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We derive the spontaneous anisotropy of the resistivity of the ferromagnetic compound PrAh 
from magnetoresistance measurements on a single crystal of PrAlz. We ascribe this spontaneous an­
isotropy of the resistivity to scattering of the conduction electrons by the thermal quadrupole disor­
der and we account for our experimental results by using the theoretical model previously deve1oped 
by us. We find that quadrupole scattering gives a very important contribution to the total magnetic 
disorder (spin and quadrupole) resistivity but that only a small part of this quadrupole contribution 
is anisotropic. 

I. INTRODUCTION 

The 4/ electrons of rare-earth ions with L=FO carry not 
only a spin but also a quadrupole moment. This gives 
rise, in metallic systems, to quadrupole scattering of the 
conduction electron in addition to the conventional spin 
scattering. 

The anisotropic resistivity arising from quadrupole 
scattering is well known in metais containing rare-earth 
impurities. 1- 6 Here anisotropic means different accord­
ing to whether the quadrupole axes are parallel or perpen­
dicular to the current direction. This anisotropic resistivi­
ty of dilute alloys can be easily investigated by magne­
toresistance measurements: One polarizes the rare-earth 
impurities by an applied magnetic field parallel and then 
perpendicular to the current; the difference between the 
resistivities is related in a straightforward manner to the 
qaudrupole scattering. This type of measurement has 
been used to determine the quadrupole term of the 4/­
conduction-electron interaction. It has been found that, in 
some systems, the quadrupole term is as large or larger 
than the spin-exchange term. 1•4•6 

The problem of quadrupole scattering is somewhat dif­
ferent in the case of rare-earth intermetallic compounds. 
Consider the case of a ferromagnetic compound. For 
T <<Te the spins and the quadrupole are perfectly 
aligned. The spin and quadrupole potentials are periodic 
and there is no spin or quadrupole scattering. Neverthe­
less, as the temperature is increased, thermal disorder 
gives rise to spin- and quadrupole-disorder scatterings. 
Previously, we showed that quadrupole-disorder scattering 
in a ferromagnetic compound results in a spontaneous an­
isotropy of the resistivity, the resistivity being different 
according to whether the spontaneous magnetization is 
parallel or perpendicular to the current. However, the 
spontaneous anisotropy of ferromagnetic compounds is 
expected to be smaller than the induced anisotropy in di­
lute alloys for the following reason. Rare-earth impurities 
in alloys generally have a strong spin-independent scatter-
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ing potential. There exist interference terms between po­
tential and quadrupole scatterings, which give relatively 
large and strongly anisotropic resistivity terms. For ex­
ample, in a noble metal with rare-earth impurities, the an­
isotropic part of the magnetoresistance due to quadrupole 
scattering is definitely larger than the isotropic part due to 
exchange scattering. 1 In contrast, for intermetallic com­
pounds, there is no potential scattering (the spin­
independent potential is periodic) and the resistivity terms 
previously calculated by us7 come from taking the quadru­
pole interaction to second order. This gives rise to a quad­
rupole resistivity term which includes an isotropic part 
much larger than the anisotropic part. 

These differences predicted between the problem of 
quadrupole scattering in alloys and compounds led us to 
investigate the spontaneous anisotropy of the resistivity 
(SAR) of the ferromagnetic compound PrAl2• As a 
matter of fact, Christen8 was the first to observe a SAR in 
PrAl2 and DyAl2 compounds. However, while the evi­
dence of SAR is quite clear in the experimental results of 
Christen, we questioned the method used to extract values 
of the SAR from the magnetoresistance curves. Thus, we 
performed new magnetoresistance measurements on a 
piece of the single crystal of PrAl2 used in Christen's pre­
vious measurements. In this paper, we present the experi­
mental results together with an analysis of the data, and 
we compare our results with predictions based on the 
theoretical model we previously developed and have now 
adapted to PrAl2• 

11. EXPERIMENTAL TECHNIQUES 

We measured the magnetoresistance properties of a sin­
gle crystal of PrAl2 which was provided to us by Dr. M. 
Christen and Professor J. Sierro of Université de Geneve. 
The crystal-growth method has been described in a previ­
ous work.9• 10 The sample obtained by spark cutting was a 
slab (9 X I. 5 X 0.6 mm) with face orientations as indicated 
on Fig. 1. The resistivity was measured by a conventional 
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H11 'l current 
[001] 

FIO. 1. Sample geometry. The current direction, the longitu­
dinal and transverse field orientations, and the crystal axes are 
indicated. 

ac technique in the magnetic field of a superconducting 
coil (up to 25 kG) and for temperatures between 4.2 and 
35 K. By rotating the sample the magnetic field could be 
applied along the current direction or perpendicular to it 
(in the plane of the slab). As indicated in Fig. 1, both 
directions of the field correspond to equivalent easy axes 
of the magnetization [001] and [100]. The magnetoresis­
tance curves were generally recorded by decreasing the 
field from its maximum value. 

III. EXPERIMENTAL RESUL TS 

The temperature dependence of the zero-field resistivity 
of PrAh is shown in Fig. 2. To derive the contribution to 
the resistivity from magnetic disorder, we subtracted the 
residual resistivity and the phonon resistivity of PrA12 

which to a good approximation can be taken as the resis­
tivity of LaA12•11 In this way, we obtained the magnetic 
disorder resistivity shown in Fig. 3. 
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FIO. 2. Zero-field resistivity of our PrAh sample. 
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FIO. 3. Resistivity as a function oftemperature in PrAh. All 
points are normalized relative to p( T = Te). Circled points 
represent experimental values and the solid curve is the theoreti­
cal fit. Absence of correlation effects in the theoretical calcula­
tions is believed to account for the difference between theory 
and experiment. 

Typical examples of magnetoresistance curves are 
shown in Fig. 4. First we discuss the results at low tem­
peratures [see Fig. 4(a)]. For T «Te the variation of the 
resistivity as a function of the applied field, which is 
called magnetoresistance, has two origins: (1) when the 
domains are reoriented we obtain a contribution from the 
spontaneous anisotropy of the resistivity (SAR), and (2) 

lal 
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FIO. 4. Two examples of experimental magnetoresistance 
curves in decreasing fields from 22 to -22 kO, at (a) 8.7 K and 
at (b) 27.6 K. The dashed tine in Fig. 4(a) represents the first 
magnetization curve in longitu.dinal fields. 



3892 SABLIK, PUREUR, CREUZET, FERT, AND LEVY 28 

the normal magnetoresistance, i.e., that due to the Lorentz 
force. The low-field range is rather difficult to analyze 
because the SAR contribution changes during reorienta­
tions of the domains. (In particular, the asymmetry be­
tween the behavior at positive and negative fields is due to 
remanence effects.) In contrast, the quasilinear (and sym­
metric) variation observed at higher fields corresponds to 
a simple situation in which the sample is monodomain. 
Then the contribution from the SAR to the splitting be­
tween the longitudinal and transverse curves is saturated 
and the linear variation of the resistivity is due only to 
normal magnetoresistance (which is larger in transverse 
fields as usual). As it is well known, normal magne­
toresistance obeys the Kohler rule, which, in ferromag­
nets, can be written as12 

(1) 

t:J.p1 -K [!!_I 
1 - 1 ' 

Po Po 

where p~(pÔ) is the resistivity for zero induction (B =0) 
when the magnetization is longitudinal (transverse) and B 
is the magnetic induction [B=H+41T0-D), where D is 
the demagnetization factor, which is different for the 
longitudinal and transverse fields applied to our sample.] 
In principie, this normal magnetoresistance can be sub­
tracted if the Kohler functions K 11 and K1 are known. 
However, a simple and conventional method consists in 
extrapolating the high-fie~d linear variation down to zero 
induction B =0, i.e., to H 0 = -41TM0-DII) for the longi­
tudinal curves and HÕ= -41TM0-D1 ) for the transverse 
curves, as shown schematically in Fig. 5. This method 
overlooks the fact that the function K(B /p0 ) becomes 
quadratic at very small values of B /p0• According to 
what we know about the Kohler functions from measure­
ments on PrA12 at high temperature, the resulting error is 
negligible; therefore we adopted this extrapolation 
method. The demagnetization factors were derived from 
numerical calculations by Osborn, 13 and the magnetiza­
tion values were obtained from the experimental results of 
Purwins et a/. 14 In Fig. 6 we present some examples of 
extrapolation showing the extrapolated values pjj1P1(B =0) 
and p!xtpi(B =0). We indicate by arrows the fields Hbl and 
HÕ which give B =0. The spontaneous anisotropy of the 
resistivity (p 11 -p1 ) in our notation is given by 

P!!-P1 =pjjtpt(B =0)-pÍxtpt(B =0) . (2) 

As the temperature is raised a negative magnetoresistance 
associated with the induced magnetization term (i.e., due 
to the reduction of the magnetic disorder in the presence 
of a field) becomes more and more important (Fig. 5). 
The slopes in high fields become negative above about 16 
K [see Figs. 4(b) and 6]. This negative contribution ap­
pears to be linear and is nearly isotropic, as can be seen by 
comparing the slopes of the longitudinal and transverse 
curves in the temperature range where the negative term 
predominates. This means that, for the same interna/ 
field, the negative contribution is the same for longitudi-
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FIG. 5. Scheme showing the different contributions to the 
magnetoresistance (a) with spontaneous anisotropy of the resis­
tivity and normal magnetoresistance; (b) in addition, with the 
negative contribution due to the reduction of the magnetic 
scattering by applied fields. 

nal and transverse orientations. As the internai fields for 
H =HY and H =HÕ are equal (Hin=H -41TDM= -41TM 
for H =HY and H =HÕ), the contributions to pjj1P1(B=0) 
and Plxtpi(B =0) are equal and do not contribute to their 
difference pjj1P1(B=Ol-p1xtpi(B=0). Thus, Eq. (2) 
remains valid and can still be used to derive p 11 -p1 at 
T < Te. Figure 6 shows some examples of the determina­
tio~ of P11-p1 in this range. We emphasize that this 
method allows us to single out the SAR easily. In con­
trast, Christen8 considers the difference between Pil and Pl 
at fields corresponding to different values of B and likely 
mixes contributions from normal magnetoresistance and 
spin-exchange scattering to the SAR. 

W e obtained in this way the spontaneous anisotropy of 
the resistivity shown in Fig. 7. The gross features of the 
temperature dependence correspond to what is expected by 
our previous calculations,' the SAR increasing to a max­
imum value at a temperature slightly below Te and then 
decreasing to zero at Te. However, at low temperatures, 
Pil-p 1 does not decrease to zero which means that for the 
anisotropic part of the resistivity, Fig. 7, as well as for the 
total resistivity, Fig. 2, there is a residual contribution due 
to impurity and defect scattering in addition to the 
thermal contribution. As we are not interested in the an­
isotropy of the residual scattering, we subtract its contri­
bution by assuming that it varies between T=O and 
T =Te as the spontaneous magnetization of PrA12• The 
dashed line in Fig. 7 shows this variation. After subtract­
ing this term from the experimental points, we obtain Fig. 
8. As we do not know the origin of this residual scatter­
ing, our assumption that its contribution to the SAR is 
proportional to the spontaneous magnetization is ques­
tionable. We have tried the alternative assumption that it 
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FIO. 6. Detennination of the spontaneous anisotropy of the resistivity from experimental data at several temperatures. 

varies as the square of the spontaneous magnetization; 
however, this does not significantly alter the results of 
Fig. 8. 

IV. MO DEL CALCULA TION ANO DISCUSSION 

The theoretical model7 we use to interpret the resistivity 
data uses transport theory described by Ziman15 and the 
assumption of single-ion scattering. The spin- and 
quadrupole-disorder contributions to the resistivity are 
given as7 

(3a) 

1.0 
E 
u 

c: 
:::1... = 0.5 
~ 

0.6 i.o mc 
FIO. 7. Spontaneous anisotropy of the resistivity vs tempera­

ture T IT. (T.=33 K). The solid line is a guide for the eye. 
The dashed line represents the contribution from residual 
scattering when this contribution is assumed to be proportional 
to the magnetization. Magnetization data were taken from Ref. 
14. 
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FIG. 8. Dependence of resistivity difference p1 -pll on tem­
perature in PrAh. The circles show the experimental values di­
vided by the value of the "magnetic" contribution to the resis­
tivity at the Curie temperature. The solid curve shows the simi­
larly normalized theoretical fit. For this fit, we used À1 =-5. 87 
K, À2 = -0.01 K, and conduction-electron partial-wave weights 
of a 0 =0.8, a 1 =0.6, a 2 =0.6, and a 3 =2.0. The dashed curveis 
for 1..2 =0. 

where (AB >w is the weighted thermal average, 

1 -E /k T (Ey0 -Ey)fkBT 
(AB)w=-l:e ro 8 

Z -(Er -Ey)lk8 T 
r.ro 1-e o 

x<roiA lr><riBiro>. (4) 

Here I r) is a crystal-field state modified by the presence 
of a molecular fie1d, Z = l:rexp(-EylkB T) is the parti­
tion function for the states I r), n0 is the number of elec­
tron or boles (whichever is less) in the 4/ shell, F9 (J,S,L) 
is a dimensionless combination of 6-j and fractional­
parentage coefficients, O i 1 and O~ are spherical tensor 
operators of ranks 1 and 2, (r 2 ) is the mean-square radius 
of the 4/ shell, gJ is the Lande g factor, and R ~x(O,O) is a 
radial exchange integral. 

To obtain p~, we note that the tensor operators O~ are 
quantized along the current direction whereas the states 
I r) and I r o> are quantized along the direction of the 

spontaneous magnetization. Thus, if the current is per­
pendicular to the magnetization, the o~ operators must be 
rotated into the ordering direction before they can operate 
on states I r) and I r 0 ). To carry out the calculation of 
p~, we use the well-known rotation relation16 

o~= l:d~·a< 1T /2)0~· , 
Q' 

(5) 

where the d~·a(-rr/2) are rotation coefficients, and then 
evaluate the matrix elements of O~· entering Eq. (3b). 

In our previous formulation, conduction electrons were 
treated as plane waves decomposed into a set of partial 
waves, with only s waves contributing significantly to ex­
change scattering. Higher-order partia! waves contribute 
to quadrupole scattering, and the effects of these partial­
wave scatterings are lumped into the constants la, which 
consist of complicated combinations of 3j coefficients and 
radial integrais. 

One feature not predicted by our previous model calcu­
lations 7 is the proper sigo of the anisotropy. To rectify 
this in our present formulation, we consider our conduc­
tion electrons as plane waves admixed with the open-shell 
electrons from the rare earth, e.g., 5d, and with an 
enhanced f-wave component due to orthogonalization to 
the 4/ core states. While the form of these radial integrais 
should in some measure reflect the admixed atomic radial 
functions, we will for simplicity assume that the radial 
wave functions for the conduction electrons are given by 
spherical Bessel functions. Then the radial integrais enter­
ing Eq. (3b) via I p take the form 

(6) 

where 

(7) 

The function j.(x) is a spherical Bessel function or order 
s, and P,.1(x) is a 4/ hydrogenic wave function. 17 The ex­
pression (6) differs from the radial integrais used in our 
previous model in that the sth and tth partia! waves from 
the plane-wave expansion at the Fermi surface are now 
weighted by factors a. and a, which are numbers of the 
order of 1. A similar weighting appears in R~x(O,O) in Eq. 
(3a). Thus our conduction electrons are no longer plane 
waves. 

The molecular-field (MF) states I a) for PrA12 are ob­
tained from the Hamiltonian, 

HMF= 1: (B4[0~(i)+50!<il] +B6[0g(i)-210~(i)] 
i 

+Ãt<oA>oA<il+Ã2(0Õ)OÕUll , <Sl 
with B4 =-38.5X 10-4 meV and B 6 = -54.7X 10-6 

meV, which corresponds to x=0.77 and W= -0.30 meV 
found from the inelastic neutron scattering studies of 
Purwins et a/. 18 If we fit to a Curie temperature of 33 K, 
we find Ã 1 = -136.5 kG/J.LB• which yields a zero-
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temperature moment at the Pr site of 3.10JL8 . Polarized 
neutron scattering19 and hyperfine-field20 investigations 
indicate that the conduction-electron polarization21 

present in the first half of the RAI2 series, where R 
represents rare earth, opposes the localized 4f moment; 
therefore, it is reasonable that this polarization reduces the 
measured moment to 2.94/L8 •14 As indicated by the form 
of Eq. (8), ordering is taken to be in the ( 001) direction. 
The biquadratic term in Eq. (8) is included because it is 
needed to fit the anisotropy in the resistivity, as seen 
belowõ The Fermi wave vector for PrAI2 is taken to be 
0.62 A- 1• The normalized values obtained for the resis­
tivity (see Fig. 3), however, are not very sensitive to 
changes in this value. 

To produce a negative result for p 11 -pü it is necessary 
to increase the weight of the f-partial-wave contribution 
at the Fermi surface. Figure 8 shows our fit to the experi­
mental data for a partial-wave weighting of a 0=0.8, 
at=0.6, a 2 =0.6, and a 3 =2.0, corresponding tos, p, d, 
and f waves, respectively. The dashed curve in Fig. 8 is 
for À2=0 whereas the solid curve is for À2= -0.01 K. 
While the weightings a0 , a 1, a2, and a 3 influence the mag­
nitude of the anisotropy, it appears that the strength of 
the biquadratic coupling adjusts the location of the peak 
in p1 -Pii as a function of temperature. 

As an independent test of our result, we show the func­
tional dependence of magnetization on temperature in Fig. 
9. With À2=-0.01 K, the experimental results 14 for the 
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FIG. 9. Magnetization in PrAI2• The circled points are ex­

perimental determinations of magnetization per ion (see Ref. 
14). The solid curves are theoretical results for the case 
À 1=-5.87 K, À2=-0.01 K. For this case, the magnetization 
(M,) is in almost direction proportion to the experimental 
points, the difference being made up by the conduction-electron 
polarization. The fit is not so good for À2=0 (dashed curve). 

magnetization are in almost direct proportion to the 
theoretical results, as would be expected to be the case 
when conduction-electron polarization is taken into ac­
count. With }.2 =O, the functional dependence of the 
magnetization is not as well reproduced as with À2*0. 
With Àz= -0.01 K, the zero-temperature moment 
changes almost imperceptibly to 3.121L8 , so that a more 
sensitive measurement of À2 is the fit to the resistance an­
isotropy (see Fig. 8). 

The assertion of substantial f-wave contribution to the 
conduction electrons at the Fermi surface finds support in 
the band-structure predictions of Switendick22 and 
Hasegawa and Yanase,23 who analyzed the electronic 
structure of LaA12 and Y A}z. Further support for consid­
erable f admixture at the Fermi surface may be seen in the 
de Haas-van Alphen work of Seitz et ai. 24 

In Fig. 3 we present our fit to the total resistivity as a 
function of temperature. In Fig. 1 O we show that quadru­
pole scattering pq makes an overwhelmingly dominant 
contribution to the total resistivity p of PrAl2. According 
to our results, pq is roughly 94% of the total resistivity. It 
is conceivable that with fewer approximations in the 
model calculation one might arrive at a lower percentage. 
On the other hand, this large percentage is not entirely un­
reasonable for the following reasons. The large quadro­
pote scattering is firstly indigenous to trivalent praseo­
dymium compounds owing to the large orbital angular 
momentum L = 5 compared to the spin S = 1. This is in-
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FIG. 10. Quadrupole scattering contribution pq = + (p~ + 2p~) 
to the total resistivity Ptot = + (p!~, + 2pf0 ,). The parameters used 
to obtain these curves are B4 =-38.5x10-4 meV, 
B6 =-54.7x10-6 meV, À 1=-5.87 K, À 2 =-0.01 K, and the 
conduction-electron's partial-wave weights are a0 =0.8, a 1 =0.6, 
a 2 =0.6, and a 3 =2.0. The resistivities are normalized by divid­
ing by the value of Ptot at T= Te =33 K. 
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corporated in our formula for the resistivity Eq. (3b) in 
the factor Fq(J,S,L)/(g1 -1)2, where Fq(J,S,L) is related 
to the Stevens factor. Secondly, in PrAI2, the quadrupole 
scattering contribution is particularly dominant because 
exchange scattering is short ranged and is large only for 
conduction electrons of small impact parameter (s waves), 
and, according to our results, the s component of the con­
duction electrons near the Fermi surface is suppressed rei­
ative to the higher orbital components. 

In spite of this large quadrupole contribution to the to­
tal (isotropic) scattering, quadrupole scattering does not 
produce much spontaneous anisotropy of the resistivity in 
PrAI2, i.e., of the order of 3% (see Fig. 8). The reason is 
that the contribution from quadrupole scattering to the 
resistivity in compounds comes from the product of quad­
rupole scattering, i.e., from the fluctuations in the aspheri­
cal change distribution of the rare-earth ions. This prod­
uct, see Eq. (3b), contains isotropic terms Il:Q[( -1 )Q 

x ( Q:_Qo~)- (o:_Q) (O~)], when IQ=l, as well as an­
isotropic terms when the IQ are different. In our fits to 
PrA12 we find that the IQ are nearly equal (viz., 
/ 2:/1:/0 =1.19:1.0:0.93). Therefore the isotropic part of 
the resistivity resulting from quadrupole scattering dom­
inates. As mentioned earlier, this behavior differs 
markedly from the situation of rare-earth impurities in 
metais where in an externai magnetic field, interference 
terms between potential and quadrupole scatterings give 
rise to a relatively large anisotropy in the contribution of 
rare-earth ions to the resistivity. 1 

1A. Fert, R. Asomoza, D. H. Sanchez, D. Spanjaard, andA. 
Friederich, Phys. Rev. B 16, 5040 (1977). 

2T. Bijvoet, G. Merlijn, and P. Fring, J. Phys. (Paris) Colloq. 
39, C5-38 (1978). 

3R. Asomoza, G. Creuzet, A. Fert, and R. Reich, Solid State 
Commun. 18., 190 (1978). 

4J. C. Ousset, G. Carrere, J. P. Vlinet, S. Asbenazy, G. Creuzet, 
andA. Fert, J. Mago. Magn. Mater. 24, 7 (1981). 

5G. Lacueva, P. M. Levy, G. Creuzet, A. Fert, and J. C. Ousset, 
Solid State Commun. 38, 551 (1981). 

6G. Lacueva, P. M. Levy, andA. Fert, Phys. Rev. B 26, 1099 
(1982). 

7M. Sablik and P. M. Levy, J. Appl. Phys. 49,2171 (1978). 
8M. Christen, Solid State Commun. l{i, 571 (1980). 
9M. Christen, B. Giovannini, and J. Sierro, Phys. Rev. B 20, 

4624 (1974). 
lOM. Christen, thesis, Geneve, 1978 (unpublished). 
11H. T. van Daal and K. H. J. Buschow, Solid State Commun. 

1. 217 (1969). 
12F. C. Schwerer and J. Silcox, Phys. Rev. Lett. 20, 101 (1968); 

J. Appl. Phys. 39, 2047 (1968). 
13J. A. Osbom, Phys. Rev. fi!., 351 (1945). 
14H. G. Purwins, E. Walker, B. Barbara, M. F. Rossignol, and 

P. Bak, J. Phys. C 1, 3573 (1974). 

Finally, as seen in Fig. 3, the fit to experimental results 
is not perfect. We have normalized the experimental and 
theoretical resistivities relative to their values at the Curie 
temperature. Below Te, the experimental data rise more 
sharply as one approaches the Curie temperature than the 
theoretical results. This can be explained by remembering 
that the actual resistivity has contributions from short­
range correlations, neglected in our mean-field approach.25 

This can account for the sharp rise seen in the experimen­
tal curve near Te. Above Te the contributions from 
short-range correlations to the resistivity fali off as tem­
perature increases. The effect of the contributions dimin­
ish the rise coming from single-ion scattering, as given by 
our theoretical fit. Therefore short-range correlation ef­
fects are able to explain the discrepancies between the ex­
perimental resistivity and that predicted on the basis of 
our mean-field approach. 

ACKNOWLEDGMENTS 

We thank Professor J. Sierro and Dr. M. Christen for 
providing us with a single crystal of PrAI2. Also, we ac­
knowledge very helpful discussions with Dr. M. Christen. 
This work was supported in part by the Centre National 
de la Recherche Scientifique, France, and the National 
Science Foundation under Grant No. DMR-81-20673. 
One of us (P.P.) was supported by the Conselho National 
de Desenvolvimento Científico Technológico, Brasil. 

15J. M. Ziman, Electrons and Phonons (Oxford University Press, 
London, 1972), pp. 275-283. 

16A. R. Edwards, Theory of Angular Momentum (Princeton 
University Press, Princeton, New Jersey, 1957), p. 129. 

17T. Kaplan and D. H. Lyons, Phys. Rev. ll2, 2072 (1963). 
18H. G. Purwins, W. J. L. Buyers, T. M. Holden, and E. C. 

Svensson, in Magnetism and Magnetic Materiais, Philadel­
phia, 1975, Proceedings of the 21st Annual Conference on 
Magnetism and Magnetic Materiais, edited by J. J. Becker, G. 
H. Lander, and J. J. Rhyne (AIP, New York, 1976), p. 259. 

19J. X. Boucherle, D. Givord, A. Gregory, and J. Schweizer, J. 
Appl. Phys. 53, 1950 (1982). 

2Dy. Berthier, R. A. B. Devine, andE. Belorizky, Phys. Rev. B 
1l, 4137 (1978). 

21E. Belorizky, J. J. Niez, and P. M. Levy, Phys. Rev. B ll, 
3360 (1981) 

22A. C. Switendick, Proceedings of the 10th Rare Earth Confer­
ence, Carefree, Arizona, 1973, Vol. I, p. 235. 

23A. Hasegawa and Y. Yanase, J. Phys. F lQ, 847 (1980); l.Q, 
2207 (1980). 

24E. Seitz, B. Lengeler, G. Kamm, and J. Kopp, J. Phys. (Paris) 
Colloq. ~. C5-76 (1979). 

25P. G. de Gennes and J. Friedel, J. Phys. Chem. Solids ~. 71 
(1958). 


