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Abstract

In the present analysis we study the weakly nonlinear coupled dynamics involving focused radiation beams and space-
charge fields in laser-plasmas systems. We direct the analysis to regimes evolving with the co-moving coordinate of
the beam frame, but do not make any assumptions on paraxial or underdense conditions. The model thus constructed
allows us to investigate equilibrium and nonequilibrium regimes alike. Dependence of equilibrium profiles on control
parameters is examined, and beam stability and evolution is investigated as one adds small mismatches to the ideally
matched equilibrium. Details of beam evolution depend on initial conditions. However, independently of the precise
form of initial conditions, mismatched beams evolve to incoherent space-time patterns.

1. INTRODUCTION

The recent developments of laser technologies allow the cre-
ation of intense laser beams. As these beams are injected into
plasmas, ponderomotive forces associated with the laser field
eventually create charge displacement and the resulting
space-charge fields. Space-charge fields and relativistic
effects associated with the particle motion under the laser
field contribute to beam focusing and pulse propagation,
which allows the beams to be conveniently shaped for a
large number of applications. Among these relevant appli-
cations one can think of nonlinear optics, communications,
ionospheric propagation, laser fusion, particle and photon ac-
celeration, and several others that make use of the nonlinear
and geometric features of this type of systems (Kozlow e al.,
1979; Tajima & Dawson, 1979; Shukla ef al., 1986; Esarey
et al., 1998; Farina & Bulanov, 2001; Mendonca, 2001;
Poornakala er al., 2002; Bingham, 2003; Joshi & Katsouleas,
2003; Sodha et al., 2007).

When the beam modulational frequency and dimensions
match the plasma wave frequency and wavelength, laser-
plasma interactions are enhanced, which results in the gener-
ation of strong space-charge electric fields. These fields are
relevant for the beam propagation itself and are of special
interest for specific scenarios, as in particle acceleration
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where witnesses electrons traveling near the pulse velocity
can be efficiently accelerated by wave-particle effects.

The previous remarks establish the importance attached to
the study of the interaction of electromagnetic and space-
charge waves in plasmas, and the variety of respective
works reported in the literature is, accordingly, large.
Indeed, interest areas range from time dependent regimes to
regimes where field amplitudes depend only on the co-
moving coordinates of a beam frame traveling with the
group velocity of the radiation, all in various dimensionalities
and various degrees of nonlinear approximations.

Analysis in the co-moving beam frame is of particular rel-
evance for propagation over large distances, since after initial
transients the radiation beams are attracted toward these co-
moving regimes (Azimov et al., 1991). Here, analysis has
been mostly done for planar propagation along one spatial di-
mension, where the finite dimensions of the transverse spot
size are thus neglected. In this case, time and space are com-
bined into a single co-moving beam frame coordinate where
the dynamics is examined. Clear cut calculations can then be
performed, as in the pioneering works of Kozlov et al. (1979)
and de Bonatto et al. (2006), as well as in more recent works
dealing with fully nonlinear relativistic cold fluid modeling
(Farina & Bulanov, 2001; Poornakala et al., 2002; Bonatto
et al., 2005). Although tools of nonlinear wave dynamics
can be successfully applied in the analysis of one-
dimensional geometries, the role of a possible transverse pro-
file remains unclear.
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That said, we can state that the purpose of the present work
is to examine propagation of focused beams, where the de-
pendence on transverse dimensions are kept alongside with
the original dependence on the co-moving longitudinal coor-
dinate. In other words, although our model restricts investi-
gation to co-moving regimes, paraxial approximations are
not imposed. A weakly nonlinear model is developed that
allows us to represent the problem in terms of two nonli-
nearly coupled equations: one for the amplitude of the
laser field, and another for the space-charge field. The goal
is to describe the transverse beam profile as a function of
the co-moving beam frame coordinate. As the model is con-
structed, no assumptions are made on the magnitude of the
plasma density, as well. In particular, the model does not
approximate the group velocity by the speed of light even
at low-densities, as occasionally done in underdense con-
ditions Duda & Mori (2000). Underdense and paraxial
approximations suppresses some features we shall preserve
along the analysis of beam equilibrium and dynamics
(Mora & Antonsen, 1997; Esarey et al., 2000; Bonatto
etal., 2011).

The paper is organized as follows. In Section 2, we present
the model, discuss its geometrical settings and derive some
analytical results, in Section 3, we numerically investigate
the model examining its linear approximation, equilibrium
solutions, and its nonlinear space-time dynamics, and in Sec-
tion 4, we draw our conclusions.

2. THE MODEL

2.1. Governing Equation in the Weakly Nonlinear
Approximation

Let us consider our system as consisting of a mobile cold
electronic fluid and a neutralizing fixed ionic background.

In the co-moving regime we will be investigating, all field
amplitudes, radiation, and wakes, are assumed to propagate
along the x axis of our coordinate system with a given non-
linear group velocity v, whose magnitude must be found.

Starting with the laser field, we take it to be described by
the associated vector potential A, which is represented in the
form

A =7a(x_, x — vg )ty 4 ¢ ¢, (1)

The variable a is the slowly varying real amplitude of the field,
with k¢ and wy, respectively, as the wave vector and frequency
of the high-frequency carrier. We note that in accordance with
all the previous comments on the field structure, in addition to
the co-moving coordinate §=x— v, 1, we allow for the
inclusion of the transverse structure represented by the trans-
verse coordinate X, in the argument of the scalar amplitude
a. The interdependence of the carrier’s frequency and wave
vector with the group velocity v,, shall be elucidated as soon
as one solves the wave equation for the vector potential A.
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In the Coulomb gauge, the laser wave equation reads

2
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where the high-frequency current j can be written in terms of
the density n, the electron charge and mass g, m, respectively,
the relativistic factor y, and the vector potential as j =— ¢’/
m) n A/y Gibbon (2007). Then, from Eq. (2) one can write
the governing equation for the weakly relativistic amplitude
a in the form
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We point out that in Eq. (3) we have migrated to dimension-
less quantities defined in the form w, x/c — x, w, X, /c =
X, Wyt =1, qa/mc2 —a,ve/c—> vy, and (n — ng)/ng — n.
The parameter n is the equilibrium density, w, = ng q*leom
denotes the plasma frequency, and p, and €, are the magnetic
and electric vacuum permeabilities. We note that the fre-
quency and wave vector of the carrier are normalized like-
wise, and that the weakly nonlinear (or weakly relativistic)
field magnitudes satisfy the condition lga/mc* | < 1. On
the right-hand side of Eq. (3) the nonlinear features of the
theory can be devised: the ponderomotive nonlinearity rep-
resented by the coupling involving density and vector poten-
tial, and the cubic relativistic nonlinearity, which has its
origins in the weakly relativistic expansion of the relativistic
factor y.

One can advance a step further with the analysis as one
realizes that a is real. Then, on separating Eq. (3) into its
real and imaginary parts the following expressions are ob-
tained,

&a 2 a?
_6a+Ka—Ez+VLa_ (n—E)a, 4)
ko
Vg _(1)70 (5)

The detuning parameter, introduced as § = k(z) - w(z, + 1, is
thus seen to be part of a nonlinear equation. As we shall elab-
orate better in the coming sections, this indicates that wave
frequency and wave vector are related through a nonlinear
dispersion relation, and that v, is thus a nonlinear group vel-
ocity. On the other hand, the parameter k = 1 — vﬁ, here de-
fined in a slightly different way than in a previous paper
(Bonatto et al., 2011) to avoid negative values for it, is di-
rectly related to the group velocity of the radiation. It be-
comes small in underdense conditions where the plasma
density is small and v,—1. In what follows, we consider
wo >0, ko >0, and v, > 0.
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As for the low-frequency density fluctuations, one starts
from the ponderomotive-driven low-frequency momentum
equation for the electrons and uses the Poisson and continuity
equations to obtain the following governing equation under
the same set of normalizations previously employed:

2 2
v§%+n:%%+%via2. ©)
For convenience, we split the derivatives of the ponderomo-
tive term on the right-hand side into longitudinal and perpen-
dicular components.

We now proceed to reduce Eqs. (4) and (6) into a simpler
and more amenable form for numerical and analytical inves-
tigations, avoiding underdense approximations where the
velocity of the laser pulse is approximated by the speed of
light.

Eq. (6) suggests a convenient combination of fields a* and
n into a new quantity ¢ = vﬁ n — a*/2, which we call the
space-charge potential. Accordingly, regrouping of terms in
Egs. (3) and (5) so as to replace v§ n — a*/2 with ¢, yields
the following coupled equations for the laser field and for
the space-charge potential, respectively:

&a 1 K
Ka—€:8a+v—2(pa+ﬁa3—Via, (7
14 8
o 1 1 1
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The pair of Eqgs. (7) and (8) casts itself into the convenient
format we were looking for. If the transverse structure is neg-
lected, the set becomes similar to models analyzed in the past
(Mofiz & de Angelis, 1985). Under this planar condition, one
can think of Egs. (7) and (8) as describing the coupled non-
linear dynamics of fields a and ¢ as a function of the co-
moving coordinate & which plays the role of time. With
the transverse structure included, the set of Eqgs. (7) and (8)
describes the weakly nonlinear full spatio-temporal inter-
action of laser and space-charge field. Coordinate  can still
be seen as time, and space is associated with the transverse
structure itself. We also point out that, in the present
regime where fields depend on time through the co-moving
coordinates, the presence of the nonparaxial derivative with
respect to § in Eq. (7) is the chiefly responsible for advancing
the laser field in time.

2.2. Beam geometry, Boundary Conditions and the
Linearized Model

We first of all observe that solutions to the nonlinear Eqgs. (7)
and (8) depend on the geometry of the beam. In the present
investigation, we adopt a slab geometry where the beam is
uniform along one transverse cartesian axis, say z, and is
localized along the other one, which we call x,. This
option avoids issues related to the inherent singularities at
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the axis of a cylindrical beam, but is nevertheless qualitat-
ively similar to the cylindrical case if one looks at the half
space x; > 0, provided that the beam is symmetrical with re-
spect to x;, = 0.

In summary, we require that all fields are even functions of
the transverse coordinate x |, vanishing as Ix | — co.

With the geometry and boundary conditions thus defined,
we can make progress toward the solution as we note that the
linearized version of set (7) and (8)

&%a
= -V2a, )
Po 1
2 Tae=0 (10)
4

has an analytical solution. ¢ indeed oscillates with linear
frequency 1/v, while a can be resolved as

aler, © = apel (€4 ] cos(L\/%E), (11)

if one Fourier analyzes Eq. (9) along its transverse coordinate
x, and considers a general, initially static condition expres-
sing the idea of localization or focusing: a(x,, §=0) = ag
e‘“i, from where one can clearly see that the dimensional
version of A has the same dimension of 1/x>. Here we take
0 =0 for simplicity, but this condition suffices for future
purposes.

Eq. (9) is an elliptic equation similar to the Laplace
equation, and its solution, Eq. (11), exhibits the expected
exponentially growing behavior along & with the character-
istic scale given by & = \/K/_}\ As nonlinear terms are
added to the model, the exponential growth is likely to be sa-
turated at some point. Our interest in what follows is to un-
derstand the competing roles of nonlinearity and the
intrinsic exponential growth associated with the linear
approximation. For further purposes, we point out that the
exponential growth along the beam frame coordinate & can
be seen as a spatio-temporal growth in the laboratory
coordinates.

To conclude this section, we simply emphasize that the set
(7) and (8) represents our basic model and provides the tools
to analyze a myriad of problems, like soliton formation, wa-
kefield excitation, and laser focusing.

Among these various problems, the present paper dis-
cusses initially focused beams and their subsequent
dynamics.

3. NUMERICAL ANALYSIS OF FOCUSED BEAMS

3.1. Equilibrium Solutions

The equilibrium focused beam is the one where the beam
transversal profile does not depend on the longitudinal
“time” variable & If this is the case, one can promptly
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write down from Eq. (8) the following expression for the
space-charge potential ¢ in terms of the laser field:

1, 1
¢=—5a+ % Vid. (12)

Eq. (12) also represents the space-charge field under adia-
batic conditions, where the the plasma wave frequency is
much larger than the typical modulational frequency of the
driving laser field.

The potential ¢ thus obtained from Eq. (12) can be in-
serted into Eq. (7) to generate the following differential
equation for the equilibrium laser beam:

1 1
Via=8a— §a3 +§aV2la2. (13)

If from Eq. (13) we wish to create a radiation beam symmetri-
cal with respect to the transverse coordinate, suffice is to
work in the half-space x, >0, demanding that da/dx,
I, _, = 0 and that a(x, —o0)—0. Denoting a,, as the equili-
brium solution, the problem thus formulated admits an
analytical solution of the form

ag;alyrical — m sech (\/SXL> s (14)

when the nonlinear term containing the Laplacian is ig-
nored. We see from Eq. (14), for instance, how both ampli-
tude and transverse length at equilibrium scale with the
detuning §. In particular, since § defines the field amplitude,
the frequency and wave vector of the carrier are related by a
nonlinear dispersion relation, as alluded to earlier. The de-
tuning § (whose dimensional version has the same dimen-
sion of 1/x%), can also be seen as playing the role of the
length scale \ at equilibrium.

The analytical solution is far from being inaccurate, be-
cause the discarded term leading to it is small. However,
since we shall be dealing with unstable equations in the
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Fig. 1. (Color online) Plots of a,,(x,) versus x, for various values of the
detuning factor §.
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dynamics, it is recommended that all terms be kept. With
all terms included, we take the following numerical pro-
cedure to construct solutions. Imposing the zero derivative
condition at x, = 0, we search for an initial amplitude ay =
a(x, = 0) that causes a to asymptotically approach zero as
x, grows. The numerically found solutions will tend to
and stay close to zero for a long stretch along the x, -axis,
but will eventually depart from this smallness condition.
Numerical accuracy can be improved if we work out the
digits of ag in such a way that the solutions asymptotically
stay close to a = 0 for increasingly longer stretches.

In Figure 1, we display a series of curves of a,, (x,)
versus x, for different values of the detuning parameter 9,
the only control parameter present in the equilibrium
equation (14). The detuning § must be positive to generate
a nontrivial solution, but small to guarantee smallness of
field a.q. We nevertheless see from Figure 1 that even for
small detunings, the field profile largely varies with their
exact values. As one moves from smaller to larger values
of §, the profiles become sharper, with larger amplitudes
and narrower widths.

Once the equilibrium solutions have been found, we are in
position to investigate the system behavior when initial con-
ditions are launched in the neighborhood of these equilibria
regimes. In other words, how does a mismatched radiation
beam evolve as a function of beam-frame coordinate £? We
address this issue as our next section.

3.2. Simulations of the Spatio-temporal Dynamics

3.2.1. Initial Remarks and the Linear Dynamics

Before entering in the study of the complete system, one
should perhaps conduct a test comparing the analytical sol-
ution provided by Eq. (11) with simulations of the linear ver-
sion of Eqgs. (7) and (8). This first test helps to tune up
simulation parameters, so that the corresponding results
become as accurate as possible. We point out that this kind
of test is important, given the fact that the elliptic nature of
our system demands high numerical precision.

Simulations make use of a uniform mesh along x, to
evaluate the corresponding Laplacian with finite differences.
The fields at each node are advanced in § with an adaptive
Runge-Kutta time integrator. We use N = 256 to N = 1024
nodes, along with a tolerance factor of 10_”), and the differ-
ences are minimal. The simulation shown in Figure 2a was
done with N =512 and indeed displays nice agreement
with the analytical results of corresponding panel (b). We
also use A =0.0001 and a slightly underdense case k =
0.5. Note that in the regime we are investigating, the forward
moving wave front is located at £ = 0 and we look at fields
behind it with § < 0. This is why we represent the “time”
in terms of its absolute value IEl. Note that although we
work in a underdense regime, the typical underdense
approximation v, — c is totally avoided, as promised in our
introductory remarks.
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Fig. 2. (Color online) Comparing the space-time simulation code as applied to Eq. (10), panel (a), with the corresponding analytical result

provided by Eq. (9), panel (b). We take A = 0.0001 and k = 0.5.

3.2.2. Matched Beams

Attention is next drawn toward the nonlinear spatio-temporal
case. In our first look into the problem, we use the equilibrium
solution yielded by the solution of Eq. (12) as the initial con-
dition for our simulations based on Egs. (7) and (8). The corre-
sponding results are shown in Figure 3. One sees that the
profile indeed remains unaltered for periods of time longer
than the time scale &* defined in the context of Eq. (11),
which in our dimensionless form reads approximately &* ~
70 for the simulation parameters § = 0.0001, vﬁ =0.5 used
here to illustrate the study. The growth scale is even shorter
if one adds the destabilizing effects of the positive detuning
absent in Eq. (11) but present in Egs. (7) and (13)—the scale
drops to & ~ 50. This fact suggests that the code, with all its
nonlinear terms, remains robust against the known instabilities
of the elliptic problem. As seen from our normalizations and
from the approximate expression for equilibrium furnished
by Eq. (13), the choice § = 0.0001 defines transverse length
scales containing around 100 plasma wavelengths.
This choice is quite compatible with experimental set-ups
(Jha et al., 2010) and shall be used throughout the paper.

3.2.3. Mismatched Beams

We finally address issues concerning the behavior of initially
mismatched radiation beams. As we start off from

Fig. 3. (Color online) Testing the numerical code in equilibrium regimes.
Here we take § = 0.0001 and k = 0.5.

nonequilibrium initial conditions, the interest is to see
whether or not beams remain nearly focused if the initial mis-
matches are relatively small. In other words, a stability analy-
sis shall be performed here.

We had observed earlier that the linear version of our basic
set is unstable in the sense that Eq. (9) predicts exponential
growth for a(x ,, &) as & advances. The reflex of this feature
on the stability of equilibrium solution comes out as follows.
If one takes the equilibrium solution a,,, for the laser field and
perturb it with a small fluctuation @ displaying sufficiently
strong dependence on the transverse coordinate x,, the
equation governing @ takes approximately the linear form
already seen in Eq. (9):

D~
0a 2~

e -V2a. (15)

Small perturbations thus grow with &, the signature of an
unstable process. Even fields with more smoothly depen-
dence on x, have spectral components at high values of
the respective wave vector, so we expect instability in general,
and not only when the dominant length scale of the pertur-
bation is short.

The growing solution is eventually saturated by the non-
linear terms of the full set of equations, and we now attempt
to offer a view of the whole process.

In Figure 4, we display several panels analyzing the time
evolution of fields a and ¢ at various time scales along the
¢ axis. The initially mismatched beam is written in the form

a(-xL7 E = 0) = aeq(st E = 0) + eaeq(XxL, E = 0)9 (16)

with ¢(x,, &£ =0) = ¢,,. Fields a,, and ¢, are the equili-
brium fields obtained in the previous subsection, e<K1 is a
small parameter measuring the strength of the perturbing
term, and ¥ is a scale factor indicating the dominant length
scale of the perturbing term. Larger values x > 1 represent
shorter transversal scales as compared to that of the equili-
brium profile, and vice-versa. Let us consider 6 = 0.0001,
x =10, and € =0.2 in all cases of Figure 4, with x = 0.5
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Fig. 4. (Color online) Full space-time history for the mismatched radiation beams at various time scales along the & axis, both in higher and
lower density conditions. Panels (a) to (c¢) refers to laser amplitude in the higher density case k = 0.5, and panels (d) to (f) to the laser
amplitude in a low density underdense case k = 0.01. In panels (g) and (h) the space-charge potential ¢ is shown for k = 0.01;
the actual potential in panel (g) follows the adiabatic dynamics of panel (h) only up to point where the beam breaks up. In all cases
§=0.0001 and x = 10.

for the first three panels, (a) to (c), and a more deeply under-
dense regime with k = 0.01 for the last five panels (d) to (h).
At the short times of panel (a) one can identify the exponen-
tial growing pattern typical of the linear regime for the laser
field. Panel (b) still displays growing solutions and panel
(c) finally reveals the saturation process following strong fo-
cusing near x, = 0. As the initially growing mismatched sol-
ution reaches saturation, the beam breaks up into a seemingly
irregular space-time pattern of beamlets and any coherence is
lost. One sees that within the time scale displayed in Figure 4,
the largest field amplitudes a lie quite within the weakly non-
linear regimes of laser wakefield accelerator settings (Mora &
Antonsen, 1997). For longer times the irregular pattern

progresses on, accompanied by spikes whose amplitudes lie
beyond our weakly nonlinear assumptions.

Panels (d) to (f) represent a low-density case with k =
0.01, which is more akin to underdense settings of wakefield
accelerators, for instance. The laser patterns are similar to the
previous case, but now one can notice that the development
of the instability is much faster than the one seen in the k =
0.5 case. Indeed, the scalings suggested in Eq. (6) indicate
that, keeping the same initial profile (same A), instability
for the smaller value of k should be approximately seven-fold
faster than the one for the larger value.

In panels (g) and (h), we respectively compare the actual
space-charge potential ¢ with its adiabatic approximation,
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let us call it ¢, earlier discussed in the context of Eq. (12).
Given the initial smoothness of the radiation beam it is seen
that the actual space-charge field initially follows an adia-
batic dynamics, but only up to the point where the beam
breaks up into the series of beamlets. Afterward the time
scales for the wakes become comparable to the plasma
wave scales. We use k = 0.01 in panels (g) and (h).

As we mentioned, the above study for x = 10 represents
those cases where initial mismatches have shorter length
scales if compared to the length scale of the equilibrium pro-
file. We commented that perturbations with longer length
scales also grow, but still, it may be interesting to pinpoint
the differences between the latter and former cases. The sub-
ject is examined in Figure 5, where we plot of curves of
a(x, =0, & versus £ for mismatched beams of the form
given by Eq. (16). The cases x =10 and x = 0.5 are com-
pared for k = 0.01, with all the remaining parameters as pre-
viously. Short length scales display the more conventional
behavior of unstable cases: as the perturbation is created,
the corresponding solution simply grows away from the equi-
librium solution. However, when the long length scale rep-
resented by x = 0.5 is considered, the mismatched solution
is initially attracted by the equilibrium and only then
moves away as seen in the inset. The remarkable fact is
that mismatches with long length scales behave like stable
perturbations until one reaches the time scale of exponential
growth, where the initial solution depart from the vicinity of
equilibrium.

4. CONCLUSIONS

The present paper was devoted to the study of focused laser
beams in laser-plasma nonlinear interactions.

We first developed the model and obtained the associated
equations governing beam evolution in the co-moving beam
frame. Nonparaxial terms were fully preserved, and care was
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Fig. 5. (Color online) Dependence of the dynamical behavior on the mis-
match scale . Longer scales tend to be display slower growths.
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taken to avoid underdense approximations where the group
velocity of the radiation field is approximated by the speed
of light in vacuum. With the resulting formalism, we investi-
gated equilibrium conditions and space-time dynamics alike,
all for arbitrary plasma densities.

We first observed that equilibrium beams display profiles
that depend on the detuning factor §. Similarly to the case of
one-dimensional electromagnetic solitons, larger detunings
correspond to higher amplitudes and narrower widths. We
also observed that mismatched (or nonequilibrium) beams
develop instabilities that are saturated by the nonlinear effects
of the theory. The growth of the instabilities depend on de-
tails of the initial perturbation: long wavelength perturbations
tend to display slower growths than short wavelength
perturbations.

In general, we commented earlier that the factor k = 1 — v;
combines with the transverse length scale 1/ to the form the
“time” scale \/K/_)\ for perturbations growing along the  axis.
This means that lower density systems tend to evolve in time
in a faster fashion than higher density ones as seen in the
simulations. Even beams with smooth transversal profiles
are subject to a relatively fast dynamics in sufficiently under-
dense conditions. If one takes, for instance, a beam with
reasonable transverse size ~50 wn and plasma wavelength
~0.5 wm, one falls close to the numerical parameters dis-
cussed in the paper. In this case, if x ~0.01, one should
see appreciable mismatched beam evolution within a few
plasma wavelengths.

The initial conditions examined in the present work corre-
spond to focused laser beams. However, as mentioned ear-
lier, the present formalism can also tackle other types of
initial conditions. One can, for instance, excite localized radi-
ation bumps along the longitudinal axis and examine wake-
field generation as these bumps move into the plasma. The
relevance of this problem is well documented and a full
investigation shall be reported in the near future.
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