
PHYSICAL REVIEW B 1 SEPTEMBER 1997-IVOLUME 56, NUMBER 9
Weak instability of frustrated fermionic models
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~Received 2 January 1997; revised manuscript received 2 May 1997!

We study the Almeida-Thouless instability of two fermionic models analogous to spin glasses that exhibit
frustration and that were solved some time ago with a replica symmetric ansatz. In the first model~I! we
consider only the anisotropic, Ising-like limit, while in the second model~II ! we consider the isotropic,
Heisenberg-like Hamiltonian. In both models the interactions are of the Sherrington-Kirkpatrick type and the
spins are represented by bilinear combinations of fermionic fields. While model I is almost classical, exhibiting
a negative entropy at low temperatures, we show in this paper that the eigenvaluelRS is positive at the critical
temperature and becomes negative at a temperature below the transition point. Model II is more interesting
becauselRS is positive at the critical temperatureTSG, vanishes atT1,TSG, and becomes positive again at
T2,T1 . Although the entropy remains positive all the way down toT50, it presents a break of monotonicity
whenlRS becomes negative, indicating a negative specific heat in part of the instability regionT2,T,T1 .
The two stability regions in the ordered phase forT,T2 andT1,T,TSG are characterized by the correct sign
of the entropy and specific heat. This seems to indicate that replica symmetry stability is enhanced in frustrated
fermionic spin models.@S0163-1829~97!01433-1#
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I. INTRODUCTION

Since the formulation of the Sherrington-Kirkpatrick1

~SK! theory for Ising spin glasses, a natural developm
followed for analogous theories with quantum spins that m
exhibit interesting differences in their low-temperature pro
erties. Spin operators form a vector in three dimensions
are a representation of the three noncommuting angular
mentum operators. Hence they are quantum-mechan
quantities and the natural coupling among spins that resp
rotational invariance is given by the Heisenberg mod
where two spins are coupled through a scalar product. F
the point of view of magnetism, the Ising model is a tru
cated Heisenberg model where the transverse compon
have been suppressed, leaving only the interaction betw
the components in a preferred direction. Correspondin
say, sz can be considered to be diagonal with eigenval
61, and thus the Ising spin glass model is a model for ‘‘cl
sical’’ spins. The spherical model is a generalization of
Ising model where the classical spin variables are not
stricted to61, but are allowed to vary continuously betwe
2` and`. Depending then on which model is going to b
‘‘quantized,’’ one obtains different theories of quantum sp
glasses.

In the quantum description of the spherical model,
continuous spin variables are quantized as position varia
by means of the introduction of canonically conjugat
momenta.2 This leads to a system of coupled harmonic o
cillators that can be diagonalized in terms of boson ope
tors. In a more modern version of the model,3 the quantiza-
tion procedure is done through the introduction of tim
dependence in the otherwise classical variables in a
analogous to the Trotter-Suzuki transformation.4 These
bosonic spin glass models exhibit positive entropy in
ordered phase down to zero temperature.

A different quantum spin glass model concerns the Is
560163-1829/97/56~9!/5500~4!/$10.00
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model in a transverse field that couples to a nondiagonal
component. In this model, the Trotter-Suzuki transformatio4

is usually used to reduce the problem to a classical one
allows it to be treated by numerical methods. Absence
replica symmetry breaking5 in the ordered phase has bee
claimed6,7 and questioned thereafter.8

A third line of approach considers a different quantiz
version of the SK model, namely, a Heisenberg analog w
random long-ranged interactions and Hamiltonian

H52(
i , j

Ji j @gSi
zSj

z1~12g! 1
2 ~Si

1Sj
21Si

2Sj
1!#. ~1!

The Ising9 or extreme anisotropic limit follows forg51, and
the Heisenberg10,11 or isotropic limit for g51/2. In the fol-
lowing we indicate Refs. 9 and 10 by I and II, respective
The random couplingsJi j are as in the SK model,1 with zero
mean and variance equal to 1/N, for the system ofN spins.
In both papers the spin operators were represented by b
ear combinations of fermionic~anticommuting! fields12

Si
z5 1

2 @c i↑
† c i↓2c i↓

† c i↓#, Si
15c i↑

† c i↓5~Si
2!1. ~2!

Functional integration techniques have been known fo
long time to be a powerful tool for the evaluation of th
quantum-mechanical partition function. One way of imp
menting this is by means of the introduction of time orderi
in order to treat the operators asc numbers.11 An alternative
way, which leads to applications in condensed matter the
is the representation of spin operators by bilinear combi
tion of fermions, since fermions may represent conduct
electrons in thed band of transition metals that also contri
ute to the spin density. A very good introduction to th
subject for the nonfamiliar reader is given in Ref. 13.
problem with this representation as it stands here, howe
is that the spin eigenstates at every site do not belong to
5500 © 1997 The American Physical Society
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56 5501WEAK INSTABILITY OF FRUSTRATED FERMIONIC MODELS
same irreducible representation, but they are labeled, inst
by fermionic occupation numbersnis50 or 1, giving the
same statistical weight to unoccupied and double occup
states.14 In consequence of this, other properties of theS
5 1

2 representation are not preserved; for instance, the op
tor S2 may take the valuesS(S11)5 3

4 or zero. Hence we
consider it more appropriate to avoid the denomination
Ising or Heisenberg and to call the Hamiltonians obtain
from Eq. ~1! in the limits g5 1

2 or 1 of isotropic or extreme
anisotropic, respectively. We also pointed out in II that t
g51 limit of Eq. ~1! is indeed a classical problem in term
of commuting operators that does not require functional
tegration methods, but that in spite of this some quant
features remain in that the susceptibilityx now emerges as
an order parameter because the fermionic representatio
lows for states withSi

z56 1
2 or 0. The calculations in I were

performed in a replica-symmetric~RS! theory, obtaining the
expected negative entropy at very low temperatures as in
SK model.1 In II the functional integral formalism was
needed, and by using a replica-symmetric theory, we cas
problem into that ofn fermions at one site with a retarde
interaction in the presence of a time-dependent field.
have shown that, when the field is treated in the static
proximation and the interaction in the instantaneous appr
mation, a mean-field description of the spin glass transit
with positive entropy is obtained down to zero temperatu
The Almeida-Thouless instability5 was not analyzed eithe
for model I or for model II.

In a more recent paper,15 fermionic functional integration
techniques in the static approximation were also used to
lyze the quantum Ising spin glass model in Fock space
presented earlier in I, but in the presence of a longitudi
field. The results obtained reduce to ours9 in zero field, but it
was found that the Almeida-Thouless stability was viola
everywhere in the spin glass phase for finite fields. It was
revival of interest in the problem3,15 that motivated us to
complete our previous investigations, and in the pres
work we analyze the replica symmetry instability of th
models in I and II, in zero field, and we show that in bo
cases it is controlled by the replicon mode eigenvaluelRS
that becomes negative at a temperatureT1,TSG, whereTSG
is the spin glass transition temperature. Moreover, in mo
II there is a second temperatureT2,T1 , wherelRS becomes
positive again, remaining positive all the way down to ze
temperature. The entropy in model II remains positive for
temperatures, but part of the unphysical region with RS
stability exhibits a negative specific heat.

This weakening of the RS instability in frustrated ferm
onic spin systems is the main result reported in this pa
We will skip here standard mathematical manipulations t
are not essential for the understanding of the work, referr
the reader to I and II for details. We analyze briefly in Sec
the results forlRS in the extreme anisotropic limit9 for com-
pleteness, since our results partly overlap with Ref. 15
their results overlap with ours in I. We report in Sec.
original results for the isotropic model10 in II.

II. RS INSTABILITY IN THE EXTREME ANISOTROPIC
LIMIT

It was discussed in Sec. IV of II that, in the limitg51, the
Hamiltonian of Eq.~1! is expressed only in terms of th
ad,
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commuting operatorsSi
z and that functional integrals are no

needed, since the partition function can be obtained as
trace over the commuting occupation number operatorsnis
50 or 1. Either with this method or with the method of I, th
correlation functions can be calculated through differen
tion by introducing replica-dependent auxiliary fields and
obtain, for the de Almeida–Thouless5 eigenvalue,

lRS512b2E
0

`

Dz
@11x cosh~bA2qz!#2

@x1cosh~bA2qz!#4
, ~3!

whereDz5A(2/p)e2(z2)/2dz andx5e2b2x. The spin glass
order parameterq and the susceptibilityx are given by the
saddle-point equations9

q5E
0

`

Dz
@sinh~bA2qz!#2

@x1cosh~bA2qz!#2

x5E
0

`

Dz
@11x cosh~bA2qz!#

@x1cosh~bA2qz!#2
, ~4!

while the entropy is given by

S

k
52

3

2
b2x@x12q#1E

0

`

Dz lnF11
1

x
cosh~bA2qz!G .

~5!

In this model,TSG50.96 and we find that at the critical tem
perature,lRS5

1
2 , while the results in Fig. 1 show thatlRS

andS remain positive up toT1'0.7, indicating that there is
a finite region of stability belowTSG. EquatinglRS to zero
in Eq. ~3! above, one recovers the result of Ref. 15.

FIG. 1. Entropy (S) and replicon eigenvalue (lRS) for model I.
The arrow indicates the spin glass transition temperatureTSG.
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III. RS INSTABILITY IN THE ISOTROPIC LIMIT

Wheng5 1
2 the Hamiltonian in Eq.~1! couples the three

noncommuting components of the spin operators and we
forced to use functional integration techniques, where
introduction of time dependence allows us to treat the op
tors as classical variables. We chose in II to represent
spin operators in terms of fermionic Grassmann~anticom-
muting! fields,12 and a very detailed comparison with oth
methods and previous work was presented there. We re
duce here only the essential expressions to follow the ca
lation of lRS.

The configurational-averaged thermodynamic poten
per site of the Heisenberg model Hamiltonian reads, fr
Eq. ~13! of I,

bV5 lim
n20

1

n H 1

8b2 (
aa8

(
tt8

(
nn8

uQaa8
tt8 ~nn8!u22 ln~L!J ,

~6!

whereL is an effective partition function,

L5E D$c†c%eA, ~7!

A5(
a

Aa
01(

aa8
(
tt8

(
nn8

@Qaa8
tt8 ~nn8!Sa

t ~2n!Sa8
t8 ~2n8!#,

~8!

and we indicate bya a replica index, byt a space direction
x, y, or z, and byn52p l a boson Matsubara frequency. Th
spin operators in Eq.~8! are represented by bilinear comb
nations of Grassmann fields

Sa
t ~n!5

1

2 (
s1s2v

cs1a
† ~v1n!ss1s2

t cs2a~v!, ~9!

where ss1s2

t are elements of a Pauli matrix, while theQ

variables are complex fields that satisfy the saddle-p
equations

Qaa8
tt8 ~nn8!54b2^Sa

t ~n!Sa8
t8 ~2n8!&, ~10!

obtained by extremizingbV in Eq. ~5!. The free action in
Eq. ~7! is given by

Aa
05(

ns
~ iv1m!cas

† ~v!cas~v!22hW a8•S
W

a~0!, ~11!

where we introduceda-dependent auxiliary fieldshW a8 to ob-
tain the correlation functions entering inlRS by differentia-
tion. Following II, we parametrize theQ fields according to
the ansatz

Qaa8
tt8 ~nn8!54b2dnn8d tt8$@q1kaa8#dn01 1

2 x~daa821!%,
~12!

where x(n)5x and q(n)5qdn0 are the replica-symmetric
solution of II, while kaa8 is the replica-symmetry-breakin
field. We obtain by introducing Eq.~12! into Eq. ~6! and by
expanding to second order in thek variables,
re
e
a-
e

ro-
u-

l

t

nbV5nbVRS12b2H 3(
aa8

kaa8
2

24b2(
aa8

(
bb8

kaa8kbb8

3^@SW a~0!•SW a8~0!#@SW b~0!•SW b8~0!#&cumJ , ~13!

wherebVRS is the replica-symmetric result of II. The corre
lation functions in Eq.~13! are cumulant averages to be ca
culated from Eq.~7! in the replica symmetric theory. Th
replicon eigenvalue8 is given by

lRS5324b2@M22N1L#, ~14!

where, foraÞa8ÞbÞb8,

M5^@SW a~0!•SW a8~0!#2&

N5^@SW a~0!•SW b~0!#@SW b~0!•SW b8~0!#&

L5^@SW a~0!•SW a8~0!#@SW b~0!•SW b8~0!#&, ~15!

From Eqs.~7!, ~8!, ~11!, and ~61! of II, we obtain, for the
correlation function ofm-spin operators,

^Sb
t ~0!Sb8

t8 ~0!•••~m times!&

5 lim
n→0

S 2n2mE DvW
]

]hb
t

]

]hb8
t8

•••

3exp(
a

H ln@11coshuHW au#2
ha

2

5b2xJ D
hW 850

, ~16!

whereha satisfies the stationarity condition

ha5
5b2x

2
tanh

uHW au
2

,

HW a5hW a81~bA2qv1ha!
vW
v

,

E DvW •••5A2

p E
0

`

dv v2e2v2/2••• . ~17!

After solving for M , N, and L in Eq. ~12!, we obtain, for
lRS,

lRS532
b2

4 E DvH 2

h2 F tanh
H

2 G2

1
1

4@cosh~H/2!#4 F11
]h

]hG2J , ~18!

where H5h1h, h5bA2qv, and we obtain from II the
equations for the order parameters:

12x5E Dv
v

bA2q
tanh

H

2
,

12q55E DvF h

5b2xG2

. ~19!
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56 5503WEAK INSTABILITY OF FRUSTRATED FERMIONIC MODELS
The results forlRS and S are shown in Fig. 2. The exac
limiting values arelRS50.6, S50 at T50 andlRS51.8,
S51.386kB at TSG50.79. Although the entropy remain
positive at low temperatures, it has a break of monotonic
whenlRS becomes negative.

IV. COMMENTS

We report in this paper results about the replica symme
stability of two frustrated fermionic spin models,9,10 obtained
by using functional integral methods. The extreme ani
tropic model discussed in Sec. II shows a region of RS
bility below the transition temperature. The results for t
isotropic model in Sec. III are more interesting because
can distinguish three characteristic temperatures.

~a! TSG50.79. ForT,TSG we haveqÞ0 andS.0.
~b! T1'0.42. At this temperature,lRS50 and ]S/]T

50. For T1,T,TSG, the replica-symmetric solution i

FIG. 2. Entropy~dashed line! (0.43S) and replicon eigenvalue
(1021lRS) ~solid line! for model II. The arrow indicates the spi
glass transition temperatureTSG.
e

y

y

-
a-

e

stable and the specific heatT ]S/]T is positive.
~c! T2'0.22, whenlRS becomes positive again. Fo

T2,T,T1 , the replica-symmetric solution is unstable a
does not describe the system behavior. Positiveness o
entropy is a necessary but not sufficient condition, and
region should be analyzed with a replica-symmetry-break
solution.16

~d! For T,T2 , we have again a replica-symmetr
stable solution withlRS.0 and positive entropy and specifi
heat.

It was also found in some models for neural networks t
the stability region does not coincide with the physical
gion with positive values of the entropy.17 For a different
quantum model, the SK model in a transverse field, the
stability has been analyzed by other authors using
Trotter-Suzuki transformation and numerical methods. T
results are not conclusive, and while some authors7 claim RS
stability in some regions of the ordered phase, this resu
contested in other works.8 Given the difference in models
and techniques, it is difficult to compare our results with t
aforementioned references. In the ‘‘Heisenberg’’ model d
scribed in Ref. 15, the spin components are decoupled
the model is not rotational invariant; so a comparison w
our work is out of question. Although the models discuss
here have regions of stability below the critical temperatu
it is known that the SK model has broken replica symme
in the whole low-temperature phase. This is not contrad
tory, as discussed in Ref. 16, because this result applies
to the SK model and it does not prevent other models fr
behaving differently.
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