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The local densities of states of an extended Hubbard model describing the Cu02 planes of 
superconducting cuprates are calculated by means of an approximate treatment that divides the 
lattice into Cu02 clusters. The exact diagonalization of the Hamiltonian on these trimers is utilized 
to solve the lattice problem, where the hopping between different trimers is treated as a perturbation. 
The hole concentrations on both orbitais and the amplitude of the staggered magnetization are 
obtained as a function of the total number of holes. The overall sbape of the band structure is 
in good agreement with exact diagonalization on larger clusters. The stoichiometric compound is 
found to be metallic in the paramagnetic phase, but becomes a charge-transfer insulator in the 
antiferromagnetic phase. Electron and hole doping introduce a new band at the bottom or at the 
top of the charge-transfer gap, respectively. Magnetic order is destroyed when the antiferromagnetic 
phase becomes unstable against tbe paramagnetic pbase. 

I. INTRODUCTION 

After intense theoretical and experimental research on 
the high-Tc superconducting cuprates, it is widely ac­
cepted that their peculiar electronic properties arise from 
the common Cu02 planes. In particular, the relevant or­
bitais are 3d.,2 -y2 for copper and 2p.,,y for oxygen. These 
oxides are insulating in the stoichiometric phase, and 
the copper sublattice exhibits antiferromagnetic order.1•2 
The effect of doping is to introduce carriers into the 
planes, inducing high-Tc superconductivity. 

Both local electronic correlations and covalency 
are taken into account in the three-band Hubbard 
Hamiltonian, 3•4 which provides a realistic description of 
these compounds. The doping dependence of hole dis­
tribution and the fast disappearence of antiferromag­
netic (AF) long-range order under doping5 - 8 have been 
studied by means of different approaches, namely, the 
Hartree-Fock approximation,9 the local ansatz method,10 

a mean-field approximation that includes the disor­
der introduced by holes,11 and mean-field slave-boson 
techniques.12•13 Also, in Ref. 12, a band was found into 
the charge-transfer (CT) gap. 

A discussion of the doping dependence of the ob­
served spectral weight transfer14- 17 and the distinction 
between Mott-Hubbard and charge-transfer systems is 
given by Eskes, Meinders, and Sawatzky, 18 based on the 
exact diagonalization of one-dimensional clusters. Refer­
ences 19-23 explore the mapping to a t-J model and a 
one-band Hubbard model. The dynamics of charge car­
riers has been studied in the context of these simplified 
versions. 24- 27 

The ground-state energy of the three-band Hubbard 
Hamiltonian on different clusters (up to eight unit cells) 
has been computed by applying the Lanczos algorithm 
for numerical diagonalization.28- 30 Roles are shown to 
bind when the nearest-neighbor Cu-O repulsion is in-
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cluded. Dopf et al. 31 calculated the spectral density of 
the model in the presence of hole doping assuming lo­
cal correlations only on the copper sites. They applied 
exact diagonalization to a cluster with 2 x 2 unit cells 
and a quantum Monte Carlo approach to a 4 x 4 clus­
ter. The results show that the Zhang-Rice state forms a 
dispersive band crossing the Fermi energy. Lanczos and 
Monte Carlo studies of the three-band Hubbard Hamil­
tonian have also been carried out by Scalettar et al.,32 
who found that the AF correlations decrease with either 
electron or hole doping, and that the additional holes 
(electrons) go primarily to the O (Cu) sites. 

The one-particle spectral densities on a Cu40 8 clus­
ter (including interatomic correlations) have been calcu­
lated numerically by Balseiro, A vignon, and Gagliano. 33 

The exact diagonalization on a Cu4 0 13 cluster performed 
by Maekawa, Ohta, and Tohyama34 provides reliable in­
formations about the electronic states of the model. In 
particular, the CT gap is redefined by the presence of 
the Zhang-Rice (ZR) singlet band, and an in-gap band is 
formed upon carrier doping. 

A current shortcoming in finite-size system calcula­
tions is that the band structure arises from Lorentzian 
broadening of the electronic leveis, so that the band edges 
are not well defined. A more proper broadening should 
take into account the lattice geometry, not only inside 
the basic cluster but also among the different clusters. 

In this paper we develop an approximate solution of the 
three-band Hubbard model in which the two-dimensional 
lattice is considered as a periodic array of Cu02 clusters 
(trimers), and the hopping between different trimers is 
treated perturbatively. The calculated local densities of 
states on Cu and O sites consist of a number of nar­
row bands with typical two-dimensional shape. These 
bands arise from the energy leveis of an isolated trimer, 
which are obtained through exact diagonalization. In or­
der to study the effect of doping, we concentrate on the 
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trimer expansion, and define a simple interpolation to 
span ali values of hole concentrations. The overall band 
structures of the stoichiometric and doped systems are 
quite similar to those of the C114013 cluster.34 An effect 
of doping is to introduce new states inside the CT gap. 
We calculate the hole concentrations on Cu and O sites 
and the position of the chemical potential as a function 
of the total number of holes per trimer n in the para­
magnetic (PM) and AF phases. For the stoichiometric 
system, the PM phase is found to be metallic, whereas 
the AF phase is insulating. The disruption of AF order 
with doping is studied by calculating the internai ener­
gies in both phases. The criticai values are consistent 
with experimental findings. s-s 

The validity of the present approximation has been 
recently examined for the one-band Hubbard model on 
a dimerized square lattice.35 where we concentrated on 
the paramagnetic half-filled-band case and considered the 
effect of temperature. Here, in the Cu02 lattice, the 
physics is mainly governed by the charge transfer be­
tween the two orbitais involved, and the more relevant 
questions concern the doping dependence, so we will re­
strict ourselves to the zero temperature limit. 

In the next section, we present the model Hamiltonian 
and apply a Green function technique to obtain the local 
spectral functions of the PM phase. In Sec. III, an AF 
solution is considered. Results are discussed in Sec. IV. 

11. TRIMERS LATTICE APPROACH 

We write the three-band Hubbard Hamiltonian in a 
modified notation, with reference to the trimers lattice 
ofFig. 1. 

1l = :~:)1l?au + Viau), (1) 
iau 

where 

FIG. 1. The Cu02 lattice. Stars represent O sites; white 
and black circles are Cu sites with up and down magnetic 
moments, respectively. 

and 

Viau = -t(c!a,.do+l,a,u- a!a,.do,a+l,u 

+d!auCi-l,a,u - d!a,.ai,a-l,u ). (3) 

The pair of índices ia give the position of each trimer on 
a square lattice. b!au (biau) is the operator that creates 
(annihilates) a hole with spin u on a "b" site ofthe trimer 
ia ( b= a or c for the oxygen sites, or d for the copper 
site), and n~ = b! b,·a-· ..:l is the energy difference '&Q(T 100' ... 

between p and d orbitais, Ud and Up are the Coulomb 
repulsive interactions on copper and oxygen ions, respec­
tively, and t is the hopping between neighboring p and d 
orbitais. 

The fi.rst step is the exact diagonalization of 1l?a = 
"' 1l9 . The largest size, 4 x 4, of the irreducible matri-L...Jtr 100" 

ces involved can be further reduced to 3 X 3 if we make the 
simple assumption Ud = UP + 2..:l, which is not far from 
realistic parameter values. The eigenvalues and eigenvec­
tors of the Hamiltonian 1l?a in the subspaces of O, 1, 2, 
and 3 particles are shown in Table I, where we make use 
of the definitions 

..:l+R1 
tan 01 = tn , 

2tv2 

(} ..:l+UP +Ra 
tan a= tn , 

2tv2 

,~,. . _ 1 2..:l + Up - Ài 
tan '1'2,• - v'3 2..:l - Ài 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

and Ài (i= 1, 6, 9) are the roots of the cubic equation 

(2..:l- .X)(2..:l + UP - .X)(..:l -.X) = 2t2 (8..:l + Up - 4-X). 

(10) 

The particular case ..:l =O, Ud = Up corresponds to the 
one-band Hubbard model and was considered in Ref. 36. 

The trimer's Green functions g~}(w) for fi.xed number 
of particles n ( = O, 1, or 2) per unit cell are obtained by 
the spectral representation, after evaluation of ali matrix 
elements involving the corresponding ground state l(n)}. 
They can be written in the form 
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TABLE I. Eigenvalues and eigenvectors of 1/.0 for O, 1, 2, and 3 particles. 
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TABLE I. ( Continued). 

E3,s = 3-!l + Up - 3Jt 13 5 ) _ 1 ( t t t t dL.Jt dt _.t -t t t t) lO) , u - 2 aa-tliTCCT - au uUoo - CT~t + aa:CuC-jy 

A(n) 
(n) _ "'"" l,bb' gbb'- .L.....--, 

I W -pl 
(11) 

where 

A}],, = L [hE;,E(n)+Pl (ijbtj(n)}((n)jb'ji} 
i 

(12) 

E(n) being the ground-state energy for n particles. 
The unperturbed Green functions gg,, are expected to 

be continuous functions of the hole concentration n. The 
form of such dependence is rather obvious in an atomic 
expansion, the Hubbard I approximation, where a self­
consistency can be straightforwardly defined for both PM 
and AF solutions. 37- 39 For the present trimer expansion, 
we assume that the hole propagates on an effective lattice 
composed by two kinds of trimers: one having an integer 
number no of holes and another with n0 + 1 holes. The 
concentrations of both trimer species are functions of the 
average number n o f holes per trimer, with no :5 n :5 
n0 + 1. Here we choose a simple, smooth interpolation 
between n0 and no + 1: 

Dbb•= { 
(1 - n)uf1l + ng~} 

(1) (2) (2- n)g66, + (n- 1)gbb, 

if O :5 n :5 1, 

if 1 < n :52, 

(13) 

where b, b' = a, d, or c. Fractional values of n would be 
more properly described if one could increase the size of 
the basic cluster. 

The remaini.ng one-particle term, ~a.,., in (1) is in­
cluded by assuming Dyson-like equations for the lattice 
Green functions G~6, (ia; j /3) describing the propagation 
of an electron from site b' of a given trimer (j/3) to site b 
o f trimer (ia). Taking into account the symmetry o f the 
lattice, these equations can be grouped in matrix form as 

G"'(ia;j/3) = bij5a~g'[- gf {T+G"'(i + 1, a;j/3) 

+'Í'+G"'(i -1,a;jf3)- T_G"'(i,a + 1;jf3) 

-'Í'_G"'(i,a -1;j/3)}, (14) 

where 

gf = ( :?: 
D!c 

( o o o) 
T+ = O O O , 

o t o T-=(~~~)· o o o 

Fourier transformation yields 

with 

where ais the lattice parameter. 
From the inverse transformation, 

G"'(ia;j/3) = ~ }:G"'(k)e-ik·(R; .. -R;~l, 
k 

we obtain the local Green functions 

G;ú = gdd y "'1"" d 21r _,. JP(cosy)' 

Gcr = 2_ 1"" d a4 + a5 cos y 
aa 2 yv ' 

1T -,.P(cosy) 

and 

G"' = 2_ 1"" d D!d - taa cos y 
ad 2 Y V ' 1T _,.P(cosy) 

where 
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(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 
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a1 = 4t2 (9:a) 2 , (25) 

a2 = -4tg:a[1 - 2t2gaa(9:a + 9:c)], (26) 

a3 = 1- 4t2gdda4, (27) 

a4 = 9:a + t 2 (9:a + 9:c)aa, (28) 

as = -2tgad(9:a + 9:c), (29) 

aa = 2(g:a)2 + 9d.t(9:c- 9:a)· (30) 

The local densities of states (LDOS) p(w) on Cu and 
O sites, shown in Figs. 2, 3, and 4 for n = O, 1, and 
2, respectively, arise from the imaginary part of these 
Green functions, which we obtain by numerical integra­
tion of Eqs. (21) and (22). We have chosen the param­
eter values .6. = 2.6t, Up = 4.6t, and Ua = 9.8t. The 
energy w is given in units of t and measured with respect 
to .6./2. The arrows mark the position of the chemi­
cal potential. The different bands originating from the 
one-particle energy leveis of the Cu02 trimer have typi­
callow-dimensional shape, with logarithmic singularities 
and sharp band edges leading to well-defined gaps. 

In the absence of correlation, the densities of states in 
Fig. 2 would be filled in a rigid band way. In addition 
to the hybridized bonding and antibonding bands, there 
is an oxygen nonbonding band at w = .6./2. Each one of 
these bands can accommodate up to 2.00 holes. The CT 
gap E9 conserves its atomic value .6.. 

By comparing Fig. 3 to the spectral functions ob­
tained from exact diagonalization on a Cu4 0 13 cluster,34 
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FIG. 2. LDOS on Cu and O sites for n = O in the PM 
phase. Units and parameters are specified in the text. 

~ 
a s 

2.0 

1.6 

12 

0.8 

0.4 

0.0 

2.0 

1.6 

1.2 

0.8 

0.4 

0.0 
-4.0 

~\ 1/ 
\ 

\J/l 
0.0 

-·--
i 

o 

I } l 

Cu 

4.0 8.0 12.0 

O) 

FIG. 3. Same as Fig. 2 but for n = 1. The arrow indicates 
the position of the chemical potential. 
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FIG. 4. Same as Fig. 3 but for n = 2. 
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FIG. 5. Chemical potential p. in the PM (dashed) and AF 
(solid) phases as a function of the total number n of holes per 
trimer. 

where slightly different parameter values were employed, 
we find good agreement in the position of the bands. We 
observe that E9 is reduced by the presence of the band at 
w Rj 0.7t, with predominantly O character, which corre­
sponds to the Zhang-Rice singlet band.34•31•19 Indeed, in 
our treatment, this band originates from the transition 
between the trimer's ground state of one particle {11, lu}) 
and the lowest energy state of two particles {12, 1} ). In 
the large Up {and Ud) limit, 

(31) 

where 

-~.t = _!_ (at _ ct) 
'1-'a "\1'2 a a • {32) 

By direct integration one verifies that the total weight of 
the lower band is Rj 1.13, so that the chemical potential 
p. is clearly located below the CT gap. 

lnspection of Fig. 4 shows that the width of the lower 
band decreases monotonically as n increases, whereas the 
width of the ZR singlet band increases. The very narrow 
band at w Rj -2.5t arises from the pole E 2 ,1 - E 1,2 (see 
Table I). 

For intermediate values of n, we make use of the in­
terpolation defined in Eq. (13). The dashed line in Fig. 
5 gives the chemical potential p. (measured from l::../2) 
as a function of n. The CT gap corresponds to the dis­
continuity at n Rj 1.10. The doping dependence of the 
hole concentrations on Cu and O orbitais is shown by the 
dashed lines in Fig. 6. H the PM phase could be stabi-

0.8 

0.6 

0.4 

1.5 2.0 

FIG. 6. Hole concentrations on Cu and O sites in the PM 
(dashed) and AF (solid) phases, and the staggered magneti­
zation (dotted) as a function of the total number n of holes 
per trimer. 

lized, practically ali doped boles ( until the concentration 
n Rj 1.10) would go to the Cu sites. 

111. THE ANTIFERROMAGNETIC PHASE 

In the AF phase, we define two sublattices, with 
gj = g'[ for i, j belonging to different sublattices. The 
"down spin" trimers (marked by black circles in Fig. 1) 
are eliminated by using Eq. {14). In the new lattice 
ali trimers are equivalent and each one is connected to 
eight neighbors {its nearest-neighbor and next-nearest­
neighbor trimers) through renormalized hopping matri­
ces. 

We assume that an infinitesimal magnetic field h re­
solves the ground-state degeneracy for n = 1, so that g~~l 
is replaced by spin-dependent definitions g~~la. Follow­
ing the procedure adopted in the nonmagnetic solution, 
we obtain 

(33) 

where 

(34) 

~)' g~ 
(35) 

and 

-g!'de"•·a' (1 + eikva') 

2g~c cos k11a1 

n!teik.a' (1 + e-ik,a') 
(36) 
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witb a' = a../2. 
We can write tbe following expressions for tbe local 

Green functions: 

Gd"d = 1T~ (.-\~lo + >.U1) , (37) 

and 

,. F 1 ( '" '"I '"I ) Gad = -2 ,. + 4 ,. C Aolo + /\1 1 + /\2 2 , 
Yad 1Tgad 

(39) 

wbere 

1 -11 yndy (40) 
n - _ 1 J(l- y2)(r- y)(s- y)(u- y)(v- y). 

Tbe new quantities appearing above are defined in tbe 
Appendix. 

Tbe first term in Eq. (38) gives rise to tbe nonbonding 
part of tbe band structure, consisting of a number of 8 
functions. This term is also present in Eq. (22), altbougb 
not explicitly. 

Tbe LDOS determine tbe concentrations (n:}, (n:}, 
and also tbe Fermi energy tbat corresponds to tbe given 
n [= :E,.((n:) + 2(n:))]. Figure 7 sbows tbe calculated 
spectral functions of tbe undoped system. Comparing 
to the PM case in Fig. 3, we observe a narrowing in 
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FIG. 7. LDOS for n = 1.0 in the AF phase for up and down 
spin on Cu and O sites. 

tbe lower band. Witb tbe new distribution of spectral 
weigbt among tbe bands, tbe Fermi level falls in tbe CT 
gap. Logartbmic singularities are observed at botb edges 
of this gap. 

Figures 8 and 9 illustrate tbe influence of doping on 
tbe spectral functions for n = 0.95 and n = 1.01. Com­
paring to tbe stoichiometric LDOS of Fig. 7, we see tbat 
electron doping (Fig. 8) produces a new band inside the 
CT gap near tbe lower band. For bole doping (Fig. 9), 
tbe corresponding band appears at tbe opposite side of 
tbe CT gap, througb tbe splitting of tbe ZR band. Tbus 
tbe assumption of tbe interpolation defined in Eq. (13) 
produces tbe same qualitative bebavior emerging from 
cluster diagonalization. 34 

Tbe cbemical potential p, as a function of tbe total 
number of boles per trimer n is sbown by tbe solid line in 
Fig. 5. Tbe doping dependence of tbe Cu( 3d) and 0(2d) 
bole densities and tbe magnetization on tbe Cu sites can 
be seen in Fig. 6 (solid line). As in tbe PM pbase, doped 
electrons prefer tbe Cu íons, but doped boles go mostly 
to O sites. 

Altbougb tbe AF phase is defined in the wbole range of 
concentrations, we know tbat magnetic order is destroyed 
for a sufliciently large amount of doping. Tbus one bas 
to examine tbe relative stability of tbe two pbases we 
are considering. Tbe internai energy per unit cell can be 
calculated througb 
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FIG. 8. Low energy part of the LDOS for up and down 
spin ( solid and dashed !ines, respectively) on Cu and O sites 
in the AF phase for n = 0.95. 
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FIG. 9. Same as in Fig. 8 but for n = 1.01. 

(41) 

where p(w) is the total LDOS of the trimer, and 

An equivalent expression for the one-band Hubbard 
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-1.4 
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n 

FIG. 10. Internai energy per trimer as a function of the 
hole number in the PM (dashed) and AF (solid) phases. 

model has been utilized in Ref. 40, where the derivation 
is indicated. 

Figure 10 shows the energy E as a function of n. One 
can see that the AF phase is stable between n :::::: 0.70 
and n:::::: 1.02. The stoichiometric concentration n = 1.00 
corresponds to a local minimum o f E ( n). In the region 
where the two curves coincide, the PM phase should be 
stable, because one can no longer justify the introduction 
of the infinitesimal magnetic field h that gave rise to the 
AF phase. 

IV. CONCLUSION 

An approximate Green function formalism has been 
developed for the three-band Hubbard model. The 
Hamiltonian is divided in such a way that it preserves 
in the unperturbed part, i.e., inside the trimers, part of 
the competition between local correlations and itineracy. 

The emerging physical picture is the following: as par­
ticles fill the band structure shown in Fig. 2, its shape 
is continuously changed (Figs. 3 and 4) in order to ac­
count for the Coulomb repulsions UP and Ud. One can 
identify the presence of the Zhang-Rice singlet band near 
the top o f the CT gap. In the PM phase, this gap is only 
crossed by the chemical potential for n :::::: 1.10, as indi­
cated by the jump of 11-( n) in Fig. 5 ( dashed line). The 
insulating character of the stoichiometric compound is 
verified in the AF phase (solid line), where the discon­
tinuity is shifted to n = 1.00. With reference to the 
stoichiometric densities of states in Fig. 7, one observes 
that in-gap bands are formed upon carrier doping. For a 
larger amount of doping, these bands eventually collapse 
with the nearest ones, assuming the form of Figs. 2 and 
4 (for electron and hole doping, respectively). 

There is an intrinsic asymmetry between electron and 
hole doping. The criticai concentrations for the disrup­
tion of antiferromagnetic order are n :::::: 1.02 for hole 
doping and n :::::: 0.70 for electron doping. For electron 
doping, it is interesting to note that, in the range of con­
centrations n:::::: 0.70 to n:::::: 0.97, the chemical potential 
is not located at the gap states but near the singular­
ity in the lower band, as illustrated in Fig. 8. In the 
AF phase, doped holes prefer the O sites, in contradis­
tinction to what occurs in the PM phase. It is worth 
remarking that the criticai concentrations are sensitive 
to the interpolation scheme adopted [Eq. (13)], and thus 
constitute an estimate for the model. An improvement 
can be achieved by introducing variational parameters 
for the concentrations of the two trimer species which 
minimize the internai energy. 

· The important role of the direct hopping tpp between 
nearest-neighbor oxygen ions has been put into evidence 
in Ref. 23. One predictable effect of its inclusion in our 
model Hamiltonian is to produce a broadening of the 8 
functions appearing in the noooonding part of the LDOS, 
with a corresponding decrease in the magnitude of the 
CT gap. The introduction of the Coulomb repulsion Udp 

between neighboring copper and oxygen íons can also be 
explored by the present technique in the search for an 
electronic local pairing mechanism. 
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APPENDIX 

In Eqs. (38-40), we make use of 

Ào = 2A' - g~A, 

À 1 = 2B'- g~B, 

À2 = -g~C, 

À~ = gd; + t4(g~)2g~"" [2(g~d)2 + gd;g~""] , 
À~= 2t2g~ [(g~d) 2 + g~:Ydd]' 
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