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The nonlinear electron dynamics in metallic nanoparticles is studied using a hydrodynamic model that
incorporates most quantum many-body features, including spill-out and nonlocal effects as well as electron
exchange and correlations. We show that, by irradiating the nanoparticle with a chirped laser pulse of modest
intensity (autoresonance), it is possible to drive the electron dynamics far into the nonlinear regime, leading to
enhanced energy absorption and complete ionization of the nanoparticle on a time scale of the order of 100 fs.

The accompanying radiated power spectrum is rich in high-order harmonics.
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Introduction. Metallic nanoparticles [1] are mesoscopic
systems composed of a relatively small number of atoms, typi-
cally between a few tens and several millions. With properties
that are intermediate between those of molecules and bulk
solids, metallic nanoparticles present an intrinsic fundamental
interest as large objects that still display quantum features [2—
5]. Their potential technological applications are far reaching,
ranging from the recent field of nanophotonics [6,7] to physical
chemistry [8], and even biology and medicine [9,10].

Experimentally, the electron dynamics in a metallic
nanoparticle can be probed with great precision using ultrafast
spectroscopy techniques in the femtosecond regime [11,12].
From the theoretical point of view, the linear response has been
the object of intense investigations in the past decades [13,14].
In contrast, the nonlinear regime is much harder to assess
using many-body approaches such as the time-dependent
density functional theory (DFT) [15,16] or Wigner function
methods [17,18]. A possible alternative relies on the use of
macroscopic models based on a set of quantum hydrodynamic
(QHD) equations [19,20], which were successfully used
in the past to model the electron dynamics in molecular
systems [21], metallic nanoparticles [22-25], thin films [26],
and semiconductor quantum wells [27].

A further degree of simplification can be achieved by
means of a variational approach [24], which expresses the
QHD model in terms of a Lagrangian function. By postulating
a reasonable ansatz for the electron density, it is possible
to obtain a set of ordinary differential equations for some
macroscopic quantities, such as the center of mass and the
radial extension of the electron gas.
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Using this approach, we will study the dynamics of
collective electron modes (surface plasmons) excited with laser
pulses in the visible range. Using chirped pulses with slowly
varying frequency (autoresonance), it is possible to drive the
plasmon mode far into the nonlinear regime, leading to the
emission of electromagnetic radiation with a power spectrum
rich in high-order harmonics.

The autoresonant technique [28-32] is very flexible
and efficient—the required laser intensities are modest
(~10'" W/cm?) and no feedback mechanism is needed to
match the driving frequency with the oscillator frequency.
Further, this technique is expected to work even in the case
of nanoparticles of unequal sizes, which is the most common
situation in the experiments [33]. Thus the electron response
of an assembly of metallic nanoparticles could be excited well
into the nonlinear regime, leading to a dramatic increase of the
absorbed energy.

Quantum hydrodynamic model. In order to study the
electron dynamics in a metal nanoparticle, we make use of a
QHD model [19,20] that governs the evolution of the electron
density n(r,t), mean velocity u(r,7), and pressure P(r,t). The
QHD equations read as (all quantities are expressed in atomic
units unless otherwise stated)
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Equation (1) is the continuity equation representing con-
servation of mass, while Eq. (2) is an Euler equation that
provides the evolution of the mean velocity under the action of
the forces that appear on the right-hand side. The mean-field
part of the electron-electron interactions is taken into account
by the Hartree potential Vy, which obeys Poisson’s equation:
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V2Vy = 4w (n — n;), where n; is the ion density. The potential
Vx represents the exchange interaction:

37.[2 1/3
( ) n 1/3
g 3

where the first term is the local density approximation (LDA)
and the other two terms constitute a gradient correction.
The prefactor 8 is a free parameter that we set equal to
B = 0.005, which is a best fit frequently used in atomic-
structure calculations [34]. For P, we use the expression
of the Fermi pressure for a zero-temperature electron gas:
P = (3n2)**n>3/5. The last term (Bohm potential) takes
into account quantum diffraction effects. Note that the Bohm
potential and the exchange gradient correction are nonlocal
effects. The details of the derivation of the QHD model can be
found in Ref. [20].

Correlation effects have been ignored so far, but will be
included later in the form of a density-dependent correlation
potential V¢[n(r,t)]. In practice, they yield only minimal
corrections.

We shall consider spherical gold nanoparticles of radius
R, composed of N electrons and N singly ionized ions. The
ions are fixed and form a homogeneous positive charge density
equal ton; = ng = (37rr3)~! inside the nanoparticle, and zero
outside, where r; = 3.01 a.u. is the Wigner-Seitz radius of
gold.

Variational method. The hydrodynamic model (1) and (2)
can be derived from the Lagrangian density [24,27]
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This Lagrangian density depends on three scalar fields, namely
the density n(r,t), the Hartree potential Vi (r,t), and the phase
function S(r,?), which is related to the mean velocity u by the
expressionu = VS.

Our purpose is to derive, using a variational approach, a set
of differential equations for a small number of macroscopic
quantities that characterize the electron density profile [24,27].
This can be achieved by positing a reasonable ansatz for the
above scalar fields and integrating the Lagrangian density (4)
over space.

We start with the electron density, which, to a good
approximation, is flat and equal to n( inside the nanoparticle
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FIG. 1. (Color online) Schematic view of the ion and electron
densities according to (5) for different values of the spill-out
parameter oy.

(r < R) and decreases smoothly to zero near r = R (see
Fig. 1). Some electrons are present beyond the nominal radius
R, an effect know as the spill-out. In order to reproduce
qualitatively such a density profile, we assume that the electron
density has the following form:

P 3 R 3 —1
wen=afeo| () -G I o

where A is chosen to satisfy the normalization condition
Jndr=N, and s is a displaced radial coordinate defined

as s(t) = \/x2 +y2 4 [z — d(1)]*. In the above expression,
we introduced two macroscopic dynamical variables, namely
(i) the center of mass of the electron gas d(¢), which can be
displaced along the z axis, and (ii) the thickness of the spill-out
effect o (). At equilibrium d = 0 and o = op. Of course, the
above ansatz precludes the possibility to observe higher-order
modes (quadrupole, octupole). Although these modes may be
excited nonlinearly, we restrict our analysis to the lower-order
dipole and monopole (breathing) modes.

Making use of Eq. (5) together with the continuity and
Poisson equations, it is possible to obtain exact expressions
for the two other fields, S and Vg, as a function of the
dynamical variables d(¢) and o(¢). With these expressions,
we can integrate the Lagrangian density (4) over space in
order to obtain the Lagrangian function L(d ,a,d ,0), wWhere
a dot denotes differentiation with respect to time. The
integration can be performed analytically only by expanding
the Lagrangian in a power series in the variable d/R. We
obtain, up to order O(d5 / R3 ),

Q2(0)d>

St K (o)d*, (6)

where a = exp(—R> /003) and M(a) > 0 is a fictitious mass. The functions 22,(c) and K (o), which are both positive definite,
correspond respectively to the second- and fourth-order terms in the development of the electron-ion interaction energy. The
pseudopotential U (o) is a complicated function expressed as the sum of many integral terms, which possesses a single minimum
located at 0. All the details of the calculations leading to Eq. (6) are provided in the Supplemental Material [35].
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Using the Euler-Lagrange equations for L, we obtain the following coupled equations of motion:
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which describe respectively the breathing and dipole
oscillations.

In summary, we have reduced the formidable problem of
the quantum electron dynamics in a metallic nanoparticle
to a simple set of two coupled differential equations, which
can be easily solved even for large systems containing many
electrons, where DFT methods are too costly. No assumptions
of linearity were made so far, so that Eqgs. (7) and (8) can
be used to study the nonlinear response (as long as d is
not too large). Further, compared to simple “rigid sphere
models” [36], our approach incorporates many more effects,
including quantum nonlocality, spill-out, exchange, and (as
shown later) correlations [37].

Ground state and linear response. In order to validate the
above model, we first present an analysis of the ground state
and linear response of the system, for which well-established
results, both theoretical and experimental, already exist. The
ground state of the system is obtained by setting the time
derivatives equal to zero in Egs. (7) and (8). Equation (8) is
satisfied automatically for d = O (i.e., the centers of mass of
the ions and the electrons should coincide). Setting d = 0 in
Eq. (7), the stable equilibrium is the value oy that minimizes
the pseudopotential U (o). For instance, for a gold nanoparticle
with N = 200, we find a diameter 2R = 2r,N'/3 = 1.86 nm
and spill-out width oy = 0.44 nm (more values are given in
the Supplemental Material [35]).

In the linear response regime, one can identify two elec-
tronic modes, corresponding to oscillations of ¢ (¢) (breathing
mode) and oscillations of d(¢) (dipole, or surface plasmon,
mode). We first consider the breathing mode. Setting d = 0
in Eq. (7) and expanding U (o) around oy up to first order,
we obtain M(a)6 = —U"(0p)(0 — 0p). The linear breathing
frequency is therefore 2, = /U"(0¢p)/M (a), which can be
easily evaluated numerically.

For the dipole mode, assuming that 0 = 0y and d < R,
Eq. (8) yields immediately the linear dipole frequency £2,(oy).
For large nanoparticles, the latter tends to the bulk Mie
frequency [1,38] wmie = a)p/ﬁ (where w, = +/4mny is the
plasmon frequency), as can be checked directly by taking the
limit R /oy — o00.

In general, both the dipole and breather frequencies should
depend on the size of the nanoparticle in the following
fashion [39—41]: Qu,(N) = Quo(l — kg, N™'/3), where kg,
are positive constants, and €2, is equal to wye for the dipole
mode and to w,, for the breathing mode. Our model reproduces
very well these scalings, as can be seen from Fig. 2. The
extrapolation at N — oo gives the Mie or plasmon frequency
for the bulk.

27N Ra exp(R3/a3)d4 [1—a exp(R3/c73)]R3 +2[1+a exp(R3/a3)]o3 } )

[1+a exp(R3/c3)]?
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Correlations. Electron correlations can be introduced
through an appropriate functional of the density. Here, we
use the functional proposed by Brey et al. [42], which yields
the following correlation potential: Ve = —y In[1 + 8n'/3],
with y = 0.03349 and § = 18.376. This potential can be
included in our Lagrangian formalism (details are given in
the Supplemental Material [35]). For all the cases we studied,
the effect of the correlations was almost negligible, as can
be seen from Fig. 2. Indeed, a quick estimate shows that
the ratio between the exchange (LDA) and the correlation
potentials is very small, V¢ /Vx 1pa = 0.084. This is also in
agreement with early results obtained with DFT and Hartree-
Fock methods [43].

Nonlinear response and autoresonant excitation. We now
turn our attention to the excitation of the electron dynamics by
means of electromagnetic waves (laser pulses). First, it should
be noted that the relevant linear frequencies computed in the
preceding section are of the order of a few electron volts.
For instance, for N = 200, 2, = 0.1841 a.u. = 5 eV. These
frequencies fall within the visible or near-ultraviolet (UV)
spectrum, which is encouraging since visible and near-UV
lasers are commonly employed in ultrafast optics experiments.
For such lasers, the wavelength is several hundred nanometers
long, i.e., much larger than the size of a typical metallic
nanoparticle. This means that the laser pulse can only couple
to the dipole mode.

We assume that the electron gas in the nanoparticle is
excited via an oscillating electric field directed along the z
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FIG. 2. (Color online) Linear dipole (a) and breathing (b) fre-
quencies for gold nanoparticles as a function of N~!/3. Blue circles
and red squares represent respectively the results with and without
correlations. The straight lines are linear fits.
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axis, E = E,(t)e,. The effect of the laser can be included by
adding a term E.d to the Lagrangian L. If the laser frequency
is equal to the dipole frequency, the excitation is resonant: the
dipole oscillations grow initially, but then decrease after some
time. This is because the effective dipole force is not harmonic
and the resonant frequency actually depends on the amplitude
of the oscillations.

The above limitation can be overcome by resorting to
autoresonant excitation [28]. Basically, autoresonance occurs
when a classical nonlinear oscillator is externally excited
by an oscillating field with slowly varying frequency. In
our notation, E.(t) = Eqcos [Qq4(t — ty) + a(t — 19)*], where
Ey is the excitation amplitude, 7y is the time when the
instantaneous frequency of the laser is equal to the linear
frequency of the dipole mode, and « is the rate of variation of
the laser frequency. For |o| « in and E, above a certain
threshold, the instantaneous oscillator frequency becomes
“locked” to the instantaneous excitation frequency, so that
the resonance condition is always satisfied. In that case, the
amplitude of the oscillations grows indefinitely and without
saturation, until of course some other effect kicks in. The
threshold behaves as E(‘)h ~ |a|3/*, so that the amplitude can
be arbitrarily small provided that the external frequency varies
slowly enough [28].

In Fig. 3, we display the results of an autoresonant
excitation of the electron gas, for two realistic (but still very
modest) [44] values of the laser intensity Iy = %cso|E0|2 that
are either below or above the autoresonant threshold. For an
intensity Iy = 4.5 x 10'0 W/cm2 [below threshold, Fig. 3(a)],
the dipole oscillations grow initially and then saturate at a
rather low level. Figure 3(c) shows the instantaneous laser
frequency and the dipole frequency of the electron gas. The
two frequencies stay close together initially, but then diverge
for the below-threshold case.
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FIG. 3. (Color online) Autoresonant excitation of a gold
nanoparticle with N = 200, for two values of the laser intensity,
Iy =4.5 x 10" W/cm? (below threshold, red curves) and I, =
5.4 x 10' W/cm? (above threshold, blue curves). The top panels
show the time evolution of the dipole d(¢) (a) below threshold and
(b) above threshold. (c) Laser frequency (black straight line) and
instantaneous dipole frequency of the electron gas for the below
threshold (red) and above threshold (blue) cases. (d) Energy absorbed
by the electron gas, for both cases.
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In contrast, when Iy =5.7 x 10' W/cm? (just above
threshold), the amplitude of the dipole oscillations increases
virtually without limits, reaching 80% of the size of the
nanoparticle [Fig. 3(b)]. Thus, in practice, all the electrons
have been ejected from the nanoparticle (although they are
still accounted for by our dynamical model) on a time scale
of the order of a few hundred femtoseconds. The laser and
the electron gas frequencies are locked in resonance during
the entire duration of the simulation [Fig. 3(c), blue line],
which is the hallmark of the autoresonant excitation. This leads
to strongly enhanced absorption of the laser energy by the
nanoparticle, as is evident from the plot of the total absorbed
energy in Fig. 3(d).

It must be noted that, since we expanded the Lagrangian
in d/R, the force acting on the dipole in Eq. (8) becomes
repulsive for d exceeding a certain value dp,x (Which depends
on o), thus making the model invalid for d > dp,x. This value
reaches its minimum for o ~ oy, where dp.x >~ 0.65R. Even
with this limitation, our simulations constitute a clear proof of
principle that strongly nonlinear plasmon modes can be excited
using an autoresonant laser pulse of relatively low intensity.

It is also interesting to compute the total power radiated
by the electron gas, for cases above and below the critical
threshold. Far from the nanoparticle, the electron gas can be
viewed as an electric dipole of charge —Ne and displacement
d(t) oscillating along the z axis. In this case we can apply
the Larmor formula [45] for the total radiated power: P(t) =
e?/(6meoc™)|d(1)].

Below threshold, the total power spectrum P(w) is localized
around the surface plasmon frequency [Fig. 4(a)]. In contrast,
the spectrum is rich in high-order harmonics in the above-
threshold regime [Fig. 4(b)], for which the electron gas
explores the nonlinear part of the confining potential [46].
Such difference in the observed spectrum could be used as
an experimental signature to assess the effectiveness of the
autoresonant excitation. High-harmonic generation is also a
crucial issue for the production and shaping of attosecond
laser pulses [47].

Conclusion. We showed that by irradiating a metallic
nanoparticle with an autoresonant chirped laser pulse, it
is possible to drive the collective electron modes (surface

(@ (b)
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1 0-5 i| ‘l T T T T T

12 3 4 2 4 6 8 10
Frequency/ (2 Qq) Frequency/ (2 Qqg)

FIG. 4. Frequency spectrum of the total radiated power in a gold
nanoparticle with N = 200, for two cases, below the autoresonance
threshold (a) and above the threshold (b).
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plasmons) far into the nonlinear regime, leading to enhanced
energy absorbtion and complete ionization of the nanoparticle
on a time scale of the order of 100 fs. Thanks to the
autoresonant technique, the required laser intensity is rather
modest (~ 10'® W/cm?). Such enhanced absorption may be
used, for instance, to improve the efficiency of nanoparticle-
based radiotherapy [10].

The autoresonant mechanism is extremely flexible, since
it requires no feedback as in usual control theory. Further,
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the laser does not need to be perfectly matched to the linear
frequency (the only requirement is that the linear frequency
be crossed during the excitation). This feature means that
a whole assembly of nanoparticles [33] could be excited
autoresonantly, even if they have different sizes and thus
different plasmon resonances.

Acknowledgments. We thank the Agence Nationale de la
Recherche, project Labex “Nanostructures in Interaction with
their Environment,” for financial support.

[1] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters
(Springer, Berlin, 1995).

[2] J. A. Scholl, A. L. Koh, and J. A. Dionne, Nature (London) 483,
421 (2012).

[3] Y. Luo, A. I. Fernandez-Dominguez, A. Wiener, S. A. Maier,
and J. B. Pendry, Phys. Rev. Lett. 111, 093901 (2013).

[4] M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier,
and M. S. Kim, Nature Phys. 9, 329 (2013).

[5] S. Raza et al., Nanophotonics 2, 131 (2013).

[6] M. L. Stockman, Phys. Today 64, 39 (2011).

[7] A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J.
Wiley, A. Chilkoti, and D. R. Smith, Nature (London) 492, 86
(2012).

[8] M.-C. Daniel and D. Astruc, Chem. Rev.
(2004).

[9] T. Endo et al., Anal. Chem. 78, 6465 (20006).

[10] J. F. Hainfeld, D. N. Slatkin, and H. M. Smilowitz, Phys. Med.
Biol. 49, N309 (2004).

[11] J.-Y. Bigot, V. Halté, J.-C. Merle, and A. Daunois, Chem. Phys.
251, 181 (2000).

[12] C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E.
Cottancin, J. Lermé, M. Pellarin, and M. Broyer, Phys. Rev.
Lett. 85, 2200 (2000).

[13] W. Ekardt, Phys. Rev. B 31, 6360 (1985).

[14] C. Guet and W. R. Johnson, Phys. Rev. B 45, 11283
(1992).

[15] F. Calvayrac, P.-G. Reinhard, E. Suraud, and C. Ullrich, Phys.
Rep. 337, 493 (2000).

[16] T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov,
Phys. Rev. Lett. 110, 263901 (2013).

[17] O. Morandi, J. Phys. A: Math. Theor.
(2010).

[18] R. Jasiak, G. Manfredi, and P.-A. Hervieux, New J. Phys. 11,
063042 (2009).

[19] F. Haas, Quantum Plasmas: An Hydrodynamic Approach
(Springer, Berlin, 2011).

[20] G. Manfredi and F. Haas, Phys. Rev. B 64, 075316 (2001).

[21] M. Brewczyk, K. Rzazewski, and C. W. Clark, Phys. Rev. Lett.
78, 191 (1997).

[22] A. Banerjee and M. K. Harbola, J. Chem. Phys. 113, 5614
(2000).

[23] A. Domps, P.-G. Reinhard, and E. Suraud, Phys. Rev. Lett. 81,
5524 (1998).

104, 293

43, 365302

[24] G. Manfredi, P. A. Hervieux, and F. Haas, New J. Phys. 14,
075012 (2012).

[25] C. Ciraci, J. B. Pendry, and D. R. Smith, Chem. Phys. Chem.
14, 1109 (2013).

[26] N. Crouseilles, P.-A. Hervieux, and G. Manfredi, Phys. Rev. B
78, 155412 (2008).

[27] F. Haas, G. Manfredi, P. K. Shukla, and P.-A. Hervieux, Phys.
Rev. B 80, 073301 (2009).

[28] J. Fajans and L. Friedland, Am. J. Phys. 69, 1096 (2001).

[29] W. K. Liu, B. Wu, and J. M. Yuan, Phys. Rev. Lett. 75, 1292
(1995).

[30] J. Fajans, E. Gilson, and L. Friedland, Phys. Rev. Lett. 82, 4444
(1999).

[31] K. W. Murch et al., Nature Phys. 7, 105 (2011).

[32] G. Manfredi and P. A. Hervieux, Appl. Phys. Lett. 91, 061108
(2007).

[33] C. N. Ramachandra Rao, G. U. Kulkarni, P. John Thomas, and
P. P. Edwards, Chem. Soc. Rev. 29, 27 (2000).

[34] A. D. Becke, Phys. Rev. A 38, 3098 (1988).

[35] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.89.161111 for all the details of the calcu-
lations (including electron correlations) and the raw numerical
data.

[36] M. Kundu and D. Bauer, Phys. Rev. Lett. 96, 123401 (2006).

[37] R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat.
Commun. 3, 825 (2012).

[38] G. Mie, Ann. Phys. (Leipzig) 330, 377 (1908).

[39] C. Bréchignac, P. Cahuzac, J. Leygnier, and A. Sarfati, Phys.
Rev. Lett. 70, 2036 (1993).

[40] J. G. Aguilar et al., Int. J. Quantum. Chem. 61, 613 (1997).

[41] T. Reiners, C. Ellert, M. Schmidt, and H. Haberland, Phys. Rev.
Lett. 74, 1558 (1995).

[42] L. Brey, J. Dempsey, N. F. Johnson, and B. 1. Halperin, Phys.
Rev. B 42, 1240 (1990).

[43] M. Madjet, C. Guet, and W. R. Johnson, Phys. Rev. A 51, 1327
(1995).

[44] M. Maier, G. Wrigge, M. Astruc Hoffmann, P. Didier, and B. v.
Issendorff, Phys. Rev. Lett. 96, 117405 (2006).

[45] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1998).

[46] J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin,
and P. F. Brevet, Phys. Rev. B 71, 165407 (2005).

[47] F. Krausz and M. Ivanov, Rev. Mod. Phys. 81, 163 (2009).

161111-5


http://dx.doi.org/10.1038/nature10904
http://dx.doi.org/10.1038/nature10904
http://dx.doi.org/10.1038/nature10904
http://dx.doi.org/10.1038/nature10904
http://dx.doi.org/10.1103/PhysRevLett.111.093901
http://dx.doi.org/10.1103/PhysRevLett.111.093901
http://dx.doi.org/10.1103/PhysRevLett.111.093901
http://dx.doi.org/10.1103/PhysRevLett.111.093901
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1038/nphys2615
http://dx.doi.org/10.1515/nanoph-2012-0032
http://dx.doi.org/10.1515/nanoph-2012-0032
http://dx.doi.org/10.1515/nanoph-2012-0032
http://dx.doi.org/10.1515/nanoph-2012-0032
http://dx.doi.org/10.1063/1.3554315
http://dx.doi.org/10.1063/1.3554315
http://dx.doi.org/10.1063/1.3554315
http://dx.doi.org/10.1063/1.3554315
http://dx.doi.org/10.1038/nature11615
http://dx.doi.org/10.1038/nature11615
http://dx.doi.org/10.1038/nature11615
http://dx.doi.org/10.1038/nature11615
http://dx.doi.org/10.1021/cr030698+
http://dx.doi.org/10.1021/cr030698+
http://dx.doi.org/10.1021/cr030698+
http://dx.doi.org/10.1021/cr030698+
http://dx.doi.org/10.1021/ac0608321
http://dx.doi.org/10.1021/ac0608321
http://dx.doi.org/10.1021/ac0608321
http://dx.doi.org/10.1021/ac0608321
http://dx.doi.org/10.1088/0031-9155/49/18/N03
http://dx.doi.org/10.1088/0031-9155/49/18/N03
http://dx.doi.org/10.1088/0031-9155/49/18/N03
http://dx.doi.org/10.1088/0031-9155/49/18/N03
http://dx.doi.org/10.1016/S0301-0104(99)00298-0
http://dx.doi.org/10.1016/S0301-0104(99)00298-0
http://dx.doi.org/10.1016/S0301-0104(99)00298-0
http://dx.doi.org/10.1016/S0301-0104(99)00298-0
http://dx.doi.org/10.1103/PhysRevLett.85.2200
http://dx.doi.org/10.1103/PhysRevLett.85.2200
http://dx.doi.org/10.1103/PhysRevLett.85.2200
http://dx.doi.org/10.1103/PhysRevLett.85.2200
http://dx.doi.org/10.1103/PhysRevB.31.6360
http://dx.doi.org/10.1103/PhysRevB.31.6360
http://dx.doi.org/10.1103/PhysRevB.31.6360
http://dx.doi.org/10.1103/PhysRevB.31.6360
http://dx.doi.org/10.1103/PhysRevB.45.11283
http://dx.doi.org/10.1103/PhysRevB.45.11283
http://dx.doi.org/10.1103/PhysRevB.45.11283
http://dx.doi.org/10.1103/PhysRevB.45.11283
http://dx.doi.org/10.1016/S0370-1573(00)00043-0
http://dx.doi.org/10.1016/S0370-1573(00)00043-0
http://dx.doi.org/10.1016/S0370-1573(00)00043-0
http://dx.doi.org/10.1016/S0370-1573(00)00043-0
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1103/PhysRevLett.110.263901
http://dx.doi.org/10.1088/1751-8113/43/36/365302
http://dx.doi.org/10.1088/1751-8113/43/36/365302
http://dx.doi.org/10.1088/1751-8113/43/36/365302
http://dx.doi.org/10.1088/1751-8113/43/36/365302
http://dx.doi.org/10.1088/1367-2630/11/6/063042
http://dx.doi.org/10.1088/1367-2630/11/6/063042
http://dx.doi.org/10.1088/1367-2630/11/6/063042
http://dx.doi.org/10.1088/1367-2630/11/6/063042
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1103/PhysRevB.64.075316
http://dx.doi.org/10.1103/PhysRevLett.78.191
http://dx.doi.org/10.1103/PhysRevLett.78.191
http://dx.doi.org/10.1103/PhysRevLett.78.191
http://dx.doi.org/10.1103/PhysRevLett.78.191
http://dx.doi.org/10.1063/1.1290610
http://dx.doi.org/10.1063/1.1290610
http://dx.doi.org/10.1063/1.1290610
http://dx.doi.org/10.1063/1.1290610
http://dx.doi.org/10.1103/PhysRevLett.81.5524
http://dx.doi.org/10.1103/PhysRevLett.81.5524
http://dx.doi.org/10.1103/PhysRevLett.81.5524
http://dx.doi.org/10.1103/PhysRevLett.81.5524
http://dx.doi.org/10.1088/1367-2630/14/7/075012
http://dx.doi.org/10.1088/1367-2630/14/7/075012
http://dx.doi.org/10.1088/1367-2630/14/7/075012
http://dx.doi.org/10.1088/1367-2630/14/7/075012
http://dx.doi.org/10.1002/cphc.201200992
http://dx.doi.org/10.1002/cphc.201200992
http://dx.doi.org/10.1002/cphc.201200992
http://dx.doi.org/10.1002/cphc.201200992
http://dx.doi.org/10.1103/PhysRevB.78.155412
http://dx.doi.org/10.1103/PhysRevB.78.155412
http://dx.doi.org/10.1103/PhysRevB.78.155412
http://dx.doi.org/10.1103/PhysRevB.78.155412
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1103/PhysRevB.80.073301
http://dx.doi.org/10.1119/1.1389278
http://dx.doi.org/10.1119/1.1389278
http://dx.doi.org/10.1119/1.1389278
http://dx.doi.org/10.1119/1.1389278
http://dx.doi.org/10.1103/PhysRevLett.75.1292
http://dx.doi.org/10.1103/PhysRevLett.75.1292
http://dx.doi.org/10.1103/PhysRevLett.75.1292
http://dx.doi.org/10.1103/PhysRevLett.75.1292
http://dx.doi.org/10.1103/PhysRevLett.82.4444
http://dx.doi.org/10.1103/PhysRevLett.82.4444
http://dx.doi.org/10.1103/PhysRevLett.82.4444
http://dx.doi.org/10.1103/PhysRevLett.82.4444
http://dx.doi.org/10.1038/nphys1867
http://dx.doi.org/10.1038/nphys1867
http://dx.doi.org/10.1038/nphys1867
http://dx.doi.org/10.1038/nphys1867
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1063/1.2761246
http://dx.doi.org/10.1039/a904518j
http://dx.doi.org/10.1039/a904518j
http://dx.doi.org/10.1039/a904518j
http://dx.doi.org/10.1039/a904518j
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://dx.doi.org/10.1103/PhysRevA.38.3098
http://link.aps.org/supplemental/10.1103/PhysRevB.89.161111
http://dx.doi.org/10.1103/PhysRevLett.96.123401
http://dx.doi.org/10.1103/PhysRevLett.96.123401
http://dx.doi.org/10.1103/PhysRevLett.96.123401
http://dx.doi.org/10.1103/PhysRevLett.96.123401
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1038/ncomms1806
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1002/andp.19083300302
http://dx.doi.org/10.1103/PhysRevLett.70.2036
http://dx.doi.org/10.1103/PhysRevLett.70.2036
http://dx.doi.org/10.1103/PhysRevLett.70.2036
http://dx.doi.org/10.1103/PhysRevLett.70.2036
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:4<613::AID-QUA2>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:4<613::AID-QUA2>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:4<613::AID-QUA2>3.0.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:4<613::AID-QUA2>3.0.CO;2-Z
http://dx.doi.org/10.1103/PhysRevLett.74.1558
http://dx.doi.org/10.1103/PhysRevLett.74.1558
http://dx.doi.org/10.1103/PhysRevLett.74.1558
http://dx.doi.org/10.1103/PhysRevLett.74.1558
http://dx.doi.org/10.1103/PhysRevB.42.1240
http://dx.doi.org/10.1103/PhysRevB.42.1240
http://dx.doi.org/10.1103/PhysRevB.42.1240
http://dx.doi.org/10.1103/PhysRevB.42.1240
http://dx.doi.org/10.1103/PhysRevA.51.1327
http://dx.doi.org/10.1103/PhysRevA.51.1327
http://dx.doi.org/10.1103/PhysRevA.51.1327
http://dx.doi.org/10.1103/PhysRevA.51.1327
http://dx.doi.org/10.1103/PhysRevLett.96.117405
http://dx.doi.org/10.1103/PhysRevLett.96.117405
http://dx.doi.org/10.1103/PhysRevLett.96.117405
http://dx.doi.org/10.1103/PhysRevLett.96.117405
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1103/PhysRevB.71.165407
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163
http://dx.doi.org/10.1103/RevModPhys.81.163



