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Neutron stars in a class of nonlinear relativistic models
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In this work we introduce a class of relativistic models for nuclear matter and neutron stars which exhibits
a parametrization, through mathematical constants, of the nonlinear meson-baryon couplings. For appropriate
choices of the parameters, it recovers current quantum hadrodynamics models found in the literature: the
Walecka model and Zimanyi-Moszkowski models~ZM and ZM3!. For other choices of parameters, the models
give very interesting and new physical results. The phenomenology of neutron stars in ZM models is presented
and compared to the phenomenology obtained in other versions of the Walecka model. We have found that the
ZM3 model is too soft, and predicts a very small maximum neutron star mass,;0.72M ( . A strong similarity
between the results of ZM-like models and those with exponential couplings is noted. The sensibility of the
results to the specific choice of the values for the binding energy and saturation density is pointed out. Finally,
we discuss the very intense scalar condensates found in the interior of neutron stars, which may lead to
negative effective masses.
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I. INTRODUCTION

Since the discovery of the first pulsar in 1968@1# and its
identification as a rotating neutron star, the structure, co
position, dynamics, and evolution of these astrophysical
jects became important themes of theoretical and phen
enological research. According to an early suggestion@2#,
neutron stars evolve from an initially hot protoneutron s
that forms in the collapse of a massive star in the supern
phenomenon. At densities exceeding that of nuclear ma
important static properties of a neutron star, such as
mass-radius relation, the crust extent, the distribution of
stellar moments of inertia, and the central density, may
determined by its equation of state~EOS! @3#.

During this period, there was a continuous enhancem
concerning relativistic microscopic calculations of the EO
of neutron stars, improving our understanding of the str
ture of these stellar objects. In particular, any theory mus
least account for a neutron star as massive as the most
sive observed pulsar; the knowledge of pulsar masses
vides a very important constraint on the theory.

More recent calculations based on relativistic proper
of nuclear matter at high densities indicate that the equat
of state are considerable stiffer than those predicted by n
relativistic approaches. As a result, the mass of a neutron
is believed to be at least as large as (1.6–2.1)M ( .

From the theoretical point of view, quantum chromod
namics~QCD! represents the most profound description
the strong interaction and would be the ideal tool for neut
star applications. However, the highly nonlinear behavior
QCD at the hadronic energy scales inhibits any practical
culations leading most theorists to search for phenome
logical descriptions of the structure of nuclear matter. One
these alternative approaches is quantum hadrodyna
~QHD! @4#, a relativistic quantum field theory based on
local Lagrangian density which uses baryon and meson fi
as the relevant degrees of freedom. This model provide
0556-2813/2001/63~6!/065801~13!/$20.00 63 0658
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consistent theoretical framework for describing such a re
tivistic interacting many-body system and, based on it, Gl
denning presented@5# a very comprehensive treatment of th
matter in neutron stars, using an extended version which
cluded leptons and the fundamental baryonic octet.

Alternative versions of the Walecka model, namely t
Boguta-Bodmer~BB! @6# and Zimanyi-Moszkowski~ZM!
models@7,8#, were developed to improve the description
the nucleon effective massM ! ~too low! and compression
modulus of nuclear matterK ~too high! as attained with the
original approach. Boguta and Bodmer introduced cubic a
quartic scalar self-interactions in the Lagrangian while
ZM models heightened the delineation of these quantities
replacing the Yukawa scalar coupling term by aderivative
couplingcontribution. This derivative coupling may be inte
preted alternatively as a phenomenological coupling betw
the scalar neutral meson and the nucleon fields through
introduction of a baryon density dependence in the sca
vector, and isovector coupling constants of the theory@9,10#.

In this work we analyze the structure of neutron stars
introducing a QHD Lagrangian with a parametrized mes
coupling contribution@11#. This phenomenological approac
contains high-order self-coupling contributions of the mes
fields, and permits one, in particular, to restore the res
obtained with Walecka, ZM, and ZM3 models by makin
suitable choices of the values of the mathematical parame
of the theory. The control of the analytical form of the co
plings allows us to investigate other values of these par
eters which give new physical results. By extending the f
malism to include hyperons and leptons, we investig
several static bulk properties of neutron stars using the W
lecka, ZM, and ZM3 models, the latter two being applied
this problem for the first time. As we have a class of mode
we are able to relate nuclear matter and neutron star pro
ties. In particular, we have found that some of the stud
models describe very strong scalar fields in the interior of
neutron stars, leading to a negative nucleon effective ma
©2001 The American Physical Society01-1
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II. GENERAL CHARACTERISTICS OF NEUTRON STAR
MATTER

In the evolution of the protoneutron star, many differe
reactions can occur. The electric charge and baryon num
are conserved on a long-time scale in comparison to the
time of the star. In the core of the protoneutron star,
Fermi energy of the nucleons exceed the hyperon masses
these particles can be produced in strong interaction
cesses with conservation of strangeness in reactions such

n1n→n1L1K. ~1!

However, strangeness is not conserved on the time sca
the star, since there occurs a diffusion of neutrinos and p
tons to the surface of the star: processes like

K0→2g, K2→m21 n̄m , . . . ~2!

can no longer be reversed, and a net strangeness appea
In this evolution process, the star reaches chemical e

librium, a degenerate state where, from the point of view
its hadronic and leptonic composition, further reactions
not possible. As an example, in an ideal degenerate sys
of protons, neutrons, and electrons at chemical equilibriu
particle levels are filled in such a way that neutron beta
cay or proton inverse beta decay are not energetically
vored.

In general, if one takes into account the fundamen
baryon octet and lepton degrees of freedom~electrons and
muons!, the following chemical equilibrium equation the
holds ~see the Appendix!:

m i5qb,imn2qe,ime , ~3!

where i 5p,n,L,S0,S2,S1,J2,J0,e,m; qb,i represents
the baryon number, andqe,i the electric charge of speciesi.
In this way, the conditions forb equilibrium can be summa
rized as

mS05mJ05mL5mn ,

mS25mJ25mn1me ,

mS15mp5mn2me. ~4!

Additionally to these chemical equilibrium conditions, w
have to take into account that a neutron star is electric
neutral@5,12#. This easily follows from the balance betwee
the repulsive electrical and the attractive gravitational forc

III. BOGUTA-BODMER MODEL

A. Theory

In this section we study baryon and lepton populations
neutron stars by using the Boguta-Bodmer model with
peron degrees of freedom. In spite of this study having
ready been done@5#, we reproduce its main results as a gui
for the development in Sec. IV of our new class of nonline
relativistic models.
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The BB model describes the complex fermionic compo
tion of neutron stars as a generalization of thes, v, and%
theory:

L5(
B

c̄BF igm]m2~MB2gsBs!2gvBgmvm

2
1

2
g%Bgmt•%mGcB1(

l
c̄ l~ igm]m2ml !c l

1
1

2
~]ms]ms2ms

2s2!2
1

4
vmnvmn1

1

2
mv

2 vmvm

2
1

4
%mn•%

mn1
1

2
m%

2%m•%
m2

1

3
bM~gss!3

2
1

4
c~gss!4. ~5!

This Lagrangian density describes a system of eight bary
(B5p, n, L, S2, S0, S1, J2, J0) coupled to three me-
sons (s, v, %) and two free lepton species (l 5e2,m2). The
scalar and vector coupling constants in the theory,g(s,v) ,
and the coefficientsb andc are determined to reproduce,
saturation densityr050.15 fm23, the binding energy of
nuclear matter,B5216 MeV, the compression modulus o
nuclear matter,K5250 MeV, and the nucleon effectiv
mass,M !/M50.75. In fact, the values for these two la
quantities are not well established, and we have just ta
the most used values in the literature of the BB model. A
ditionally, to describe the symmetry energy coefficient,a4
532.5 MeV, we determine the isovector coupling const
g% . We have found

S gs

ms
D 2

59.86 fm2, S gv

mv
D 2

55.85 fm2,

S g%

m%
D 2

54.80 fm2, b50.00103, c50.0100. ~6!

In comparison with the results obtained in Ref.@5#, one
should recall that this author fitted the coupling constants
the theory with B5215.95 MeV, r050.145 fm23, K
5285 MeV, M !/M50.77, anda4536.8 MeV.

Using the Euler-Lagrange equations, the Dirac equat
for uniform matter, in a momentum representation, is

FgmS km2gvBvm2
1

2
g%Bt•%mD2MB* ~s!GcB~k!50,

~7!

whereMB* (s)[MB2gsBs is the effective mass of the bary
onic speciesB. Furthermore, by applying the mean-field a
proximation, thev0 , %03, ands meson field equations fo
uniform static matter are

gvv05S gv

mv
D 2

(
B

xv,BrB , ~8!
1-2
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g%%035S g%

m%
D 2

(
B

x%,BI 3BrB , ~9!

gss5S gs

ms
D 2F2bM~gss!22c~gss!3

1(
B

xsB

2p2E0

kF,B MB* ~s!

Ak21MB*
2

k2dkG , ~10!

where we defined the ratio between meson-hyperon
meson-nucleon coupling constants as

x (s,v,%),B[
g(s,v,%),B

g(s,v,%)
. ~11!

In these equations, the baryon source terms have bee
placed by their ground-state values.

The corresponding equations for baryon number and e
tric charge conservation are

r5(
B

kF,B
3

3p2
~12!

and

(
B

qe,B

kF,B
3

3p2
2(

l

kF,l
3

3p2
50. ~13!

The baryon chemical potentials,mB(k), correspond to eigen
values of the Dirac equation~7!:

mB~k!5gvBv01g%B%03I 3B1AkF,B
2 1MB* ~s!2. ~14!

In these expressions,I 3B is the isospin projection of baryo
charge statesB, andkF,B is the Fermi momentum of specie
B.

The EOS is obtained from the ground-state expecta
value of the time and space components of the diago
energy-momentum tensor. The energy density and pres
of the system are given, in the BB model, by

«5
1

3
bM~gss!31

1

4
c~gss!41

1

2
ms

2s21
1

2
mv

2 v0
2

1
1

2
mr

2%03
2 1(

B

1

p2E0

kF,BAk21MB*
2k2dk

1(
l

1

p2E0

kF,lAk21ml
2k2dk, ~15!
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3
bM~gss!32

1

4
c~gss!42

1

2
ms

2s21
1

2
mv

2 v0
2

1
1

2
mr

2%03
2 1

1

3 (
B

1

p2E0

kF,B k4dk

Ak21MB*
2

1
1

3 (
l

1

p2E0

kF,l k4dk

Ak21ml
2

. ~16!

In the following we present the results obtained with th
model.

B. Results

In numerical calculations with the BB model we hav
considered matter with and without hyperons, in order
understand how these strange species affect the neutron
properties.

1. Matter with nucleons, hyperons, and leptons

Figure 1, panels~a!–~d!, shows baryon and lepton popu
lations and field strengths as functions of the total bary
density for two different ratios:x5A2/31 andx51 ~univer-
sal coupling!. From expression~14! for the baryon chemica
potential we can see that the charge term in the eigenv
determines whether a species is charge favored or unfavo
and the isospin term determines whether a species is iso
favored or not. Baryons with the same sign of the elec
charge as the proton are unfavored; baryons with the s
sign of its isospin projection are favored~note thatg%%03
,0).

At high densities (r;0.8 fm23) theL hyperon becomes
the most populous species for the casex5A2/3 @Fig. 1~a!#.
In Fig. 1~b! we see that the electron chemical potent
reaches a maximum value at;200 MeV and begins to de
crease due to the reduction of the electron population. Ar
;1.5 fm23 the nucleon effective mass is still at 200 MeV

In Fig. 1~c!, we see that increasing the meson-hyper
coupling constant~from A2/3 to 1! corresponds to an earl
emergence of the particles. In comparison with the result
Fig. 1~a!, we can see that the leptons have a greater pop
tion in this case and that the neutron population rema
always as the most important in the system. The elect
chemical potential and2g%%03 saturates around 200 MeV i
Fig. 1~d!, and the nucleon effective mass behaves simila
to the casex5A2/3.

2. Matter with nucleons and leptons

In the sequence of the analysis of the results of Fig.
panel~e! shows baryon and lepton populations and the c
responding chemical potentials when we exclude hype
degrees of freedom. In this case, since charge neutralit
kept only by thep1, e2, andm2 particles, the lepton popu
lation increases in the domain of densities shown in the

1This choice is based on a quark counting of the baryons@13#.
1-3
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FIG. 1. Fermionic populations and field strengths in the BB model for matter with hyperons@panels~a! and ~b! correspond tox
5A2/3 and panels~c! and ~d! to x51# and without them@panels~e! and ~f!#.
as
t S

to
ure. Also, we note the increase of the nucleon effective m
which means a less intense scalar field when compared to
previous cases. This indicates that theintroduction of hyper-
ons enhances the scalar meson condensation.
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3. Neutron star properties

We are able now to find numerical results for the EO
using Eqs.~15! and~16!. However, this EOS corresponds
neutron star matter densities (1013–1015 g/cm3) and should
1-4
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NEUTRON STARS IN A CLASS OF NONLINEAR . . . PHYSICAL REVIEW C 63 065801
be supplemented by EOS’s from other models for subnuc
densities: we adopt the approach developed in Ref.@14# in
the density interval 231032131011 g/cm3, and in the
range 1310112231013 g/cm3 we use the EOS presented
Ref. @15#. Combining these EOS’s with the Tolman
Oppenheimer-Volkoff~TOV! equations@16,17#, we may de-
termine the mass of a neutron star as a function of its cen
density; the radiusR is obtained with the condition that th
pressure is null at the surface of the star,p(R)50. We have
found values for the mass and radius of different neutron
sequences as a function of the central density«c .

The conversion of nucleons into hyperons reduces
Fermi pressure associated with the baryons, softening
equation of state and lowering, as a consequence, the m
mum mass of a neutron star sequence. In Fig. 2~a!, we see
the neutron star mass and central density relations for
situations analyzed above. The results indicate, as expe
that the presence of hyperons causes a diminution of
maximum mass of a neutron star sequence.

Typical results for the mass-radius relation are shown
Fig. 2~b!. Our results indicate that neutron populations are

FIG. 2. Panel~a!: Neutron star mass as a function of the cent
density for matter with~curve I corresponds tox5A2/3, and curve
II to x51) and without~curve III! hyperons. Panel~b!: mass-radius
relation @same labels as in panel~a!#.
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general, dominant. However, in the case withx5A2/3 we
obtained important contribution from theL hyperons in the
inner regions of the star. Moreover, we obtained;11 km
for the radius of the star with hyperons, and;12 km with-
out these particles.

IV. MODELS WITH DERIVATIVE COUPLINGS

The BB model has two additional coupling constantsb
andc, associated with self-interactions of the neutral mes
scalar field. This allows a very good description of two im
portant properties of nuclear matter, the compression mo
lus and the nucleon effective mass, which concern the h
density behavior of the equation of state. However, so
authors argued that the model suffers from a serious p
lem: the constantc has negative values for several entries
M ! and K, allowing the energy density to become u
bounded from below for large values of the scalar mes
mean field, leading to unphysical behavior@18#.

In the derivative coupling model, introduced in 1990@7#,
the deficiencies of the original Walecka approach were eli
nated at the cost of making the theory nonrenormaliza
ZM models were used in the description of static propert
of neutron stars@19#, D excitations in nuclear matter@20#,
bulk properties of finite nuclei@10#, in-medium quark and
gluon condensates and restoration of chiral symmetry@21#,
and thermodynamic properties of nuclear matter@22,23#.

The authors of Ref.@7# presented two additional version
of the derivative coupling model. These three models
known as ZM, ZM2, and ZM3@8,9#. Concerning the descrip
tion of static properties of nuclear matter, the ZM2 mod
does not exhibit fundamental differences from the Z
model, and will not be considered in the present study.

The Lagrangian density of the ZM and ZM3 models c
be written in the general form

L5c̄@ igm~]m1 igv
! vm!2~M2gs

!s!#c1
1

2
~]ms]ms

2ms
2s2!2

1

4
vmnvmn1

1

2
mv

2 vmvm, ~17!

with gs
!5m!gs ,gv

! 5m!gv , where2

m* [S 11
gss

M D 21

. ~18!

Expression~17! reproduces the Lagrangian density of t
Walecka, ZM, and ZM3 models with the following replac
ments@9#:

Walecka: gs
!→gs , gv

! →gv ,

ZM: gs
!→m* gs , gv

! →gv ,

ZM3: gs
!→m* gs , gv

! →m* gv . ~19!

2Note that in the ZM models we havem!M[M2gs
!s.

l

1-5
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TABLE I. Values of the coupling constants, the nucleon effective mass, the compression modulus
nuclear matter, and scalar and vector potentials at saturation density~ZM and ZM3 models!.

Model (gs /ms)2 (gv /mv)2 (gr /mr)2 M !/M K S V
(fm2) (fm2) (fm2) ~MeV! ~MeV! ~MeV!

ZM 7.94 2.84 5.23 0.85 224 2140 84
ZM3 19.57 13.45 9.06 0.71 159 2267 204
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The resulting field equations are

@ igm]m2~M2gs
!s!2gv

! gmvm#c50, ~20!

]nvnm1mv
2 vm5gv

! c̄gmc, ~21!

~]m]m1ms
2 !s5

]gs
!s

]s
c̄c2

]gv
!

]s
c̄vmgnc. ~22!

A peculiar aspect of the ZM3 model is the coupling betwe
the scalar and vector meson fields@8#, a kind of coupling
which is not present in other QHD models~Walecka, BB,
and ZM!. The scalar and vector mean-field potentials
defined to beS[2gs

!s andV[gv
! v0. In these models, the

expressions for the energy density and pressure are eq
lent to the corresponding expressions~15! and~16! of the BB
model, with b5c50 and the replacements shown in E
~19!.

The values of the scalar (gs /ms)2 and vector (gv /mv)2

coupling constants which reproduce the saturation den
r050.15 fm23 and the saturation energyB5216 MeV, in
the cases of the ZM and ZM3 models, are shown in Tabl
the table also contains the values of the nucleon effec
mass, the compression modulus of nuclear matter, the s
and vector mean fieldsS andV for both models, and value
for the isovector coupling constant (g% /m%)2 which repro-
duce the symmetry energy coefficienta4532.5 MeV. The
ZM and ZM3 models produce higher values for the nucle
effective mass since the coupling constantsgs

! and gv
! de-

crease with increasing density. These models also predict
softer equation of state when compared to the correspon
results for the Walecka and BB models~lower compression
modulus!.

After the work of Zimanyi and Moszkowski, many au
thors started to explore extensively the freedom in the cho
of the meson-baryon interaction. Based on these works
this paper we introduce a new class of models which ena
us to make direct comparisons among the properties
nuclear matter and neutron stars.

V. A CLASS OF NONLINEAR RELATIVISTIC MODELS

In this section we present a new class of relativistic h
ronic models which exhibits a nonlinear parametrization
the intensity of the meson couplings, and incorporates so
QHD models found in the literature. We study, through t
comprehensive approach, the influence of nonlinear me
nucleon couplings in the nucleon effective mass, the co
pression modulus of nuclear matter, and static propertie
neutron stars.
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A. Phenomenological Lagrangians

Koepf et al. @24# studied the contribution of the term
LsN5M !(s)c̄c using several nonlinear functional form
for M !(s); Glendenninget al. @19# analyzed a coupling term
of the type M !5M2gss/(11gss/2M ). In these studies
the authors assumed, at first order ingss/M , a similar ex-
pression for the nucleon effective mass as introduced by W
lecka:M* /M;12gss/M . These different models just ad
scalar self-coupling corrections terms to the correspond
expression of the Walecka model.

On the basis of the various approaches found in the lite
ture, we propose a new phenomenological Lagrangian wi
nonlinear parametrization, through mathematical constra
(l, b, and g parameters!, of the analytical form of the
meson-baryon couplings,

L5(
B

c̄BF igm]m2~MB2gsB
! s!2gvB

! gmvm

2
1

2
g%B

! gmt•%mGcB1(
l

c̄l@ igm]m2ml#cl

1
1

2
~]ms]ms2ms

2s2!2
1

4
vmnvmn1

1

2
mv

2 vmvm

2
1

4
%mn•%

mn1
1

2
m%

2%m•%
m, ~23!

where

gsB
! [mlB

! gs , gvB
! [mbB

! gv , g%B
! 5mgB

! g% ~24!

and

mnB
! [S 11

gss

nMB
D 2n

, n5l,b,g. ~25!

In these expressions, we assumel, b, and g as real and
positive numbers, since this is the range of best phenome
ogy. As discussed in the Sec. IV, essentially what was d
is the introduction of a rescaling of the scalar and vec
coupling terms of the Walecka model. For instance, in
case of the scalar contribution we have made the replacem

gssc̄c→gs
! c̄sc5

gss

S 11
gss

lM D lc̄c. ~26!
1-6
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NEUTRON STARS IN A CLASS OF NONLINEAR . . . PHYSICAL REVIEW C 63 065801
Similar interaction terms may be associated to the vector
isovector sector of the Lagrangian density. Note that we h
assumed a universal coupling by settingg(s,v,%)B
→g(s,v,%) .

Table II exhibits the correspondence between this mo
and the other models discussed in this work with spec
values ofl, b, and g. One of the main intentions of th
present study is to consider values of these parameters w
give better results for nuclear matter and neutron star p
erties when compared to the corresponding results of
traditional models discussed in this work. As far as we kno
the first extensions of the ZM-like models to applications
neutron star matter with the inclusion of hyperons (L,S2)
and leptons was done in Ref.@25#. Here we consider thes
known models as well as intermediate values of the par
eters of our nonlinear coupling, to obtain results for neut
star properties and relate them to nuclear matter satura
observables.

Using the mean-field approximation, the field equations
our approach become

@ igm]m2gvB
! g0v02~MB2gsB

! s!#cB50, ~27!

gvv05S gv

mv
D 2

(
B

mbB* rB , ~28!

g%%035S g%

m%
D 2

(
B

mgB* I 3BrB , ~29!

2gss5S gs

ms
D 2F(

B
S FB~s!

gs
D%s,B1gvv0(

B
S GB~s!

gsgv
D rB

1g%%03(
B

S HB~s!

gsg%
D I 3BrBG , ~30!

whereFB(s), GB(s), andHB(s) are given by

FB~s!

gs
52mlB* 1

gss

MB
~mlB* !(l11)/l, ~31!

GB~s!

gsgv
52

~mbB* !(b11)/b

MB
, ~32!

and

HB~s!

gsg%
52

~mgB* !(g11)/g

MB
. ~33!

From the eigenvalues of the Dirac equation, the Fe
energy is

TABLE II. Values of l, b, andg for different QHD models.

Model l b g

Walecka 0 0 0
ZM 1 0 0
ZM3 1 1 1
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mB~k!5gvB
! v01g%B

! %03I 3B1AkF,B
2 1~MB2gsB

! s!2.
~34!

The expressions for the scalar and vector potentials~S! and
~V! are

S52ml* gss, V5mb* gvv0 . ~35!

We can see that this model allows some control on the
tensity of the scalar and vector mesons mean-field potent
For instance, to the variations ofl between 0 and 1, keepin
b5g50, we obtain values ofS, V, M* , andK which cor-
respond to the intermediate region of values of Walecka
ZM models. Similarly, for values ofl, b, andg between 0
and 1, we can find intermediate results between the Wale
and the ZM3 models.

Indeed, the range of possible values for the parameter
the theory is not very large. Due to the form of the gene
coupling terms@see Eq.~25!#, there occurs a rapid conver
gence to an exponential form. Takingl, b, andg→`, we
have

gsB
! →e2gss/MBgs , gvB

! →e2gss/MBgv ,

g%B
! →e2gss/MBg% . ~36!

As we will see below, forl and/orb5g.2 the results of
this model do not strongly differ from the results of th
model with exponential coupling. In this work, we shall co
sider two cases.

~i! Scalar~caseS): in this case we consider variations o
l with b5g50; this case contains the results of the W
lecka and ZM models.

~ii ! Scalar-vector~caseS-V): in this case we conside
variations ofl, with b5g5l; Walecka and ZM3 models
belong to this category.

Note that the models we are discussing may be uniqu
specified by thel parameter. The Walecka model belongs
both categories, because in this model the mathematica
rametersl, b, andg are null; however, it does not prese
scalar-vector interaction contributions.

B. Nuclear properties

We determine the coupling constantsgs,v,% /ms,v,% in
this model by following the same procedure presented
Sec. III. For each case,S andS-V, we obtain numerical val-
ues forgs /ms , gv /mv , M !, andK as functions ofl. Thus
we can also determineg% /m% .

Figure 3 exhibits the dependence of the coupling c
stants on thel parameter; it is interesting to note the regu
relative behavior of the coupling constants (gs /ms)2 and
(gv /mv)2. The results indicate that the scalar case suffer
l-dependent saturation process in a small range of value
this parameter. On the other hand, the results also reveal
the scalar-vector case exhibits a wider range of values ol.

Figure 4 presents the relation between the compres
modulus and the nucleon effective mass,K3M* /M , for the
S and S-V cases. From the results, one can see that lo
values of the compression modulus correspond to higher
1-7
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ues of the nucleon effective mass: to understand this be
ior one should remember that the repulsive mean-field ve
potential V is proportional toM2M* . From the results
found in the literature@26#, the nucleon effective mass an
the compression modulus should be in the range
,M* /M,0.7 and 200,K,300 MeV. As stressed above
the scalar case leads to a narrow interval of values ofl while
the scalar-vector case has a broader range. Accordingly,
S gives reasonable results in the rangel;0.0520.07 and
caseS-V gives better results forl;0.16–0.4. The analysis
also reveals the strong similarity between the results of Z
like models (l51) and those with exponential coupling
(l→`).

C. Neutron star properties

In this section we consider the determination of neut
stars properties using our class of nonlinear models with
inclusion of hyperon and lepton degrees of freedom. Follo
ing the same procedure of Sec. III, we solve a system
transcendental equations taking into account chemical e
librium, baryon number, and electric charge conservat

FIG. 3. Dependence of the coupling constants with thel param-
eter for the scalar~full lines! and scalar-vector~dotted lines! mod-
els.

FIG. 4. Comparison of the compression modulus of nucl
matterK with the ratioM* /M for the S and S-V cases. The box
shows the range of accepted values.
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and the equation for thes field. We then obtain the EOS fo
our system. The resulting expressions for the energy den
and pressure are, again, similar to Eqs.~15! and~16! but with
b5c50 and MB

!5MB2gsB
! s. Combining this EOS with

the TOV equations, we obtain values for static properties
neutron stars~mass, radius, and baryon composition, amo
others! as functions of the central density.

Here we explicitly present the neutron star phenomen
ogy for the Walecka and Zimanyi-Moszkowski mode
namely, the original ZM and also the variant ZM3 mod
The predictions for neutron star masses as a function of
central density in Walecka, ZM, and ZM3 models are sho
in Fig. 5. The ZM model predicts a maximum mass of a
proximately 1.6M ( , in the limit of acceptability for the
mass of a pulsar. In particular, the ZM3 model is very so
and predicts a very small maximum neutron star ma
;0.72M ( .

It may be surprising, at first glance, that the maximu
neutron star mass for the Walecka model with hypero
(2.77M () exceeds the well-known result (2.6M () found in
Ref. @4# for stars composed of just neutrons, since the ad
tion of other particles softens the EOS, lowering the result
star mass. This apparent contradiction can be explained
the extreme sensibility of this kind of theory on the speci
choice of the values of the binding energy and saturat
density. The authors cited above usedB5215.75 MeV and
r050.19 fm23; with this choice we were able to reproduc
their results. However, with our choice for these quantiti
which is widely used in the recent literature, for the mass
a star composed only by neutrons we obtain the va
3.05M ( , that is, a difference of almost a half solar mas
Using the constants from@4# (a4533.6 MeV), we obtain
2.33M ( for the mass of a neutron star with the inclusion
hyperons and leptons. In this way, extrapolation for neut
star densities from the fitting ofB andr0 at saturation needs
more precision in the choice of the values for these qua
ties.

Figure 6 shows the behavior of the chemical potenti
and field intensities only for Walecka and ZM models, sin

r

FIG. 5. Neutron star mass as a function of the central densit
Walecka~solid line!, ZM ~dashed line!, and ZM3~dotted line! mod-
els.
1-8



NEUTRON STARS IN A CLASS OF NONLINEAR . . . PHYSICAL REVIEW C 63 065801
FIG. 6. Chemical potentials and field intensities in the Walecka@panel~a!# and ZM @panel~b!# models.
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the ZM3 model gives a poor description of neutron s
masses. These results should be compared to the corres
ing one obtained with the BB model. We observe the sa
saturation of the electron chemical potential at;200 MeV
for the ZM and BB models with universal coupling@see Fig.
1~d!#. The known problem of negative effective mass@27–
29# manifests itself dramatically in panel~a! for the Walecka
model. We discuss this point in Sec. V D.

In Fig. 7 the populations in a system consisting of hyp
ons, nucleons, and leptons, for the Walecka and ZM mod
are shown. Walecka’s baryonic distribution stabilizes af
r;1.0 fm23, and all species appear up tillr;0.7 fm23,
which is approximately the density whereuSu exceedsM.
The lepton populations never vanish in the ZM distributio
and even atr;1.2 fm23 baryonic species are emergin
Essentially, these differences are due to the strength of
scalar potential in these two models. Since a particle is
ated only when

qBmn2qe,Bme>gvB
! v01grB

! %03I 3B1~MB2gsB
! s!,

a large scalar field favors the early emergence of particles
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Fig. 8 the predictions of the ZM model for the radial distr
bution of the different lepton and baryon species is p
sented.

We now analyze our new class of models allowing var
tions of thel parameter. Tables III and IV show results fo
the radius, redshift (z), and hyperon/baryon ratio for th
maximum mass of a neutron star sequence for a givenl; we
present some nuclear matter properties as well. In Fig. 9
show the dependence of the maximum mass with this par
eter. One can see that some models corresponding to theS-V
case predict very small neutron star masses, lower than
masses of all pulsars found until now. We again observe
similarity of predictions associated with the ZM model com
pared to the one with exponential couplings.

Figure 10 exhibits the dependence of the maximum m
of a neutron star of a sequence with the compression mo
lus and nucleon effective mass at saturation density in thS
andS-V cases. In both cases, in general, a less compres
matter~higherK) corresponds to a higher maximum neutr
star mass. Weaker scalar potentials correspond to higher
ues of the nucleon effective mass; since the former is a
directly related to the compression modulus, the maxim
FIG. 7. Baryon and lepton populations for the Walecka@panel~a!# and ZM @panel~b!# models.
1-9
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neutron star mass decreases withM !. In spite of the fact that
the two cases represent different descriptions of the neu
star problem, the figure shows that, for a fixed value of
compression modulus there correspond very close value
the neutron star mass; opposite to this, for different value
the star mass there corresponds the same value of
nucleon effective mass. This result indicates that the pre
tions of neutron star masses based mainly on the comp
sion modulus are more model independent than those b
on the nucleon effective mass. From Table IV, we see t
for l,0.5 in theS-V case, we have obtained negative valu
for the nucleon effective mass, which corresponds to a d
sity region for which the strength of the scalar condens

FIG. 8. Radial distribution of the different leptonic and baryon
species in the ZM model.
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exceeds the free mass of the nucleon,uSu.M .

D. Negative effective mass

The nucleon effective mass is a dynamical quantity a
expresses the screening of the baryon masses by the s
meson condensate. In our approach, by analyzing the gen
expression for the baryon effective mass,

MB
!5MB2

gss

@11gss/~lM !#l
, ~37!

in the limit gss→`, we see that only in casel>1 this
quantity does not vanish or become negative. Some inte
constraints in the theory can avoid this, as in the well-kno
case of the Walecka model without hyperons@4#. However,
as we add more and more baryonic species we open
possibility for the scalar potentialuSu to become greater tha
the free masses.

Let us introduce the scalar field equation in Eq.~37!, for
the Walecka case, to obtain a better understanding of
problem; we obtain

MB
!5MB2(

B8

gs
2

ms
2

MB8
!

p2
E k2dk

Ak21MB8
! 2

or
ass in

8
0
4
5
9
6
9
9
8
4
2
8
3
3
0
4

TABLE III. Stellar properties for theS case:«c is the central density,M ! is the star mass,R! is the star
radius,S is the scalar potential in the star center,z is a redshift;Y/A is the hyperon/baryon ratio, andNBT is
the total baryonic number. All these quantities are evaluated for the neutron star with the maximum m
the sequence. In addition, we have the compression modulusK and the nucleon effective massM !/M .

l ln(«c) M ! R! S z Y/A NBT K M !/M
g/cm3 (M () ~km! ~MeV! (31058) ~MeV!

0 15.18 2.77 13.17 936 0.623 0.27 0.40 566 0.537
0.03 15.24 2.56 12.39 934 0.597 0.30 0.36 396 0.59
0.05 15.31 2.35 11.63 929 0.574 0.32 0.33 310 0.65
0.07 15.38 2.17 10.89 923 0.554 0.34 0.30 258 0.69
0.09 15.43 2.02 10.38 910 0.533 0.35 0.28 235 0.72
0.11 15.47 1.91 9.98 896 0.515 0.36 0.26 223 0.74
0.13 15.49 1.83 9.75 877 0.495 0.35 0.25 217 0.76
0.15 15.52 1.77 9.59 857 0.479 0.35 0.24 216 0.77
0.17 15.54 1.72 9.45 838 0.467 0.35 0.23 213 0.78
0.20 15.53 1.68 9.48 807 0.446 0.33 0.23 212 0.79
0.25 15.53 1.61 9.49 732 0.416 0.30 0.22 212 0.81
0.30 15.52 1.59 9.61 669 0.399 0.27 0.21 214 0.82
0.35 15.51 1.58 9.69 618 0.389 0.26 0.21 216 0.82
0.40 15.51 1.58 9.73 580 0.385 0.25 0.21 218 0.83
0.60 15.49 1.58 9.86 480 0.377 0.22 0.21 223 0.84
1.00 15.47 1.59 9.98 401 0.372 0.20 0.21 224 0.85
1.50 15.47 1.59 9.98 366 0.373 0.20 0.21 226 0.85
` 15.47 1.59 10.00 350 0.373 0.20 0.21 228 0.856
1-10
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MB
!5S MB2 (

B8ÞB

gs
2

ms
2

MB8
!

p2
E k2dk

Ak21MB8
! 2D Y F 11S gs

ms
D 2 1

p2
E k2dk

Ak21MB
! 2G . ~38!

TABLE IV. Stellar properties for theS-V case. Same correspondences as in Table III.

l ln(«c) M ! R! S z Y/A NBT K M !/M
g/cm3 (M () ~km! ~MeV! (31058) ~MeV!

0 15.18 2.77 13.17 936 0.623 0.27 0.40 566 0.537
0.03 15.20 2.70 12.93 944 0.615 0.28 0.39 510 0.545
0.05 15.22 2.63 12.64 954 0.610 0.29 0.38 458 0.554
0.07 15.24 2.56 12.39 960 0.602 0.30 0.37 417 0.561
0.09 15.27 2.50 12.12 969 0.598 0.31 0.36 387 0.567
0.11 15.28 2.43 11.89 973 0.588 0.32 0.34 358 0.574
0.13 15.30 2.37 11.68 977 0.579 0.33 0.33 339 0.579
0.15 15.33 2.30 11.38 985 0.574 0.34 0.32 311 0.587
0.17 15.35 2.24 11.16 986 0.563 0.34 0.31 293 0.594
0.20 15.38 2.17 10.88 993 0.559 0.35 0.30 276 0.600
0.30 15.51 1.83 9.58 1011 0.516 0.39 0.25 218 0.630
0.35 15.56 1.70 9.09 1012 0.491 0.41 0.23 205 0.640
0.40 15.62 1.57 8.60 1014 0.470 0.42 0.21 195 0.649
0.60 15.62 1.07 8.08 891 0.282 0.35 0.14 169 0.682
1.00 15.31 0.72 9.76 577 0.128 0.10 0.09 159 0.710
1.50 15.18 0.67 10.21 468 0.113 0.04 0.08 156 0.728
` 15.14 0.66 10.31 431 0.110 0.03 0.08 155 0.738
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As we add more and more baryonic species, the nega
term in the numerator of Eq.~38! becomes more importan
and we open the possibility for the scalar potentialuSu to
become greater than the free baryon masses. In fact, ev
we had just considered nucleons, taking into account the
ference in the neutron and proton masses, the negative
in the numerator would appear. However, since this diff
ence is very tiny, a negative effective mass will emerge
practice only with the addition of hyperon degrees of fre
dom @29#.

FIG. 9. Maximum mass of a neutron star sequence~universal
coupling! as a function of thel parameter, for theS ~full line! and
S-V ~long dashed line! cases.
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We could interpret the vanishing of the effective mass
a signal of a transition to a quark-gluon plasma phase. H
ever, we should remember that our Lagrangian model d
not encompass these underlying degrees of freedom. A
tionally, as pointed out in Ref.@30#, at such high densities
and strong meson fields we have already reached a cri
density where the production of baryon-antibaryon pairs
favored. In fact, this behavior of the effective mass may

FIG. 10. Dependence of the maximum neutron star mass
sequence with the compression modulus~left! and nucleon effective
mass at saturation~right!. The solid line corresponds to theS case,
and the dashed line to theS-V case.
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dicate that the mean-field approximation is reaching the l
its of its applicability.

Concerning the problem of the negative effective ma
we want to clarify a point which may appear naive but h
led to misunderstandings. The integrals appearing in
QHD formalism always present a termM !2 and, in this way,
are symmetric with respect to positive or negative values
the effective mass. For example, let us take the integral
lated to the scalar density,

I ~ t,m!5E
0

t k2dk

Ak21m2
; ~39!

rigorously, the expression forI (t,m) would involve the
modulus ofm sinceAm25umu:

E
0

t k2

Ak21m2
5

1

2
tAt21m22

1

2
m2 lnS t1At21m2

umu D .

~40!

Some authors assumedad hoc the modulus ofM ! in the
above logarithm, when the problem of negative values
pears. However, we can see from expression~40! that this
emerges naturally from the symmetry of the integrals.
course, different results would arise if we useuM !u instead of
M ! in other expressions, e.g., the cubic term in the ene
density expression for the BB model, since this can be
written

1

3
bM~M2M !!3. ~41!

Finally, we want to stress that, in spite of the interest
issue of the physical interpretation of a negative effect
mass, mathematically the QHD models continue to w
even withM !,0.

VI. SUMMARY AND CONCLUSIONS

We have performed an analysis of the influence of nuc
matter properties on the structure of neutron stars, usin
new class of QHD models with parametrized couplin
among mesons and baryons. These couplings allow on
reproduce, through a suitable choice of mathematical par
eters (l,b,g), results of the Walecka and derivative co
pling models such as ZM and ZM3 models. As we ha
shown above, this new class of relativistic models perm
some control of the intensity of the scalar, vector, and,
ovector meson mean-field potentials. In particular, we h
scanned values of nuclear matter properties which co
spond to intermediate region of predictions of the Walec
ZM, and ZM3 models.

In this new class of models we considered two cases,
scalar case~which contains the results of the Walecka a
ZM models! and the scalar-vector case~the ZM3 model be-
longs to this category!. The exponential coupling models a
obtained when we take the limit of the mathematical para
eters going to infinity.

For nuclear matter, theS case gives reasonable results
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the rangel;0.05–0.07 and theS-V case gives better result
for l;0.16–0.4. We showed results, allowing a variation
l, for the radius, redshift~z! and hyperon/baryon ratio for th
maximum mass of a neutron star sequence, considering
peron, nucleon, and lepton degrees of freedom. Some mo
corresponding to theS-V case predict very small neutron st
masses. The ZM model gives a maximum mass of appr
mately 1.6M ( for a neutron star, while the ZM3 mode
being too soft, leads to;0.72M ( as the limiting mass. We
have also pointed out the strong similarity between the
sults of ZM-like models and those with exponential co
plings.

The sensibility of this approach to the specific choice oB
and r0 was noted, with differences of the order of a ha
solar mass. Thus and extrapolation for neutron star dens
from the fitting ofB andr0 at saturation needs more prec
sion in the choice of the values for these quantities.

For some values ofl in the S-V case, we have obtaine
negative values for the nucleon effective mass. We h
shown how the differences in the baryonic bare masses
plain this result; as discussed in the text, in practice the
clusion of hyperons is responsible for this behavior. The
results indicate the existence of very intense scalar cond
sates in the interior region of neutron stars.
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APPENDIX: CHEMICAL EQUILIBRIUM

Chemical reactions, e.g.,A1B
C1D, can be expressed
in general, as a symbolic linear combination of its comp
nents@31#:

(
i

n iAi50. ~A1!

For example, in the reactionn
p11e21 n̄, for the coeffi-
cients we havenn52np52ne52nn51.

We shall consider infinitesimal variations of the Gib
potential @G[G(p,T,Ni)# with respect to the number o
particles (Ni), at constant temperatureT and pressurep:

dG5(
i

S ]G

]Ni
D

T,p,Nj Þ i

dNi . ~A2!

At chemical equilibrium, the Gibbs energy obeys the con
tion

(
j

S ]G

]Nj
D

T,p,Nj Þ i

dNj

dNi
50, ~A3!

with the ratio dNj /dNi determined by the correspondin
chemical reactions. Accordingly, if an elementi suffers a
variation n̄ i , the remaining elements will suffer a variatio
( n̄ i /n i)n j to maintain the stoichiometry of the reaction. As
1-12
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result, we havedNj /dNi5n j /n i , and we can write the con
dition of chemical equilibrium as

(
i

n im i50, ~A4!

where the chemical potential of elementi, m i , is defined as

m i[S ]G

]Ni
D

T,p,NiÞ j

. ~A5!

In this way we observe that the chemical potentials obey
symbolic equation~A1!, with the substitution ofAi by m i .

In general, if a chemical reaction respects given cons
vation laws, the number of independent chemical potent
is equal to the number of these laws. In the following w
consider two conservation laws; the electric charge and
baryon number. In this case we can express these laws,
chemical reaction, as

(
i

N

n iqei50 and (
i

N

n iqbi50, ~A6!

whereqei andqbi denote the electric and baryon charges
elementi, respectively. As in this case we haveN variables
and two equations, we are able to express only two coe
cients n i in terms of the remainingN22, which will be
independent:
A

d

.

Ri

er

06580
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n1qe11n2qe252 (
iÞ1,2

N

n iqei , ~A7!

n1qb11n2qb252 (
iÞ1,2

N

n iqbi . ~A8!

As an example we consider element 1, the neutron and
ment 2, the electron. We then haveqb152qe251, qb2
5qe150, and the above equations become

nn52 (
iÞn,e

N

n iqbi ,

ne5 (
iÞn,e

N

n iqei . ~A9!

Replacing Eqs.~A9! in Eq. ~A4!, we find

(
iÞn,e

N

n im i5 (
iÞn,e

N

~mnqbi!n i2 (
iÞn,e

N

~meqei!n i . ~A10!

Sincen i are independent, the equality of this equation will
verified only if the coefficients are equal. From this expre
sion,

m i5qbimn2qeime . ~A11!
s.
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