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Weak instability of frustrated fermionic models
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We study the Almeida-Thouless instability of two fermionic models analogous to spin glasses that exhibit
frustration and that were solved some time ago with a replica symmetric ansatz. In the first(haodel
consider only the anisotropic, Ising-like limit, while in the second modil we consider the isotropic,
Heisenberg-like Hamiltonian. In both models the interactions are of the Sherrington-Kirkpatrick type and the
spins are represented by bilinear combinations of fermionic fields. While model | is almost classical, exhibiting
a negative entropy at low temperatures, we show in this paper that the eigenggligsepositive at the critical
temperature and becomes negative at a temperature below the transition point. Model Il is more interesting
because\rg is positive at the critical temperatuiigyg, vanishes aff;<Tgg, and becomes positive again at
T,<T,. Although the entropy remains positive all the way dowiTte0, it presents a break of monotonicity
when \gs becomes negative, indicating a negative specific heat in part of the instability rEgioR<T,.

The two stability regions in the ordered phaseTer T, andT,<T<Tgg are characterized by the correct sign
of the entropy and specific heat. This seems to indicate that replica symmetry stability is enhanced in frustrated
fermionic spin models[S0163-18287)01433-]

[. INTRODUCTION model in a transverse field that couples to a nondiagonal spin
component. In this model, the Trotter-Suzuki transformé&tion
Since the formulation of the Sherrington-Kirkpatrick is usually used to reduce the problem to a classical one that
(SK) theory for Ising spin glasses, a natural developmengllows it to be treated by numerical methods. Absence of
followed for analogous theories with quantum spins that mayeplica symmetry breakinigin the ordered phase has been
exhibit interesting differences in their low-temperature prop-claimed’ and questioned thereaftér.
erties. Spin operators form a vector in three dimensions and A third line of approach considers a different quantized
are a representation of the three noncommuting angular moersion of the SK model, namely, a Heisenberg analog with
mentum operators. Hence they are quantum-mechanic&ndom long-ranged interactions and Hamiltonian
guantities and the natural coupling among spins that respects
rotational invariance is given by the Heisenberg model, _ z 1Liotom | omof
where two spins are coupled through a scalar product. From H= _g ‘]”[QSZSJ' F(1-9:2(8'§ +S 5] @
the point of view of magnetism, the Ising model is a trun-
cated Heisenberg model where the transverse component§e Ising or extreme anisotropic limit follows fog=1, and
have been suppressed, leaving only the interaction betwedhe Heisenber§** or isotropic limit forg=1/2. In the fol-
the components in a preferred direction. Correspondinglylowing we indicate Refs. 9 and 10 by | and Il, respectively.
say, o, can be considered to be diagonal with eigenvalueg'he random couplingd;; are as in the SK modélwith zero
=1, and thus the Ising spin glass model is a model for “clas-mean and variance equal toNl/for the system oN spins.
sical” spins. The spherical model is a generalization of theln both papers the spin operators were represented by bilin-
Ising model where the classical spin variables are not reear combinations of fermioni@nticommuting fields"
stricted to= 1, but are allowed to vary continuously between
—o andw. Depending then on which model is going to be S=3lvhw — vl ], S =yl =St
“quantized,” one obtains different theories of quantum spin
glasses. Functional integration techniques have been known for a
In the quantum description of the spherical model, thelong time to be a powerful tool for the evaluation of the
continuous spin variables are quantized as position variableguantum-mechanical partition function. One way of imple-
by means of the introduction of canonically conjugatedmenting this is by means of the introduction of time ordering
moment& This leads to a system of coupled harmonic os-in order to treat the operators aswumbers:* An alternative
cillators that can be diagonalized in terms of boson operaway, which leads to applications in condensed matter theory,
tors. In a more modern version of the modéhe quantiza-  is the representation of spin operators by bilinear combina-
tion procedure is done through the introduction of timetion of fermions, since fermions may represent conduction
dependence in the otherwise classical variables in a waglectrons in thel band of transition metals that also contrib-
analogous to the Trotter-Suzuki transformatforfhese ute to the spin density. A very good introduction to this
bosonic spin glass models exhibit positive entropy in thesubject for the nonfamiliar reader is given in Ref. 13. A
ordered phase down to zero temperature. problem with this representation as it stands here, however,
A different quantum spin glass model concerns the Isings that the spin eigenstates at every site do not belong to the
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same irreducible representation, but they are labeled, instead,
by fermionic occupation numbens;;=0 or 1, giving the
same statistical weight to unoccupied and double occupied 0.6
states? In consequence of this, other properties of Be
=1 representation are not preserved; for instance, the opera-
tor S may take the value§(S+1)=2 or zero. Hence we
consider it more appropriate to avoid the denomination of 0.4¢
Ising or Heisenberg and to call the Hamiltonians obtained
from Eq. (1) in the limitsg=3 or 1 of isotropic or extreme
anisotropic, respectively. We also pointed out in Il that the
g=1 limit of Eq. (1) is indeed a classical problem in terms 0.2t
of commuting operators that does not require functional in-
tegration methods, but that in spite of this some quantum
features remain in that the susceptibiliynow emerges as
an order parameter because the fermionic representation al-
lows for states witt5'= = 3 or 0. The calculations in | were
performed in a replica-symmetriRS) theory, obtaining the
expected negative entropy at very low temperatures as in the
SK model! In Il the functional integral formalism was
needed, and by using a replica-symmetric theory, we cast the
problem into that ol fermions at one site with a retarded
interaction in the presence of a time-dependent field. We
have shown that, when the field is treated in the static ap- F!G- 1. Entropy §) and replicon eigenvalué\gs) for mode I.
proximation and the interaction in the instantaneous approxil he arrow indicates the spin glass transition temperalgee
mation, a mean-field description of the spin glass transition
with positive entropy is obtained down to zero temperaturecommuting operatorS; and that functional integrals are not
The Almeida-Thouless instabiltywas not analyzed either needed, since the partition function can be obtained as the
for model | or for model II. trace over the commuting occupation number operatgrs

In a more recent papér,fermionic functional integration =0 or 1. Either with this method or with the method of I, the
techniques in the static approximation were also used to an@orrelation functions can be calculated through differentia-
lyze the quantum lIsing spin glass model in Fock space wéon by introducing replica-dependent auxiliary fields and we
presented earlier in I, but in the presence of a longitudinabbtain, for the de Almeida—Thouléssigenvalue,
field. The results obtained reduce to dlirszero field, but it

-0.21

was found that the Almeida-Thouless stability was violated . 2
everywhere in the spin glass phase for finite fields. It was this Nrs= 1_,32J Dz [1+x COSKB@Z)] , (3)
revival of interest in the problefrt® that motivated us to 0 [x+cosh Bv2q2)]*

complete our previous investigations, and in the present
work we analyze the replica symmetry instability of the  porepz= (Z/W)e—(ZZ)/zdz andx=e #X. The spin glass

models in | and II, in zero field, and we show that in both o qer narameteq and the susceptibility are given by the
cases it is controlled by the replicon mode eigenvalye saddle-point equatiofis

that becomes negative at a temperaflye Tgg, whereTgg

is the spin glass transition temperature. Moreover, in model .

Il there is a second temperature<T,, where\ zgbecomes q= fxDz [smr‘(ﬁ\/ﬁz)]z

positive again, remaining positive all the way dovy_n to zero 0 [x+cosi 8+2q2)]?

temperature. The entropy in model 1l remains positive for all

temperatures, but part of the unphysical region with RS in-

stability exhibits a negative specific heat. fw , [1+x cosh{8\2q2)]
Thls _weakenlng _of the RS instability in frustrated_ fermi- X o [X+cosr(,8\/ﬁz)]2 '

onic spin systems is the main result reported in this paper.

We will skip here standard mathematical manipulations that , . o

are not essential for the understanding of the work, referrind\'hIIe the entropy is given by

the reader to | and Il for details. We analyze briefly in Sec. Il

the results foi g5 in the extreme anisotropic linfifor com- S 3 , o 1

pleteness, since our results partly overlap with Ref. 15 and  ~ ~ 3 8 x[x+2a]+ Jo Dzln 1+~ costi8+2q2) |.

their results overlap with ours in I. We report in Sec. lll (5)

original results for the isotropic modé&lin 1.

4

In this model,Tsg=0.96 and we find that at the critical tem-
perature \gs= 3, While the results in Fig. 1 show thatzg
andS remain positive up td;~0.7, indicating that there is
It was discussed in Sec. IV of Il that, in the lingi= 1, the  a finite region of stability belowl'sg. Equatinghrg to zero
Hamiltonian of Eq.(1) is expressed only in terms of the in Eq. (3) above, one recovers the result of Ref. 15.

II. RS INSTABILITY IN THE EXTREME ANISOTROPIC
LIMIT
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I1l. RS INSTABILITY IN THE ISOTROPIC LIMIT ) ) )
NBQA=nBOrst2B2| 32 k2, —4B2> X Ko kpp

Wheng= 3 the Hamiltonian in Eq(1) couples the three aa’ wa’ BB’
noncommuting components of the spin operators and we are
forced to use functional integration techniques, where the X<[§a(0)'éa’(o)][éﬁ(o)'éﬂ’(o)Dcum , (13)

introduction of time dependence allows us to treat the opera-
tors as classical variables. We chose in Il to represent the
spin operators in terms of fermionic Grassmaanticom-  WhereB{Qgsis the replica-symmetric result of Il. The corre-
muting fields!? and a very detailed comparison with other lation functions in Eq(13) are cumulant averages to be cal-
methods and previous work was presented there. We repréulated from Eq.(7) in the replica symmetric theory. The
duce here only the essential expressions to follow the calcueplicon eigenvalubis given by
lation of \gs. 2

The configurational-averaged thermodynamic potential Ars=3—4BTM—2N+L], (14)
per site of the Heisenberg model Hamiltonian reads, fromyhere, fora+a’# g+ B’,
Eq. (13) of |, R R

M =([S.(0)-S,(0)])

1(1 )
Q=lim =] - (v 2=In(A) Y, - - - -
pa=lm s {832 2 2 2 |Qu (r)F=In(A) N=([5,(0)- $5(0)1[85(0) - S5, (0)])
(6) , - - -
L=([S,(0)-S,/(0)][Ss(0)-Ss(0)]), 15
whereA is an effective partition function, {[5(0) (0)1156(0)- S (0)]) 19
From Egs.(7), (8), (11), and(61) of I, we obtain, for the
correlation function ofm-spin operators,
A= [ piytue %
(S5(0)S,,(0)---(m times)
A= A0+ 3 3 QL ()8 (— 1S, (— )], _ 0 g
a aa’ tt" v’ = lim Zn_mJ Do T
(8) n—0 é’hﬁ ahﬁ/
and we indicate byr a replica index, byt a space direction . 7’
X, Y, orz, and byv=2l a boson Matsubara frequency. The Xexpz In[1+ coshH ,|1— 5 Z‘ ]) , (16
spin operators in Eq8) are represented by bilinear combi- @ B =g

nations of Grassmann fields o ) ) N
where 7, satisfies the stationarity condition

1 -
tooN_ T t t 2
(=3 2 YL@+ V)08 Yeal@),  (9) 5 =3B Pl
2 2
where 0;132 are elements of a Pauli matrix, while ti@ .
variables are complex fields that satisfy the saddle-point ﬁa:ﬁf+(ﬂ\/ﬁv+%) Z’
equations “ v
QY (') =4B%S (1S, (- ")) (10) - 2 (% sy
aa’ a a’ ! Dov---= ; OdUUe et (17)

obtained by extremizinggQ) in Eq. (5). The free action in

Eq. (7) is given by After solving for M, N, andL in Eq. (12), we obtain, for

ARs,
A= (iw+ )y —2h!-S,(0), (11 2 2 H]?
2= 2 (104 ) Pis(0)Yus(@) = 20:5,(0), (1D) st=3—% J DV[Wz )
where we introduced--dependent auxiliary fieldﬁ; to ob- 1 an)?
tain the correlation functions entering kg by differentia- + A[coshAID) T 1+ “h } (18

tion. Following Il, we parametrize th® fields according to
the ansatz where H=h+ 7, h=\2qv, and we obtain from Il the
equations for the order parameters:

Qt;a'( VVI):4B25VV’ 5tt’{[q+ Kaa’]51/0+ %X( 5aa’ - 1)}’

(12 v H
12y= Dv—tanhi,
where y(v)=yx and q(v)=qd,q are the replica-symmetric B\/ﬁ
solution of II, while «,,+ is the replica-symmetry-breaking )
field. We obtain by introducing Eq12) into Eq. (6) and by 12q:5f Dv 7 } (19)
expanding to second order in thevariables, 58%x|
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100 - ' - stable and the specific hedtdS/dT is positive.
.\ (c) T,~0.22, when\gg becomes positive again. For
50 - ] T,<T<T,, the replica-symmetric solution is unstable and
P does not describe the system behavior. Positiveness of the
T | entropy is a necessary but not sufficient condition, and this
00 [—== . X ) !
region should be analyzed with a replica-symmetry-breaking
solution®
S0} 1 (d For T<T,, we have again a replica-symmetric
stable solution with\gg>0 and positive entropy and specific
00 L | heat.
It was also found in some models for neural networks that
the stability region does not coincide with the physical re-
sor Tse | gion with positive values of the entropy.For a different
l guantum model, the SK model in a transverse field, the RS
200 > v 0% v o8 stability has been analyzed by other authors using the

Trotter-Suzuki transformation and numerical methods. The
FIG. 2. Entropy(dashed ling (0.4x S) and replicon eigenvalue results are not conclusive, and while some authdem RS

(10 *\g9 (solid line) for model Il. The arrow indicates the spin stability in some regions of the ordered phase, this result is
glass transition temperatufieys. contested in other worksGiven the difference in models

and techniques, it is difficult to compare our results with the
The results forngs and S are shown in Fig. 2. The exact aforementioned references. In the “Heisenberg” model de-
limiting values areAgs=0.6, S=0 at T=0 and\gs=1.8, scribed in Ref. 15, the spin components are decoupled and
S=1.38&p at Tgc=0.79. Although the entropy remains the model is not rotational invariant; so a comparison with
positive at low temperatures, it has a break of monotonicityour work is out of question. Although the models discussed

when\rg becomes negative. here have regions of stability below the critical temperature,
it is known that the SK model has broken replica symmetry
V. COMMENTS in the whole low-temperature phase. This is not contradic-

tory, as discussed in Ref. 16, because this result applies only

We report in this paper results about the replica symmetryo the SK model and it does not prevent other models from
stability of two frustrated fermionic spin models® obtained behaving differently.

by using functional integral methods. The extreme aniso-

tropic model dlscusse_o_l in Sec. Il shows a region of RS sta- ACKNOWLEDGMENTS
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