical tree species,

and that  spatial  scale  dictated  the  relative  importance  of  deterministic  (niche-based)  and

stochastic  (neutral)  processes  in  the  spatial  distribution  of  tree  species.  Thus,  significant

habitat associations increased with the plot size (spatial grain), suggesting that species were

neutrally structured at smaller scales and niche-structured at larger scales. Inspired by these

findings,  we highlight  that  further  analysis  is  needed to quantify  the  influence  of  spatial

aggregation characteristics on the species-environment relationships we found to evaluate the

consistency of the observed patterns across the scales.

Although some processes, such as those related to climate, can influence both alpha

and beta diversity, these components have different ecological determinants, as they reflect

ecological mechanisms that operate within and among communities, respectively (Ricklefs

and Schluter, 1993).  It  is  well  established that diversity within and between communities

responds to several factors acting at several spatial scales, e.g., species interactions, landscape

heterogeneity, the size of the regional species pool, migration/extinction dynamics, stochastic

variation,  and  dispersal  (Ricklefs,  1987;  Ricklefs  and  Schluter,  1993).  Even  though  we

include here only drivers related to environmental heterogeneity of the region, these drivers in

turn appear to be (according to the scale of our study) the key sources of variation of the tree

beta diversity in the South Brazilian Atlantic forests.

Particularly, the extreme climatic factors, water-energy balance and alpha diversity

were the key determinants of beta diversity, while patch size and water-energy balance were

the key determinants of alpha diversity in the South Brazilian Atlantic forests.  There is a

growing observational evidence that climatic variation is an important broad-scale predictor

of the tree species diversity (both alpha and beta) in several forest types across the world
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(Davidar  et  al.,  2007;  Wang  et  al.,  2008;  Tang  et  al.,  2012;  Oliveira-Filho  et  al.,  2013;

Gonçalves  and Souza,  2013).  In  this  context,  local  communities  are  assembled  from the

regional pool through the interaction between the species traits and the climatic filters that

regulate  (together  with other  factors) the arrival of propagules  of different  species in any

assemblage within a metacommunity (Keddy and Weiher, 1999; Weiher et al., 2011). As the

climatic conditions vary in the study area along elevation gradients, various species occurring

at lower altitudes where temperature conditions are milder are not found at higher altitudes or

at sites where frequently strong selective phenomena such as killing frost, severe cold period

and snowfalls occur (Oliveira-Filho et al., 2013). Thus, the harsh abiotic conditions impose a

deterministic filter on community assembly, where a niche selection prevents a subset of the

species pool from persisting in some localities (Chase and Myers, 2011). The fact that both

alpha and beta diversity were positively related to water-energy balance (a linear combination

of actual and potential evapotranspiration) stresses the role of both energy regime and water

regime (an indicative of plant productivity) in the studied system. Evapotranspiration is one of

the best climatic correlates of species diversity (Currie,  1991; Wright et  al.,  1993).  Many

studies have shown that diversity (as richness) correlates positively with evapotranspiration,

suggesting that a positive relationship exists between richness and productivity of the habitat

(Maurer, 2009). Overall, high productivity in habitats maintains larger numbers of individuals

per species and thus reduces the probability of stochastic extinction, and may also increase the

total  variety  of  microhabitats  and  permit  greater  microhabitat  specialization  (Latham and

Ricklefs, 1993).

When alpha diversity is very low relative to the gamma diversity (regional species

pool), as in this study, beta diversity is expected by random chance to be very high (Chase and

Mayers, 2011). As all three diversity components (α, β, γ) are interconnected, it is unclear

whether a change in β is due to some assembly mechanism (deterministic or stochastic), or
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whether it is this mechanism that affects α, necessarily causing a concomitant change in β

(Chase et al.,  2011). We provided a robust way to deal with this situation using structural

equation modeling. We suggest that this type of analytical framework is a powerful approach

to disentangle the relative importance of various processes upon beta independent of alpha

(and vice versa). A clear advantage of this framework is the ability to estimate direct and

indirect  effects  in  multiple  pathways in  contrast  with  the  standard  multivariate  analyses,

which consider only a single relationship at a time (direct effect).

It is important to note that our study was designated to test a specific prediction of

‘environmental control’ within  the metacommunity framework (species-sorting perspective,

Leibold,  2009,  2011). Therefore the  species-environment  relationships  were postulated by

means  of  simple  assumptions  regarding  the  role  of  environmental  heterogeneity  on  beta

diversity  without  considering  others  processes  such  as  dispersal.  Our  model  showed  that

deterministic (niche-based) factors had complex direct and indirect effects on beta diversity,

explaining  a  large  fraction  of  the  total  variance.  Using structural  equation  modeling,  we

provide a strong empirical support for the tested prediction, highlighting the importance of

deterministic  factors  associated  with  species  niches  and  their  responses  to  environmental

conditions. 
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Supplementary material

Supplementary material Appendix 1, Table A1: Mean values and range of 29 indicator variables for the 432
studied  forest  plots  across  Atlantic  Forest  fragments  (Rain Forest,  RF;  Mixed Araucaria  Forest,  MAF;  and
Seasonal Forest, SF) in southern Brazil.

Latent and indicators 

variables
Code

Mean (Range)

RF MAF SF

Topography

Elevation (m) ELEV 410.8 (1164.0) 954.9 (1037.0)
582.9

(648.0)

Slope (%) SLOP 7.5 (36.0) 4.8 (19.0) 6.1 (15.0)

Aspect (°) ASP 206.9 (356.0) 183.3 (355.0)
183.7

(351.0)

Patch geometry

Patch area (ha) PA 1444.9 (2448.3) 969.6 (2311.3)
334.9

(1236.3)

Patch core area (ha) PCA 1045.7 (2374.2) 634.3 (2146) 87.0 (863.2)

Patch shape index PSI 4.2 (8.4) 4.6 (9.4) 4.9 (10.2)

Patch connectivity (m) PC 49.0 (262.9) 59.0 (499.8) 55.3 (227.5)

Climatic trends

Annual mean precipitation 

(mm)
AP 1577.4 (551.0) 1663.5 (991.0)

1892.7

(563.0)

Annual mean temp (°C*10) AMT 183.9 (64.0) 159.7 (56.0) 184.3 (37.0)

Seasonality

Mean diurnal range MDR 93.5 (49.0) 112.4 (54.0) 119.4 (27.0)

Isothermality I 50.9 (13.0) 55.3 (10.0) 56.6 (6.0)

Temperature seasonality TS 2943.6 (511.0) 3024.7 (825.0)
3125.2

(474.0)

Temperature annual range TAR 181.2 (59.0) 201.1 (64.0) 208.7 (34.0)

Precipitation seasonality PS 25.1 (30.0) 15.7 (16.0) 12.5 (13.0)

Extreme climatic factors

Max.  temp.  of  warmest MTW 274.8 (67.0) 259.5 (70.0) 289.4 (48.0)
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month M

Min. temp. of coldest month MTCM 93.6 (85.0) 58.4 (52.0) 80.5 (41.0)

Mean temp. of wettest quarter MTWQ 220.6 (66.0) 177.1 (89.0) 187.9 (81.0)

Mean temp. of driest quarter MTDQ 148.1 (65.0) 138.1 (89.0) 166.5 (59.0)

Mean  temp.  of  warmest

quarter

MTWQ

.1
220.6 (66.0) 196.8 (64.0) 221.3 (35.0)

Mean temp. of coldest quarter MTCQ 146.3 (65.0) 120.8 (48.0) 143.4 (34.0)

Prec. of wettest month PWM 197.0 (130.0) 178.0 (90.0) 197.8 (55.0)

Prec. of driest month PDM 86.1 (37.0) 105.1 (80.0) 129.1 (51.0)

Prec. of wettest quarter PWQ 536.2 (367.0) 485.1 (215.0)
531.0

(133.0)

Prec. of driest quarter PDQ 283.9 (126.0) 356.2 (288.0)
432.1

(169.0)

Prec. of warmest quarter PWQ.1 535.2 (367.0) 472.6 (174.0)
494.1

(145.0)

Prec. of coldest quarter PCQ 299.3 (143.0) 368.5 (288.0)
443.4

(171.0)

Water-energy balance

Actual  evapotranspiration

(mm)
AET 1192.4 (223.0) 1203.9 (381.0)

1335.0

(245.0)

Potential  evapotranspiration

(mm) 
PET 1252.0 (324.0) 1291.2 (439.0)

1433.6

(256.0)

Global aridity index GAI 12670.6 (5978.0)
12942.5

(6957.0)

13175.5

(4213.0)
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Considerações Finais

O presente trabalho traz uma contribuição no sentido de desvendar quais processos

são determinantes para a montagem de comunidades ao longo de múltiplas escalas espaciais,

um dos temas centrais na área de ecologia atualmente. Os resultados obtidos fornecem uma

forte  evidência  em favor  da  importância  de processos  determinísticos  associados  a  filtros

ambientais.  A utilização  de  modelagem  de  equações  estruturais  (SEM),  para  testar  uma

predição  oriunda  da  teoria  de  metacomunidades,  constitui  um  diferencial  em  relação  às

abordagens  comumente  utilizadas  para  investigar  padrões  de  diversidade  de  árvores  na

Floresta Atlântica do Sul do Brasil. Assim, a abordagem aqui utilizada representa um passo

importante  para  o  entendimento  de  como  diferentes  processos  interagem  para  afetar  os

padrões de diversidade e coexistência de espécies nas florestas em questão. SEM constitui

uma ferramenta altamente indicada para análises de sistemas ecológicos e as interações entre

fatores bióticos e abióticos. Especificamente, o método PLSPM, apesar de ainda ser pouco

utilizado na área de ecologia, começa a ganhar espaço no contexto de importantes trabalhos

recentemente publicados (e.g.  Moody & Sabo 2013, Majdi et al. 2013 e Medina et al. 2014).

Entretanto,  visto que a diversidade é um conceito complexo que inclui diferentes

escalas espaciais  e entidades,  abordagens referentes à diversidade funcional e filogenética

surgem como análises complementares bastante promissoras  quando se pretende analisar a

relação entre a distribuição das espécies e fatores ambientais. Por resumirem a adaptação das

espécies ao ambiente, atributos funcionais, por exemplo, possibilitam identificar padrões mais

evidentes do que aqueles obtidos apenas mediante o uso da diversidade de espécies. Portanto,

recomenda-se incorporar tais aspectos da diversidade em futuros estudos, o que pode prover

importantes informações em relação aos processos que determinam os padrões de diversidade

em metacomunidades. 



57

Referências

Anderson, M. J. et al. 2011. Navigating the multiple meanings of β diversity: a roadmap for

the practicing ecologist. - Ecol. Lett. 14: 19–28.

Bergamin,  R.  S.  et  al.  2012.  Indicator  species  and  floristic  patterns  in  different  forest

formations in southern Atlantic rainforests of Brazil. - Community Ecol. 13: 162–170.

Biswas, S. R. and Wagner, H. H. 2012. Landscape contrast: a solution to hidden assumptions

in the metacommunity concept? - Landsc. Ecol. 27: 621–631.

Bollen, K. A. 1989. Structural equations with latent variables. - Wiley.

Brown, C. et al. 2013. Multispecies coexistence of trees in tropical forests: spatial signals of

topographic niche differentiation increase with environmental heterogeneity. - Proc. Biol.

Sci. 280: 20130502.

Chase,  J.  M.  2010.  Stochastic  community  assembly  causes  higher  biodiversity  in  more

productive environments. - Science 328: 1388–1391.

Chase, J. M. and Myers, J. A. 2011. Disentangling the importance of ecological niches from

stochastic processes across scales. - Philos. Trans. R. Soc. Lond. B. Biol. Sci. 366: 2351–

63.

Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community

dynamics. - Ecol. Lett. 8: 1175–1182.

De Caceres, M. et al.  2010. Improving indicator species analysis by combining groups of

sites. - Oikos 119: 1674–1684.

De Caceres, M. et al.  2010. Improving indicator species analysis by combining groups of

sites. - Oikos 119: 1674–1684.

Diamond, J. M. 1975. Assembly of species communities. - In: Cody, M. L. and Diamond, J.

M. (eds), Ecology and evolution of communities. Harvard Press, pp. 342–444.



58

Esposito-Vinzi et al. 2010a. PLS path modeling: from foundations to recent developments and

open issues for model assessment and improvement.  -  In:  Handbook of Partial  Least

Squares. Springer, New York, pp. 47–82.

Garzon-Lopez, C. X. et al. 2014. Effects of sampling scale on patterns of habitat association

in tropical trees. - J. Veg. Sci. 25: 349–362.

Gilbert, B. and Lechowicz, M. J. 2004. Neutrality, niches, and dispersal in a temperate forest

understory. - Proc. Natl. Acad. Sci. U. S. A. 101: 7651–7656.

Gonçalves,  E.  T.  and  Souza,  A.  F.  2013.  Floristic  variation  in  ecotonal  areas:  Patterns,

determinants and biogeographic origins of subtropical forests in South America. - Austral

Ecol. 39: 122–134.

Grace,  J. B. et al.  2010. On the specification of structural equation models for ecological

systems. - Ecol. Monogr. 80: 67–87.

Hill, J. L. and Curran, P. J. 2003. Area, shape and isolation of tropical forest fragments: effects

on tree species diversity and implications for conservation. - J. Biogeogr. 30: 1391–1403.

Holyoak,  M. and T. M. Mata.  2008. Metacommunities.  -  In:  Sven E.  and Brian F. (eds),

Encyclopedia of ecology. Academic Press, pp. 2313-2318.

Hubbell, S. P. 1999. Light-Gap Disturbances, recruitment limitation, and tree Diversity in a

Neotropical forest. - Science 283: 554–557.

Hubbell, S. P. 2001. The Unified neutral theory of biodiversity and biography (Levin, S.A.

and Horn, H.S.(eds.). - Princeton University Press.

Kaplan, D. 2000. Structural equation modeling: foundations and extensions. - Sage.

Keddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology.

- J. Veg. Sci. 3: 157–164.

Jarenkow, J.A and Budke, J.C. 2009. Padrões florísticos e análise estrutural de

remanescentes de Florestas com Araucária no Brasil.- In: Fonseca, C.R.; Souza, A.F.; Leal-



59

Zanchet,  A.M.; Dutra,  T.;  Backes,  A. and Ganade, G. (eds.),  Floresta  com araucária:

ecologia, conservação e desenvolvimento sustentável. Holos,  pp. 113-126.

Legendre, P. and Gallagher, E. 2001. Ecologically meaningful transformations for ordination

of species data. - Oecologia 129: 271–280.

Leibold,  M.  a.  et  al.  2004.  The  metacommunity  concept:  a  framework  for  multi-scale

community ecology. - Ecol. Lett. 7: 601–613.

Majdi, N. et al. 2013. Predator effects on a detritus-based food web are primarily mediated by

non-trophic interactions. - J. Anim. Ecol. in press.

McCune, B. and Grace, J. B. 2002. Analysis of ecological communities (GB MjM Software

Oregon Usa Www Pcord Com, Ed.). - MjM Software Design.

Medina, N. G. et al. 2014. Species richness of epiphytic bryophytes: drivers across scales on

the edge of the Mediterranean. - Ecography (Cop.). 37: 80–93.

Medina, N. G. et al. 2014. Species richness of epiphytic bryophytes: drivers across scales on

the edge of the Mediterranean. - Ecography 37: 80–93.

Moody, E. K. and Sabo, J. L. 2013. Crayfish impact desert river ecosystem function and litter-

dwelling invertebrate communities through association with novel detrital resources. -

PLoS One 8: e63274.

Myers, J.  a et  al.  2013. Beta-diversity in temperate and tropical forests reflects dissimilar

mechanisms of community assembly. - Ecol. Lett. 16: 151–7.

Oliveira-Filho, a. T. et al. 2013. Delving into the variations in tree species composition and

richness  across  South  American  subtropical  Atlantic  and Pampean  forests.  -  J.  Plant

Ecol.: 1–23.

Oliveira Filho, A. and Fontes, M. 2000. Patterns of floristic differentiation among Atlantic‐

Forests in Southeastern Brazil and the influence of climate. - Biotropica 32: 793–810.

R Core Development Team. 2013. R: A language and environment for statistical computing. -



60

R Foundation for  Statistical  Computing.  Available  at:  http://www.R-project.org.  Last

accessed 21 January 2014..

Ricklefs, R. E. 1987. Community Diversity: Relative roles of local and regional Processes. -

Science 235: 167–171.

Ricklefs, R. E. and Schluter, D. 1993. Species diversity in ecological communities: historical

and geographical perspectives. - University of Chicago Press.

Scheiner,  S.  M.  and  Willig,  M.  R.  2005.  Developing  unified  theories  in  ecology  as

exemplified with diversity gradients. - Am. Nat. 166: 458–69.

Siefert,  A. et  al.  2012. Scale dependence of vegetation-environment relationships: a meta-

analysis of multivariate data. - J. Veg. Sci. 23: 942–951.

Tenenhaus, M. et al. 2005. PLS path modeling. - Comput. Stat. Data Anal. 48: 159–205.

Vellend, M. 2010. Conceptual synthesis in community ecology. - Q. Rev. Biol. 85: 183–206.

Vibrans, A. C. et al. 2010. Inventário florístico florestal de Santa Catarina (IFFSC): aspectos

metodológicos e operacionais. - Pesqui. Florest. Bras. 30: 291–302.

Vibrans, A. C. et al. 2013. Using satellite image-based maps and ground inventory data to

estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina.

- Remote Sens. Environ. 130: 87–95.

Weiher,  E.  and  Keddy,  P.  1999.  Assembly  rules  as  general  constraints  on  community

composition.  -  In:  Ecological  assembly  rules.  Perspectives,  advances,  retreats.

Cambridge University Press, pp. 1–20.

Whittaker, R. H. 1972. Evolution and measurement of species diversity. - Taxon 21: 213–251.

Whittaker, R. J. et al. 2001. Scale and species richness: towards a general, hierarchical theory

of species diversity. - J. Biogeogr. 28: 453–470.

Willig, M. R. et al. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and

synthesis. - Annu. Rev. Ecol. Evol. Syst. 34: 273–309.

http://www.R-project.org/


61

Appendices

Appendix A:  Description of the methods for data analysis used for the general introduction.

All  analyses  were  performed  using  Vegan  package in  the  R  environment  for

statistical computing (R Core Development Team 2012), except for the analysis of indicator

species, as explained below.

Non-parametric Multivariate Analysis of Covariance (NPMANCOVA)

The NPMANCOVA was performed with community composition data (432 forest

plots  x 750 species),  using  Bray-Curtis  (Steinhaus  index)  dissimilarities  (NPMANCOVA,

Anderson 2001) to test for differences in floristic composition among the forest types. The

species pool was defined as the total number of species observed across all forest plots within

a type forest. The significance of the model was assessed using pseudo F-tests based on 9999

sequential sums of squares from permutations of the raw data

Non-metric Multidimensional Scaling (NMDS)

The NMDS was performed to illustrate pairwise dissimilarities among forest types,

which iteratively finds the solution, or axes of variation that best capture the patterns in the

dissimilarity matrix. We chose the number of dimensions (axes) equal to 4 to minimize the

stress (i.e., maximizing the rank correlations between the calculated distances and the plotted

distances). The Bray-Curtis dissimilarity demonstrated the high rank-order relation distance

along environmental gradient, so we opted to run all statistical analyses based on distance
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matrices. 

Indicator species analysis with combination of site groups

Indicator species analysis with combination of site groups (De Cáceres et al. 2010)

was  used  as  a  complimentary  method  to  NPMANCOVA to  contrast  the  performance  of

individual  species across three forest  types (McCune and Grace 2002).  The method is  an

extension  of  the  original  indicator  value  (IndVal)  analysis  (Dufrêne  and Legendre  1997),

which considers all possible combinations of sites and selects the combination for which the

species may be better used as an indicator. The analysis produces the lists of indicator species

significantly associated to each site groups or combinations of them (De Cáceres et al. 2010).

Among these, we considered as strong indicators those with IndVal greater than 0.5, i.e. the

most abundant and specific species. We performed the analysis with the species composition

matrix  previously  submitted  to  Hellinger  transformation  (Legendre  and  Gallagher  2001),

using the 'multipatt' function of the R package 'indicspecies' and association index IndVal.g,

which incorporates a correction for unequal group sizes. Statistical significance was tested by

999 Monte Carlo permutations. 
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Appendix B:  Complete lists of the indicator species that characterize individual forest types 
(table 1) and (table 2) those that reflecting the affinities or relationships between them.

Table 1: Indicators species with value of the correlation (rpb ≥ 0.5) with significant association (p ≤ 0.05) to one
forest type. For each species are indicated the group combination that obtained the highest correlation (GC) and
the value of the correlation (rpb). RF, Rainforest; SF, Seasonal Forest; MAF, Mixed Araucaria Forest.

Indicator species GC rpb

Alchornea triplinervia RF 0.834

Matayba intermedia RF 0.747

Nectandra oppositifolia RF 0.747

Psychotria vellosiana RF 0.737

Euterpe edulis RF 0.735

Guapira opposita RF 0.719

Cecropia glaziovii RF 0.711

Hieronyma alchorneoides RF 0.707

Guatteria australis RF 0.703

Ocotea elegans RF 0.692

Alsophila setosa RF 0.686

Myrcia pubipetala RF 0.686

Cyathea phalerata RF 0.682

Annona neosericea RF 0.649

Bathysa australis RF 0.641

Pera glabrata RF 0.639

Posoqueria latifolia RF 0.634

Byrsonima ligustrifolia RF 0.627

Aniba firmula RF 0.617

Miconia cabucu RF 0.617

Cryptocarya mandioccana RF 0.613

Heisteria silvianii RF 0.601

Sloanea guianensis RF 0.600

Hirtella hebeclada RF 0.597

Ocotea catharinensis RF 0.596

Piptocarpha axillaris RF 0.593

Virola bicuhyba RF 0.593

Miconia cinnamomifolia RF 0.589

Inga sessilis RF 0.587

Protium kleinii RF 0.576

Maytenus robusta RF 0.572

Ocotea nectandrifolia RF 0.548

Cyathea delgadii RF 0.530

Myrcia brasiliensis RF 0.519
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Xylopia brasiliensis RF 0.512

Garcinia gardneriana RF 0.502

Magnolia ovata RF 0.502

Luehea divaricata SF 0.818

Nectandra megapotamica SF 0.796

Machaerium stipitatum SF 0.767

Balfourodendron riedelianum SF 0.764

Nectandra lanceolata SF 0.722

Chrysophyllum gonocarpum SF 0.720

Myrocarpus frondosus SF 0.716

Machaerium paraguariense SF 0.698

Chrysophyllum marginatum SF 0.697

Cordia americana SF 0.691

Syagrus romanzoffiana SF 0.686

Trichilia clausseni SF 0.684

Lonchocarpus campestris SF 0.667

Parapiptadenia rigida SF 0.663

Annona sylvatica SF 0.642

Cordia trichotoma SF 0.631

Apuleia leiocarpa SF 0.630

Diatenopteryx sorbifolia SF 0.625

Phytolacca dioica SF 0.616

Pilocarpus pennatifolius SF 0.597

Albizia edwallii SF 0.580

Hovenia dulcis SF 0.576

Urera baccifera SF 0.548

Picrasma crenata SF 0.540

Inga vera subsp  affinis SF 0.519

Strychnos brasiliensis SF 0.511

Araucaria angustifolia MAF 0.798

Dicksonia sellowiana MAF 0.753

Ilex paraguariensis MAF 0.673

Cinnamomum amoenum MAF 0.643

Ocotea pulchella MAF 0.622

Mimosa scabrella MAF 0.562

Lithrea brasiliensis MAF 0.553

Cinnamodendron dinisii MAF 0.545

Drimys brasiliensis MAF 0.527

Ocotea porosa MAF 0.525



65

Table 2: Indicators species with value of the correlation (rpb ≥ 0.5) with significant association (p ≤ 0.05) to two
forest types. For each species, are indicate the group combination that obtained the highest correlation (GC) and
the value of the correlation (rpb). RF, Rainforest; SF, Seasonal Forest; MAF, Mixed Araucaria Forest.

Indicator species GC                             rpb

Casearia sylvestris RF + SF 0.796

Cabralea canjerana RF + SF 0.768

Aspidosperma australe RF + SF 0.644

Sorocea bonplandii RF + SF 0.518

Inga marginata RF + SF 0.502

Clethra scabra RF + MAF 0.689

Vernonanthura discolor RF + MAF 0.684

Ilex theezans RF + MAF 0.662

Lamanonia ternata RF + MAF 0.575

Myrcia splendens RF + MAF 0.566

Piptocarpha angustifolia RF + MAF 0.550

Ilex dumosa RF + MAF 0.543

Casearia obliqua RF + MAF 0.535

Prunus myrtifolia SF + MAF 0.785

Ocotea puberula SF + MAF 0.776

Matayba elaeagnoides SF + MAF 0.751

Sapium glandulosum SF + MAF 0.656

Allophylus edulis SF + MAF 0.640

Casearia decandra SF + MAF 0.635

Sebastiania commersoniana SF + MAF 0.624

Styrax leprosus SF + MAF 0.624

Campomanesia xanthocarpa SF + MAF 0.599
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