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Langevin simulations of a model for ultrathin magnetic films
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We show results from simulations of the Langevin dynamics of a two-dimensional scalar model with
competing interactions for ultrathin magnetic films. We find a phase transition from a high temperature disor-
dered phase to a low temperature phase with both translational and orientational orders. Both kinds of order
emerge at the same temperature, probably due to the isotropy of the model Hamiltonian. In the low temperature
phase, orientational correlations show long-range order while translational ones show only quasi-long-range
order in a wide temperature range. The orientational correlation length and the associated susceptibility seem
to diverge with power laws at the transition. While at zero temperature the system exhibits stripe long-range
order, as temperature grows, we observe the proliferation of different kinds of topological defects that ulti-
mately drive the system to the disordered phase. The magnetic structures observed are similar to experimental

results on ultrathin ferromagnetic films.
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I. INTRODUCTION

In the past years, the interest in understanding the thermo-
dynamic and mechanical properties of magnetic ultrathin
films has grown considerably. Part of this interest is obvi-
ously motivated by the great amount of technological appli-
cations related to their magnetic behavior, such as data stor-
age and electronics.! In recent years, the advance in
experimental techniques has made possible to study in great
detail the complexity of magnetic order in thin films, where
an extremely rich phenomenology is present.>~* Part of this
phenomenology—as in many other physical and chemical
systems®—is due to the presence of competing interactions
acting on different length scales that frustrate the system and
leads to mesoscopic pattern formation. In the case of an ul-
trathin magnetic film in the absence of an external magnetic
field, stripe patterns of opposed magnetization are formed
due to the competition between the ferromagnetic exchange
interaction and the long-ranged dipolar interaction.’

Of particular interest for applications in data storage are
films with strong perpendicular anisotropy, where spins point
preferentially out of the plane. This happens when the (per-
pendicular) anisotropy energy overcomes the effect of dipo-
lar interactions which induce an in-plane anisotropy. When
this happens, the system goes through a “spin reorientation
transition” (SRT).” In this phase, when magnetization
points preferentially out of plane, complex magnetic struc-
tures arise, showing the formation of patterns with stripe
order.>*!10 Antiferromagnetic stripe order dominates the low
temperature, low energy behavior. As temperature increases
toward the SRT, perfect stripe order is disrupted by prolif-
eration of topological defects, such as dislocations and dis-
clinations in the magnetic patterns, which eventually drive
the system to the paramagnetic high temperature phase. Un-
derstanding how magnetic stripe order emerges from micro-
scopic interactions and the characterization of the relevant
thermodynamic behavior in the perpendicular phase is of rel-
evance both from a fundamental point of view and for future
applications in magnetic memory devices at the nanoscopic
level.
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Theoretical analysis of thermodynamic behavior relies on
elastic Hamiltonian approximations and shows a variety of
possible scenarios, strongly dependent on the behavior of
different kinds of anisotropies present in the elastic
energy.®®!! In Ref. 11, two possible scenarios were antici-
pated, in one, there is a single phase transition from a high
temperature paramagnetic phase to a smectic (stripe) phase at
low temperatures. Other possible scenario shows the pres-
ence of an intermediate nematic phase, where translational
order is lost but orientational one persists. Searching for evi-
dence of these scenarios is one of our motivations for the
present work. There is also a rather large number of numeri-
cal simulations and analysis of the different patterns ob-
served in ultrathin film models. Relevant to the present work
is a series of simulations by De’Bell et al.'> They made
detailed Monte Carlo simulations of Heisenberg and Ising
systems with competing exchange and dipolar interactions.
The stripe nature of the ground state in a two-dimensional
system of Ising spins was determined analytically in Ref. 13
Phase diagrams showing the presence of the spin reorienta-
tion transition in Heisenberg models with perpendicular an-
isotropy, dipolar interactions, and with or without exchange
interactions were also studied.”'* Cannas and co-workers
have made a series of detailed predictions on phase diagrams
and dynamic properties of a two-dimensional Ising model
with competing exchange and dipolar interactions'>~!7 by
Monte Carlo simulations. In particular, in Ref. 17, evidence
was presented of a new, intermediate, nematic phase between
the stripe and disordered phases. There is also a rather large
amount of numerical work focused on qualitative descrip-
tions of patterns but few quantitative approaches.

Simulations of Heisenberg models have been largely re-
stricted to determinations of phase diagrams mainly because
analyzing quantitatively the structure of phases and patterns
that emerge is a computationally very hard task in these
models. On the other hand, studies of Ising models have also
concentrated on quantitatively determining phase diagrams
and also the presence and evolution of magnetic patterns.
Nevertheless, in the Ising case, the sharp nature of domain
walls induces a rather artificial structure of patterns, where,
e.g., tetragonal symmetry dominates completely the scene in
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square lattices. In this work, we introduce a model intended
to make a bridge between the more realistic but cuambersome
Heisenberg models and the much simpler Ising models
which nevertheless are not suitable for understanding the di-
versity of magnetic structures present in a real ultrathin film.
Our results are qualitative in the sense that we do not intend
to reproduce experimental parameter values of a particular
system, but nevertheless we present a quantitative picture of
phase transitions and the behavior of relevant thermody-
namic variables in the regime of perpendicular magnetiza-
tion, which can be easily mapped to real situations. Further-
more, the model introduced below admits numerical as well
as analytical treatment of both equilibrium and dynamical
behaviors and a comprehensive picture is beginning to
emerge. '3

With this aim, in the present work, we introduce and ana-
lyze, by means of Langevin simulations, a coarse-grained
model of an ultrathin film in two dimensions. By making
reasonable approximations to the full micromagnetic dynam-
ics, which should be satisfactory in the perpendicular region,
we address the existence of antiferromagnetic stripe order,
how thermal fluctuations affect this order, the possible ap-
pearance of a phase transition at finite temperature, and the
characterization of the magnetic structures relevant in each
temperature region. Coarse-grained models similar to the one
introduced in the next section have been studied in the past.
In an early work, Roland and Desai? studied the dynamical
process of phase separation and emergence of stripe order in
Langevin simulations of a model for ultrathin films. More
recently, Jagla* explored the different morphologies and pat-
terns that can appear in such systems, showing a variety of
very interesting phenomena. Furthermore, he showed that the
same model is capable of reproducing the detailed phenom-
enology of hysteretic behavior known in ultrathin films.?!
Nevertheless, to our knowledge, more quantitative studies of
the phase transitions and the different kinds of magnetic or-
der present in these types of models have not been addressed
up to now.

II. MODEL AND NUMERICAL IMPLEMENTATION

A widely acceptable microscopic description of micro-
magnetic dynamics is given by the Landau-Lifshitz-Gilbert
(LLG) equation'

A
E=—a¢><3—7¢><(¢><3), (1)

where % is the three-dimensional magnetic moment vector, E
is the effective field acting on it, and « and vy are microscopic
phenomenological constants. The first term induces a preces-
sional movement of the magnetic moment around the field,
while the second term is a phenomenological one represent-
ing a damping effect which induces the magnetization to
align with the field. This representation of magnetic dynam-
ics is satisfactory in a wide variety of situations but it is very
difficult to analyze analytically and is also very demanding
computationally. Nevertheless, below the SRT where perpen-
dicular anisotropy dominates, one can obtain a much simpler
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description of magnetization dynamics suitable to our pur-
poses. Considering a single moment ¢ with the effective
field B pointing in the z direction and expanding the three

components of ¢ in Eq. (1), one easily finds that the evolu-
tion of the perpendicular component is given by?!

‘9¢z 2
o - B4 2)
where the constraint ¢§+ ¢§+¢§=1 was used (this is auto-
matically satisfied by the LLG dynamics). Then, in the limit
of strong perpendicular anisotropy, when the effective field
can be approximated to point preferentially along the z di-
rection, the evolution of the perpendicular component is ap-
proximately autonomous, although the other two components
are not. Consequently, from now on, we will restrict the
analysis to the z component and drop out the corresponding
subindex.

In the system of interest, the effective field will be com-
posed typically of three contributions of the form

B=h+a¢—bfd2x’J(|x—x’|)¢(x’), (3)

where & is an external field, the second term is a perpendicu-
lar anisotropy field, and the last term will be the dipolar field,
in our case. The constants can be easily related to experimen-
tal ones, but this is not necessary for the purposes of this
work, which is to study some universal properties of the
phases and patterns emerging in such a system. The complete
energy function of the model consists of both a local and a
nonlocal term:

H[p]=H,[}]+ Hy[}]. (4)

According to Eq. (3) for the case of zero external field,
the local potential can be written in full generality:

Higl=3 | dzx{ VST (5 + gfﬁ*(x)}. ©

In order that the local potential assumes the desired double-
well structure, # and r are taken to be positive phenomeno-
logical constants. We have also added a continuous approxi-
mation for the exchange interaction in the form of an
attractive square gradient term, which favors spatial homo-
geneity of the order parameter.

Disregarding higher order interactions in Eq. (3), the non-
local term modeling a repulsive dipolar interaction has the
form

HNL[(ZS]:%Sfdzxfdle¢(X)J(|X_X,|)¢(X,)’ (6)

where J(|x—x'[)=1/|x—x'|* in two dimensions. In Egs. (5)
and (6), k and & are positive phenomenological constants
that describe, respectively, the range of the short-range ex-
change interaction and the strength of the long-range dipolar
one. In all space integrations it is assumed a short distance
cutoff 27r/ A, which in the numerical implementation appears
naturally as the lattice constant a.
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Hence, in the limit of strong perpendicular anisotropy and
strong damping, the relaxational dynamics of the system can
be modeled by the following Langevin equations:

IPp(x,1) SH[ ¢]
=— + n(x,1), 7
o S0(x.0) 7(x,1) (7
where I' is a constant (the mobility) which sets the time
scale, and 7(x,) is a Gaussian thermal noise with (7(x,?))
=0 and (y(x,)n(x",t"))=2IT8(t—1')&*(x—x'), as usual.
Equation (7) can be explicitly written as

19¢(x.1)
r o

= kV2P(x,1) + r(x,1) — ud’(x,1)

1

5fd2x'q§(x’,t)l(|x—x'|)+ n(x,0)/T. (8)

It is convenient to express the above equations in dimen-
sionless form by means of a transformation of variables. Fol-
lowing Roland and Desai,?° this transformation leads to the
dimensionless form of Eq. (8):

JdP(x,t
% = V2G(x,0) + G(x.1) - F(x,1)
1

5fd2X'¢(X’,t)J(|X—X’|)+ n(x.0), (9

with a short distance cutoff 277/ A and thermal noise corre-
lation (7(x,t)p(x’,t"))=2T8(t—t")5*(x—x'). Now, the pa-
rameter 6 stands for the relative strength between the two
competing interactions. The last Langevin equation can be
written in Fourier space as
dd(k,t
% = - A(k) k1) + [- ¢*(x,1) + 7(x,0].  (10)
To be compatible with the subsequent numerical imple-
mentation of this equation, the last two terms were not ex-
plicitly written in Fourier space. Here, ]i means the k com-
ponent of the corresponding Fourier transform. The function
A(k) corresponds to

Ak)=k>=1+J(k)/ 6, (11)

which encodes all spatial information about the interactions.
If this quantity has a negative minimum at a wave vector k,,,,
selected by varying &, the solution of Eq. (10) is a modula-
tion in a single direction with periodicity given by k,,.

We have numerically solved the stochastic differential
equation (10) discretizing space in a square lattice with mesh
size a. Periodic boundary conditions were implemented us-
ing the Ewald summation technique? in the long-range di-
polar interaction. After spatial discretization, this interaction
is no longer isotropic for all spatial scales and it becomes
gradually anisotropic as the wave vector comes close to .
At the relevant spatial scales for our simulations, J(k) is
slightly anisotropic. It is important to note that symmetry
properties of the different magnetic structures appearing at
low temperatures are affected by the square symmetry of the
lattice. In a triangular lattice, for example, the phenomenol-
ogy may be to some extent different.”> We found it advanta-
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geous to use a spectral method, since in the Fourier space
form of the Langevin equation (10), both spatial derivatives
and the dipolar interactions acquire an algebraic form.

The time derivative was approximated using a simple Eu-
ler scheme with a time step Ar. Taking an isotropic form of
the discretized Laplacian, the spatial derivatives were treated
using a semi-implicit method, where the k> term in Eq. (10)
is evaluated in the new time value. This treatment is standard
to improve the stability of the algorithm.?* Therefore, dis-
cretizing Eq. (10) in such manner, i.e., through a first order
semi-implicit spectral method, we obtain the following recur-
rence relation:

ok, 1+ Af) = [1+ Ar— Ata®J(K)/ 8] (k1)

1
1+ Atkz{
+[- At (x,1) + 7(x, 0L}

After discretization, the noise term 7, in the way it ap-
pears in the last equation, is a random Gaussian number with
amplitude (27At/a*)"?. The dipolar interaction J(k) in Eq.
(12) is the fast Fourier transform (FFT) of the result of the
Ewald summation, evaluated at the beginning of the simula-
tion. The computational advantage of updating the system in
Fourier space is accomplished using an adaptative FFT
algorithm,?> where the main time consuming operations are
transforming Fourier the field ¢ and the (—¢*+ ) term and
then transforming back the new field value.

(12)

III. RESULTS

We performed simulations of the continuum_dipolar
model through Eq. (12). We analyzed the case =25, where
the ground state is a stripe modulated state with wave vector
k,,=1.014 47, which is close to 7r/3. Simulations were per-
formed for system sizes L=192 and L=384 for different tem-
peratures.

The existence of a nontrivial solution with wave vector k,,
of the Langevin equation (10) at zero temperature depends
on whether the term in Eq. (11) is negative at k=k,,. Before
the variable transformation, this could be done varying the
parameter r. After the transformation, the existence of a so-
lution is achieved only by tuning the mesh size a. We set a
=\5. The time integration was stable inside the range of
temperatures of the simulations using a time step Ar=0.5.

To measure the orientational order of the stripes, we first
consider the director field:

Vo(x)
V(x)

; (13)

A(x) =

which provides the local orientation of the stripe, when lo-
calized on a domain wall between opposite magnetizations.
An analogy between this quantity and the Frank director of
smectic liquid crystals has already been made on previous
works,?®28 and leads to the definition of a tensor order pa-
rameter:
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1
Qaﬂ(x) = na(x)nﬁ(x) - EacVIB? (14)

where «,8=1,2 are the Cartesian components. Similar to a
nematic order parameter in a liquid crystal, an orientational
order parameter Q can be defined as the positive eigenvalue
of the spatial average of the above tensor order parameter.”
This value corresponds to the quantity cos26, where 7
=(cos 6,sin 6) and 6 is the angle between the local director
field and the mean orientation of the system. However, since
the director field inside the stripe domains does not necessar-
ily provide the local orientation of the stripe, to get a more
precise value for the orientational order parameter, we aver-
age Eq. (14) only over domain wall sites, namely,

— 1
QaB=;2’QaB(X)’ (15)

where the prime denotes the restricted sum with L’ being the
total number of domain wall sites. Now, we can write explic-
itly the orientational order parameter as

0=\07,+ 0. (16)

One possible way to characterize the translational order of
the stripes is through a staggered magnetization defined as

1
me={ 732 senld(x)]sgnfeos(k-x)] ), (17)
X
where sgn is the sign function and for k, we use the ground
state wave vector.

The results we present here were obtained with the fol-
lowing procedure: the system is initialized in the ground
state and heated with a heating rate dy. At each temperature
of interest, the heating process is halted and the system is left
to run a transient period of n, time steps before we start
recording system configurations at each n,, time step, used
later to measure the desired quantities. Typical values of n,
were between 5 X 10* and 4 X 10° in order to get as close as
possible to equilibrium. To estimate both transient (n,) and
decorrelation (n,,) times, we analyzed the behavior of the
two-time correlation function for the different system sizes
and temperatures. Typical n,, values were in the order of 10°
and the results are averages over 20-60 system configura-
tions.

In Fig. 1, we show the results for the translational and
orientational order parameters. The data clearly show a phase
transition, where both kinds of order emerge at a finite tem-
perature. In the L=192 case, we found that the two order
parameters decay simultaneously to zero at 7=0.12, even
though the staggered magnetization drops significantly at T
=0.11. In the region in between, the translational order pa-
rameter seems to present strong finite size effects. As the
temperature is lowered in the ordered phase, a stripe struc-
ture develops gradually by the annihilation of defects (see
Fig. 3). Although we were unable to study in more detail the
finite size scaling near the transition, it seems improbable
that an intermediate, nematiclike phase with only orienta-
tional order can be present in this model. Although transla-
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FIG. 1. Order parameters as a function of temperature for L
=192. The open symbols correspond to the larger system size, L
=384. Thin vertical lines separate approximately temperature
ranges of the different regimes.

tional order decays faster than the orientational one, our re-
sults point to the presence of a single phase transition from a
disordered high temperature phase to a low temperature
phase with both orientational and translational orders. This is
one of the possible scenarios that emerge from a theoretical
analysis of a similar model by Abanov et al.!!

To take a closer look at the structural properties of the
different magnetic configurations, we calculated the static
structure factor

S(k) = (k) (18)
and the associated spatial correlation function, given by
1 ‘
Clr) = 752, e"¥s(K), (19)
k

that can be quickly computed using a fast Fourier
transform.>> The relevant directions for the spatial correla-
tion function are the directions parallel and perpendicular to
the stripes, respectively, denoted by C, and C,. These quan-
tities describe the translational order along the two relevant
directions. We have also computed nematic (or orientational)
correlation functions,?’-?® since they encode information on
the spatial decay of orientational order of the stripes. Nem-
atic correlations are defined as

ConlF) = 53 (Tr 0l + F1Q(Y) (20)

X

1
=172 (011(x+1)011(X) + Q1p(x +1)0p(x)),  (21)

where the function summed up in Eq. (20) is analogous to
(cos[260(x+r)—26(x)]). Examples of translational and orien-
tational correlation functions can be seen in Figs. 2 and 4 for
two different temperatures.

For low enough temperatures (7<<0.11), the nematic cor-
relations are strongly affected by residual oscillations of the
field ¢(x). In order to obtain accurate values for the orienta-
tional correlation function, we found convenient to smooth

054453-4



LANGEVIN SIMULATIONS OF A MODEL FOR ULTRATHIN...

before smoothing‘
5 after smoothing o

0.1

‘é 0.01
O
0.001
1 10 100
r
15 1
1 5
Q
A - 1 10 100
< 50 ¢ Vel ‘.‘ Lo & p R A a s 8 &
S o oh | AN ¢ (¥ A
O ) P4
¢ ® 1 7 ¢ ¢ It o) ¢ !
0 ) e ¢ o ¢ I
o ¢ 0] ¢ ® [}
| $ o) IREKT IR ®
@w o b °
¥y
0 10 20 30 40 50 60 70 80 90 100

FIG. 2. Correlation functions in the smecticlike region at 7
=0.1. The upper figure shows the connected orientational correla-
tion function in the perpendicular direction for L=384, plotted in
log-log scale, before and after the smoothing procedure. The con-
tinuous line corresponds to a fitting by the function Ar~%, with
a,=1.18 and A a fitting parameter. In the parallel direction, this
function decays immediately to zero. The lower figure shows the
parallel (inset) and perpendicular spatial correlation functions, both
for L=192. The parallel C, function is plotted in a log-log scale.
The continuous lines correspond to fittings by the functions »~“~x and
cos(kor)r™, with 0,=0.33 and »,=0.19 and ky=1.014. Similar
values were found in the L=384 case.

the tensor order parameter (14) following a smoothing pro-
cedure introduced in Ref. 28. We smooth the fields Q;,(x)
and Q;,(x) using for each the iterative process

1 1
furn®=2fu®+2 2 fux), (22

x’ eNN

where f,) is one of the fields after n iterations, and NN
means the four nearest neighbors of x on the square lattice.
We found that three iterations are enough to get sensible
results see Fig. 2. Similar smoothing procedures for orienta-
tional correlation functions were used in simulations of melt-
ing of two-dimensional solid systems.?*3! For clarity, in this
work, we always show the connected orientational correla-
tion function, where the mean square orientational order pa-
rameter is subtracted from Eq. (21). In this way, C,,, accounts
for direction fluctuations only. At sufficiently low tempera-
tures (7<<0.03), spatial correlations decay immediately to a
constant and there is translational and orientational long-
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FIG. 3. Typical configurations in the smectic phase for L=192 at
(a) T=0.1 and (b) T=0.104. In (a), the encircled region exhibits two
pairs of dislocations; above, there is a “passage” due to two dislo-
cations inserted in the same stripe, and below, a pair of dislocations
separated by one stripe. In (b), a pair separated by four stripes and
a pair formed by a larger Burgers vector dislocation and a double
dislocation.

range order (see Fig. 1 for the values of the order parameters
in the corresponding temperature regimes).

At slightly higher temperature and in a wide range (0.03
<T<0.11), we found evidence of a low temperature smec-
ticlike regime, similar to the smectic crystal phase predicted
by Abanov et al.'! and observed experimentally by Portmann
et al.” In this phase, undulation fluctuations (meandering ex-
citations) alone are sufficient to cause algebraic decay of
translational correlations at low temperatures for 7>0.03.
However, at 7=0.09, bound pairs of dislocations appear and
become more common as temperature increases. Long-range
orientational order persists over a wider range of tempera-
tures, but above 7=0.065, orientational order also starts to
decay algebraically.

An example of the algebraic behavior of the correlation
functions in this region is shown in Fig. 2 for 7=0.1. It is
important to note that the exponent of the translational alge-
braic decay in this regime increases with temperature and is
different in the perpendicular and parallel directions—
exponent values range from w,=0.034 and w,=0.036 for T
=0.035 to 0,=0.365 and w,=0.212 for 7=0.104. As for the
orientational order, we observe a small temperature depen-
dence of the algebraic decay exponent in the perpendicular
direction, with exponents lying in the range 1.18<<a<<1.43.
In the parallel direction, the orientational correlation function
is a constant, indicating long-range order in this direction.

In Fig. 3, we illustrate some typical configurations of this
phase. We see that it is characterized by undulation excita-
tions and a finite density of dislocation pairs, some different
types are shown encircled.

In a narrow range of temperatures, 0.11<<7'<<0.118,
where the orientational order parameter is still high but the
staggered magnetization drops considerably fast, we found a
change of behavior in the correlation functions. In the paral-
lel direction, translational order is decorrelated exponentially
rapidly to zero, indicating the absence of translational order
of the stripes. In the perpendicular direction, where order is
more robust, there is an intermediate kind of behavior where
the translational correlation function is better fitted by a
product of a power law and an exponential. An example of
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FIG. 4. Correlation functions in the nematiclike region at 7'
=0.114 and L=384. The upper figure shows the connected orienta-
tional correlation function in the perpendicular and parallel direc-
tions in a log-linear scale. The continuous lines correspond to fit-
tings by the function A exp(-r/\), with X\ ,=13.77 and \,=6.42.
The lower figure shows the parallel (inset) and perpendicular spatial
correlation functions. The parallel C, function is plotted in a log-
linear scale. The continuous lines correspond to fittings by the func-
tions A exp(-r/§&,) and cos(kgr)exp(-r/&,)r~®», with ¢ =10.17 and
£,=60.0 and »,=0.26 and k;=0.98. »

this behavior is shown in Fig. 4, where one can also see that
the connected orientational correlation functions now decay
exponentially in both directions but with different correlation
lengths. Orientational domains in this regime are larger in the
perpendicular direction.

Analyzing visually the configurations of this region, we
observe many excitations disrupting orientational order. A
typical configuration is shown in Fig. 5. We see that this
regime presents large Burgers vector dislocations that can be
regarded as a tightly bound pair of oppositely charged
disclinations.?® There are also what may be called a disloca-
tion cascade, a series of bifurcations within a single stripe
[colored in Fig. 5(a)]. Small domains of perpendicular orien-
tation [encircled in Fig. 5(a)] are present as well and become
more common and larger as temperature increases [see Fig.
5(b)]. Surrounded by topological defects, there are domains
of locally smecticlike arranged stripes, where order is de-
correlated mainly by meandering excitations and all kinds of
pairs of dislocations [some are encircled in Fig. 5(a)].

In order to estimate the transition temperature 7, between
the orientationally ordered and isotropic phases, we have
measured the orientational correlation length and susceptibil-
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FIG. 5. Typical configuration in the nematiclike region at (a)
T=0.114 and (b) T=0.116 for L=384. In (a), some defects are put
in evidence. In small circles, two pairs of dislocations inside smec-
ticlike domains; in the larger circle, a disclination dipole; shown
colored a series of dislocations inside a single stripe and in an
ellipse a domain of perpendicular orientation.

ity of Q in the isotropic phase. The results for L=192 are
shown in Fig. 6, together with power-law fits. We found that
T. lies close to 7.~0.117 and that divergences are well fitted
by power-law forms, at variance with the exponential diver-
gence that one would expect in a defect-mediated transition
according to the KTHNY theory.?®3° The power-law behav-
ior seems to be in agreement with a recent result in which the
nematic transition is predicted to be second order.'

Finally, we discuss the evolution of the structure factor,
Eq. (18), with temperature. In Fig. 7, we show four charac-
teristic examples around the transition. From the first to the
second plot, it can be seen that the sharp peaks characterizing
stripe order are replaced by nematiclike peaks, spreaded
along the ring |k| =k, due to angle fluctuations. The transi-
tion to the disordered phase seems to be through an increase
of domains of perpendicular orientation of the stripes. In the
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FIG. 6. Orientational correlation length (full symbols) and sus-
ceptibility (open symbols) as a function of temperature in the iso-
tropic phase. The continuous curves show power-law fittings,
namely, &,,(T) ~ (T—0.1172)""1% and y,,,(T) ~ (T-0.1161)709",

structure factor, this is reflected as the growth of two sym-
metric peaks around k=k,, in the perpendicular direction.
Immediately after the transition, at 7=0.118, the four sym-
metrical peaks are equivalent, as can be seen in the third plot.
As the temperature is further increased, angle fluctuations
around these two preferential directions smear out the four
peaks and the system becomes almost isotropic and the spec-
tral weight of the structure factor lies on a ring with a weakly
tetragonal shape, as shown in Fig. 7. A typical configuration
illustrating the weakly tetragonal symmetry of the disordered
phase just above the transition is shown in Fig. 8.

Not far away from the transition, the isotropic phase still
presents the exponential-algebraic behavior of position cor-
relations as in the nematiclike regime, indicating that it lo-
cally resembles the low temperature phase. The anisotropic
feature of the orientational correlation function disappears in
this phase, where C,, decays exponentially to zero.

IV. CONCLUSIONS

We have made Langevin simulations at finite temperature
of a model for ultrathin ferromagnetic films with perpendicu-
lar anisotropy. These systems have a stripe ground state due
to competition between exchange and dipolar interactions.
We have found a phase transition from a high temperature
disordered phase to a low temperature phase with both trans-
lational and orientational orders. Below, the transition point
isotropy is spontaneously broken, and a smecticlike magnetic
structure develops. Both kinds of ordering seem to take place
at the same T, in agreement with some previous theoretical
predictions. The absence of an intermediate, purely orienta-
tional phase is probably due to the isotropic nature of the
model Hamiltonian. Other terms, which explicitly break ori-
entational order, may be necessary in order to have an inter-
mediate nematic phase. This is what emerges from a recent
analysis of the nematic transition in this same model, where
an extra term was included and shown to be responsible for
the existence of an intermediate nematic phase.'® The nature
of these terms depends on microscopic interactions, namely,
on the modeling of the anisotropy contribution. In this re-
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FIG. 7. Structure factor at 7=0.1, 0.114, 0.118, and 0.14 for L
=384.

spect, more input from experiments is fundamental.

We have found that the numerical results show complex
magnetic structures, with translational and orientational cor-
relations decaying algebraically at low temperatures. Trans-
lational correlations have different exponents for the longitu-
dinal and perpendicular components, relative to the ground
state stripe orientation. The exponents are also temperature
dependent. In the case of orientational correlations, we ob-
serve a weak temperature dependence in the perpendicular
direction and a saturation to a constant value in the longitu-
dinal direction. Qualitatively, one can say that we observe
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FIG. 8. The left configuration shows the isotropic phase at T
=0.12 for L=192, presenting a target defect close to its center.
Small target defects are ubiquitous in this phase. At top right, we
show a large target defect in a portion of a L=480 configuration in
an out-of-equilibrium disordering process at 7=0.13. In the middle,
a portion of a L=384 configuration at 7=0.112 exhibiting a large
dislocation pair made of disclination pairs. Below, pairs of disloca-
tions at 7=0.104.

translational quasi-long-range order and orientational long-
range order at low temperatures.

As temperature grows, it is possible to observe a prolif-
eration of topological defects, with structures similar to those
observed in real systems. In a narrow region around the tran-
sition temperature, both translational and orientational corre-
lations begin to decay exponentially. A power-law fit of the
data of the orientational correlation length and the associated
susceptibility in the high temperature region allows us to
estimate the critical temperature. This power-law dependence
of the orientational correlation length does not agree with the
well known KTHNY theory of two-dimensional melting. We
do not know to what extent the predictions from this theory
should be applicable to magnetic two-dimensional systems
like this. Our results are in agreement with a possible sce-
nario for a smectic magnetic system put forward by Abanov
et al. more than 10 years ago'' and with a recent result on
the second order nature of the nematic transition in the same
model studied in this work supplemented by another term in

PHYSICAL REVIEW B 76, 054453 (2007)

the Hamiltonian which explicitly breaks orientational
order.'8

We found that the weak anisotropy of the dipolar interac-
tion due to spatial discretization and the short width of the
stripes (of three grid points) has led to a pinning effect that
favored the stripe orientation to be preferentially on the two
Cartesian directions. However, looking at the structure factor
around the transition, we found that the fluctuations respon-
sible for disrupting orientational order are not restricted to
the two Cartesian directions and the isotropic nature of the
model still manifests.

More quantitative analytic predictions are clearly needed
in order to assess the quality and limitations of our results.
Also, it would be extremely interesting to do systematic ex-
perimental measurements of structure factors and correla-
tions as a function of temperature, like the ones done by
Pescia and co-workers.>!1%32 This would allow, between
other things, to elucidate the experimental conditions under
which a nematic intermediate phase can be present in a mag-
netic system. The similarity between our simulations and ex-
perimental images of perpendicularly magnetized fcc Fe
films grown on Cu(100) (Refs. 2, 10, and 32) is striking. For
example, target defects first observed by Vaterlaus et al.'
were observed in our simulations and are ubiquitous in the
disordered phase (see Fig. 8). Finally, the dynamical behav-
ior of these systems also deserves to be studied, because the
presence of frustration and the emergence of many kinds of
topological defects lead to a complex dynamics, with pinning
of magnetic structures during long time scales, before the
final, asymptotic equilibrium state sets in.'”
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