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We report on systematic conductivity fluctuation measurements on three different samp1es of 
YBa2Cu30 7 _ 6 • We show, using the temperature derivative of the resistivity and the logarithmic deriva­
tive ofthe conductivity with respect to temperature, that the transition is a two-step process. In the nor­
mal phase, contributions from Gaussian and criticai ftuctuations are c1early evidenced. Far from T"' the 
Gaussian exponents indicate that a fractal topology might be adequate to describe the space dimen­
sionality of the ftuctuation spectrum. Closer to Te we observe a crossover to a three-dimensional (3D) 
homogeneous Gaussian regime. Still c lo ser to Te we unambiguously identify the exponent Àcr- O. 33, 
predicted by the simplest full dynamic scaling theory of criticai superconducting fluctuations. The ob­
tained exponent is consistent with a 3D, two-component, order parameter. Near the zero-resistance 
state, the temperature dependence of our data is rather consistent with power-law behavior, suggesting 
the occurrence of a phase-transition phenomenon related to the percolation granular network. 

I. INTRODUCTION 

The extremely small coherence length and the strong 
anisotropy are among the most distinctive properties of 
the high-temperature cuprate superconductors. A major 
consequence of these characteristics is the occurrence of 
large regions where effects of thermal superconducting 
fluctuations are visible in severa} of their temperature­
dependent properties. Since the early stages in the exper­
imental work, this raises the question of observing or not 
the scaling regimes dominated by genuine criticai fluctua­
tions. 1 Specifically concerning the electrical conductivi­
ty, however, up-to-date the most systematic reports avail­
able in the literature just evidence the regimes dominated 
by Gaussian fluctuations, either in YBa2Cu30 7 _ 6 (Refs. 
2-5) and Bi2Sr2CaCu20 8. 5•6 This is in contrast with re­
cent results on the specific-heat anomaly near Te, which 
are better described by supposing criticai, as opposed to 
Gaussian, fluctuations. 7•8 Results concerning the upper 
criticai field9 and the Ettingshausen effect10 were also in­
terpreted in terms of criticai fluctuations. As known, the 
experimental access to the criticai region gives informa­
tion not only on the degree of anisotropy of the supercon­
ductor, but also on the symmetry of the order parameter, 
which is important for modeling the pairing interaction. 

In this paper we study carefully the resistive transition 
of three independent samples of polycrystalline 
YBa2Cu30 7 _ 6 . We show that the transition proceeds as 
a two-step process. Using a simple but reliable method of 
analyzing the fluctuation conductivity results, we unam­
biguously identify a fully dynamical criticai regime with 
the expected exponent for a 3D-XY transition. More­
over, we characterize the regime dominated by Gaussian 
fluctuations and discuss their interplay with structural in­
homogeneities. We also briefly present results near the 
zero resistance state. 

11. EXPERIMENT 

We have prepared in different times three polycrystal­
line samples of YBa2Cu30 7 _ 6 following the standard 
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powder solid-state reaction technique. Care was taken to 
obtain well oxygenated and high-density sintered pellets. 
Two samples labeled I and 11 were measured soon after 
preparation. The third sample (sample 111) was first 
deoxygenated to 8=0.15 in vacuum at 450°C. After 60 
days approximately, sample 111 was reoxygenated back to 
8=0. Then the present measurements were taken. Al­
though restoring the behavior of the normal resistivity, 
the above procedure enlarges specifically the contribution 
of weak links to the width of the transition. 

Resistivity measurements were performed using a low­
frequency-low-current ac technique. A variable decade 
transformer and a lock-in amplifier were employed in a 
compensating circuit and as null detector, respectively. 
Relative sensitivities of 10-5 were easily attained. Tem­
peratures were determined with a Pt sensor with an accu­
racy of 1-2 mK. Data points were recorded while in­
creasing or decreasing temperature in sweeping rates of 
about 2 Klh. The large number of closely spaced points 
allowed us to numerically determine the temperature 
deriva tive of the resistivity near Te. 

111. RESULTS AND DISCUSSION 

A. Temperature derivative of the resistivity 

Figure 1 shows d p I dT as a function o f temperature for 
samples I and 111 · close to Te. The determination of 
d p I dT is a simple procedure for magnifying details o f the 
transition. 11 • 12 The asymmetric peak structure observed 
in Fig. 1 occurs systematically in polycrystalline sam­
p1es 13 and may be discerned in some single-crystal data. 14 

This indicates that the transition in YBa2Cu30 7 _ 6 is a 
two-step process, a feature which should be properly tak­
en into account when analyzing fluctuation conductivity 
data. The position Tep of the sharp maximum in dpldT 
corresponds approximately to the bulk criticai tempera­
ture. Above Tep the transition is dominated by supercon­
ducting fluctuations in the normal phase. In the low­
temperature side of the dpldT maximum of sample I, in 
Fig. l(a), one may discern a faint hump which develops 
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FIG. 1. Temperature derivative of the resistivity near Te for 
samples I (pane! a) and 111 (pane! b) described in the text. 

into a secondary and rounded peak in sample 111. This 
feature is current dependent13• 15 and is related to a 
thermally controlled percolation-type process, which is 
strongly dependent on the meso- and macroscopic 
inhomogeneities affecting superconductivity m 
YBa2Cu30 7 _ 6• 13•16 

B. Method of analysis 

We analyze our data by adopting the simplest ap­
proach where fluctuation conductivity, or paraconduc­
tivity, diverges as a power law ofthe type17 

(1) 

where E= ( T- Te ) /Te is the reduced temperature, À is 
the criticai exponent, and A is a constant. !la= a-a R 

is obtained from the measured a by subtracting the regu­
lar conductivity a R. As commonly done, a R is calculat­
ed from extrapolations of the high-temperature behavior: 

(2) 

where p0 and d p R I dT are constants. In our samples, the 
linear resistivity behavior holds above 150 K, approxi­
mately. Instead of analyzing our results directly with Eq. 
(1) we determine the logarithmic derivative of !la from 
the experiment and define 

d 
Xu=- dTin(!la). 

Using Eq. (1) we obtain 

- 1-=l_(T-T) 
Xu À c ' 

(3) 

(4) 

which is formally analogous to a Curie-Weiss susceptibili-

ty in a ferromagnet, with the criticai exponent playing 
the role of the Curie constant. Thus, simple identification 
of linear temperature behavior in plots of 1 IXu versus T 
allows the determination of Te and À. The amplitude A 
remains undetermined. However, as far as the absolute 
values of the intrinsic conductivity are not accurately 
known, A is a less useful parameter. 

The main source of uncertainty in our analysis comes 
from the extrapolation procedure to estimate PR near Te, 
as in most paraconductivity studies. Errors introduced 
by the numerical calculation of the deriva tive 

_ _!!:____ ( !la ) = _1_ !Jp_ __ 1_ d P R 

dT p1 dT p~ dT 
(5) 

are partially compensated because the term involving p R 

in Eq. (5) is small compared to the term containing the 
total resistivity p near the transition. 

C. Fluctuations in the normal phase 

Figures 2 and 3 show representative results for 1 IXu as 
a function of temperature for samples I and 111, respec­
tively. Results for sample 11 look very similar to those 
for sample I. The measurements were repeated from 5 to 
8 times for each sample, under variation of conditions as 
the sense ofthe temperature drift or the current density. 

From Figs. 2 and 3 it is clear that the transition is a 
two-step process, which should be described by different 
phenomenologies above or below Tcp. Above Tcp, de­
tailed inspection reveals that the best description of 1 IXu 
is given by successive straight lines which can be fitted to 
limited but reproducible temperature ranges. In the ma­
jority of measurements we could fit four power-law re­
gimes, corresponding to different exponents. These are 
labeled by the indices À1, À2, À3, and Àcr• as shown in 
Figs. 2 and 3 and Table I. 
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FIG. 2. Representative plot of the logarithmic T derivative 
of the paraconductivity as a function of T for sample I. Straight 
lines correspond to fits to Eq. (4). The respective exponents are 
quoted. Tcp indicates the maximum of dpldT. 
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FIG. 3. The same as Fig. 2 but for sample 111. 

1. Gaussian jluctuations 

The regimes farther from Te, À1 to À3 are dominated by 
Gaussian fluctuations. The regime À1, well above Te, is 
the most affected by experimental errors and uncertainty 
in PR. However, by performing averages over the several 
measurements, we obtain the mean value of the charac­
teristic exponent, À1 = 1. 32±0. 15. The second power-law 
regime is characterized by the exponent À2 =O. 85 ±O. 09. 
Closer to Te, the third Gaussian regime is described by 
the exponent À3 =0.51±0.06. 

On the basis of the Aslamozov-Larkin theory17 for 
fluctuation conductivity, one should expect exponents 
given by 

d À=2--
2 ' 

(6) 

where d is the dimension of the fluctuation system. Our 
exponents À1 and À2 do not correspond to integer dimen­
sionality. Nevertheless, we may reconcile these results 
with the Gaussian theory by supposing that fluctuations 
develop in a space having fractal topology. In this case, 
as shown by Char and Kapitulnik, 18 the conductivity ex­
ponent should be written as 

À=2- ã 
2 ' 

(7) 

where iJ is the fracton dimension of the fluctuation net­
work. lt is indeeded known that inhomogeneities in the 
microscopic and mesoscopic scales strongly affect severa! 
properties of the high-Tc superconductors. Concerning 
paraconductivity in particular, claims for fractality have 
been reported in the Bi-based systems5•19•20 and 
YBa2Cu30 7 _ 6• 13•21 The third Gaussian exponent, À3, 

corresponds to a homogeneous 3D regime, according to 
Eq. (6). 

In the following discussion we assume that the coher­
ence length varies as in the Ginzburg-Landau theory, 
5( T) = 5( O )E -I 12, and ali the anisotropy is contained in 

5(0). Then, using the value9 5ab(0)==:13 Á, we obtain 
that in the quasifilamentary À1 regime, the length of the 
superconducting droplet ranges about 50-70 Á. This is a 
rather short-range scale, where fractality should come 
from microscopic defects as oxygen vacancies. Domi­
nance of the 1D character could indicate some role of the 
Cu-O chains along the b axis. In spite of the large error 
bar we note that the average value of À1 is consistent with 
ã,., ·h which is the well-known fracton dimensionality of 
the percolation network. 22 

The exponent À2 corresponds to a crossover regime be­
tween 2D and 3D geometry. Using9 5e(0)=2 Á, one cal­
culates that the superconducting droplet reaches about 
12-16 Á along the c direction in this temperature range, 
showing that fractality in this case could result mainly 
from imperfect coupling between superconducting 
planes. lt is noticeable that the value À2 =O. 85 corre­
sponds to d = 2. 3, which is close to 1 +f, a value already 
found by Ausloos et al. 5 in a Bi-based compound. Thus, 
the quasi-2D À2 fluctuations might be roughly visualized 
as homogeneously planar in the ab plane and percolation 
structured perpendicular to the plane. 

The exponent À3 =O. 5 is just the predicted one for 
homogeneous three-dimensional fluctuations. In the cor­
responding temperature range, the droplet would reach 
sizes o f 100-150 Á in the plane and 17-24 Á in the c 
direction. In this length scale fractality becomes unob­
servable probably because the superconducting coherence 
length 5 becomes larger than the percolation coherence 
length, 5P" Indeed a crossover from the fractal regime 
(5<5p) to a homogeneous regime (5>5p) would be ex­
pected for bulk intragranular fluctuations, as in this case 
the percolation backbone would be linked to the defect 
structure, which gives a 5p essentially temperature in­
dependent. 5 

2. Criticaljluctuations 

The fourth power-law regime in Figs. 2 and 3 and 
Table I is labeled by the exponent Àcr· This corresponds 
to genuine criticai fluctuations which were predicted to 
occur by Lobb1 but was not unambiguously identified in 
previous fluctuation conductivity results in 
YBa2Cu30 7_ 6• Figure 4 is an expanded view of the criti­
cai regime for sample I. 

In the criticai region, the full dynamical scaling 
theory23 predicts that the paraconductivity diverges at Te 
as 

(8) 

where v is the coherence length criticai exponent, z is the 
dynamical criticai exponent, and 11,., O describes the 
departure from the Ornstein-Zernike behavior in the or­
der parameter correlation function. The simplest 
description of the superconducting transition supposes 
that the Ginzburg-Landau order parameter is just de­
scribed by the 0(2) rotation group.24 This means that the 
thermodynamic properties of superconductor in the criti­
cai region are the same as a 3D-XY model.24 Then, as 
done by Lobb, 1 one should substitute v= f, z =f, and 
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T ABLE I. Exponents that characterize conductivity fluctuations in the normal phase of 
YBa2Cu30 7 _ 6, Values are obtained from fits of experimental data to Eq. (3) (see text). The reduced 
temperatures indicate the range of validity of each regime. 

Criticai fluctuations Gaussian fluctuations 

Exponents Àcr À3 Àz Àt 
Reduced temperature 

Sample I 
Sample 11 
Sample 111 
Averages 

0.0026 <E< 0.0064 
0.30±0.04 
0.36±0.06 
0.32±0.01 
0.33±0.03 

0.008 <E <0.015 
0.55±0.09 
0.49±0.06 
0.49±0.04 
0.51±0.04 

0.016 <E< 0.032 
0.85±0.07 
0.88±0.1 
0.81±0.1 
0.85±0.05 

0.038 <E< 0.07 
1.4 ±0.1 
1.25±0.3 
1.32±0.06 
1.32±0.11 

d =3 in Eq. (8) to obtain Âa~( T- Te )-0· 33, which is ex­
pected to be valid very close to Te, where dynamic scal­
ing effects become dominant.23 This is just the behavior 
observed in our samples, where we obtained 
Àcr=O. 33±0.03. Consequently, criticai fluctuation con­
ductivity in YBa2Cu30 7_ 15 is consistent with the simplest 
superconductivity theory, corresponding to s-wave pair­
ing, which has a single complex (two-component) order 
parameter. 

From our results we may estimate the Ginzburg re­
duced temperature e6 =(T6 -Te)ITe below which 
mean-fi.eld theory ceases to be valid. W e calcula te a criti­
cai width, TeeG "'='0.6 K, which falls in the range of other 
estimations in Ref. 25. 

D. The approach to the zero resistance state 

Decreasing the temperature below the minimum where 
Tep is located we enter into a region where liXa goes to 
zero, as shown in detail in Fig. 5 for samples I and 11. 
This regime is difficult to explain. Interpretations have 
been proposed in terms of dissipative flux motion, which 
are likely to be correct in the presence of strong magnetic 
fi.elds. 26 On the contrary, some authors argue on a phase 
transition phenomenon involving quenched disor­
der.21,27,28 
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FIG. 4. Expanded view of data in Fig. 2 (sample I) near Te. 
The power law denotes the criticai regime with the quoted ex­
ponent (see Table 1). 

Most conventional flux-creep formulas do not describe 
results in Fig. 5. The simplest empirical description of 
these data is given by power laws of the type 

(9) 

where the reduced temperature E0 = ( T - Teo ) ITeo is re­
lated to another criticai temperature, Teo, which is close 
to the so-called zero resistance temperature. We general­
ly identify two straight lines in plots like those of Fig. 5, 
corresponding to exponents s 1 and s 2, displayed in Table 
11. Our exponents seem to be sample independent for a 
certain interval of (low) current density. This probably 
does not hold for large current variations. 15·27 

Power-law behavior is rather suggestive of a phase 
transition phenomenon. Indeed, the exponent s 1 = 2. 7 
have been encountered by Rosenblatt and co-workers28 in 
granular superconductors constituted by assemblies of 
small metallic particles embedded in an insulating matrix, 
and in ceramic YBa2Cu30 7_ 15 as well. Rosenblatt29 pro­
poses an interpretation based on a paracoherent-coherent 
transition of the granular array, where the fluctuating 
phase of the order parameter in each grain becomes 
long-range ordered as a consequence of activation of 
weak links between the grains. 
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FIG. 5. Expanded view of data in Fig. 3 (sample 111) in the 
regime approaching the zero-resistance state. Straight lines cor­
respond to power-1aw behavior with the quoted exponents (see 
Table 11). The inset shows similar results for sample 11. 
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T ABLE 11. Exponents corresponding to power-law behavior 
in the regime approaching the R =O state, Eq. (8). Values are 
obtained from fits ofthe experimental data to Eq. (3). 

Exponents Sz s1 

Sample I 3.9±0.6 2.9 ±0. 7 
Sample 11 4.0±0.9 2.6 ±0.2 
Sample 111 4.3±0.6 2.59±0.05 
Averages 4.1±0.4 2.7 ±0.3 

The exponent s2 ""'4 is harder to understand. This un­
common and rather high value might be consequence of 
fractal-related effects, in analogy to the case of intragrain 
fluctuations. For instance, certain physical fractais are 
more compact at short-length scales than in large aggre­
gates. 30 This would imply a crossover in the appropriat­
ed fractal dimension as large clusters are coming into 
play closer to Teo. For the moment, beca use of the lack 
of an appropriate theory, we should not discard the possi­
bility that the exponent s 2 refers to a noncritical effect. 
Clearly more detailed studies, either experimental and 
theoretical, are needed to clarify the behavior of the resis­
tivity very close to the R =O state in the high-Te super­
conductors. 

IV. CONCLUSIONS 

We study experimentally the fluctuation conductivity 
and the nature of the resisti v e transition in three samples 
of polycrystalline YBa2Cu30 7_ 11 • Analysis of the tem per­
ature derivative of the resistivity near Te reveals that the 
transition is a two-step process, a feature which should be 
properly taken into account when discussing fluctuation 
conductivity results. Using a method based on the deter­
mination of the logarithmic derivative of the conductivi-
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conducting transition isomorphic to that of a 3D-XY 
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width of ~O. 6 K above Te. 

In the regime approaching the zero-resistance state, 
the data are better described in terms of power-law be­
havior. This is rather suggestive of the occurrence of a 
phase-transition phenomenon involving the percolation 
granular arrangement, where the long-range ordering is 
achieved through activation of weak links between the 
grains. 
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