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We calculate the photoproduction of heavy quarks in proton-proton collisions at RHIC, Tevatron, and
CERN LHC energies, where the photon reaches energies larger than those accessible at DESY-HERA.
The integrated cross section and the rapidity distributions for open charm and bottom production are
computed employing sound high energy QCD formalisms. For the linear perturbative QCD approaches we
consider both the usual collinear factorization and the k?-factorization formalisms, whereas for the
nonlinear QCD (saturation) calculations one considers the Golec-Biernat-Wüsthoff and the Iancu-Itakura-
Munier parametrizations for the dipole cross section within the color dipole picture.
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I. INTRODUCTION

Heavy quark production in hard collisions of hadrons,
leptons, and photons has been considered as a clean test of
perturbative QCD (For a recent review see, e.g., Ref. [1]).
This process provides not only many tests of perturbative
QCD, but also some of the most important backgrounds
to new physics processes, which have motivated an exten-
sive phenomenology at DESY-HERA, Tevatron, and LHC.
These studies are mainly motivated by the strong depen-
dence of the cross section on the behavior of the gluon
distribution, which determines the QCD dynamics at high
energies. In particular, the heavy quark photoproduction on
nucleon and nuclei targets has been studied in detail in
Refs. [2–4], considering the several available scenarios for
the QCD dynamics at high energies. The results of those
analyses show that future electron-proton (nucleus) col-
liders at HERA and RHIC [5,6] probably could determine
whether parton distributions saturate, and a stringent con-
straint to the behavior of the gluon distribution in the full
kinematical range could be posed. Along these lines, in
Ref. [7] we have analyzed the possibility of using ultra-
peripheral heavy ion collisions (UPC’s) as a photonuclear
collider and studied the heavy quark production assuming
distinct formalisms for the QCD evolution.

Recently, Klein and Nystrand [8] have analyzed the
quarkonium photoproduction in proton-proton collisions,
considering the energetic protons as a source of large
electromagnetic fields. In particular, these authors have
used the photon spectrum from Ref. [9] and a photon-
proton cross section for quarkonium production obtained
by fitting the H1 and ZEUS data. The main conclusion of
that study is that the cross sections are large enough for this
channel to be observed experimentally and that this reac-
tion can be used to study the gluon distribution in protons
at small values of the Bjorken x variable. This achievement
motivates the analysis of other processes that are sensitive
to the gluon distribution and have larger cross sections.
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In this paper, we study the photoproduction of heavy
quarks in proton-proton collisions considering distinct
theoretical scenarios, which have been analyzed in detail
in our previous papers [3,4,7]. Our main motivation comes
from the fact that in this process the photon reaches
energies higher than those currently accessible at DESY-
HERA. Similar motivation is present in Ref. [8], where
vector meson photoproduction is investigated. Here, we
estimate, for the first time, the total cross section and the
rapidity dependence of the photoproduction of heavy
quarks in proton-proton collisions, considering the
k?-factorization approach and taking into account distinct
unintegrated gluon distributions. Moreover, based on the
color dipole picture [10], we compute the total cross sec-
tion for charm and bottom photoproduction within the
Iancu-Itakura-Munier (IIM) model for the dipole cross
section [11]. These results will be used as input for our
further calculations in proton-proton collisions. For com-
parison, we also present the predictions from the collinear
factorization approach.

In relativistic heavy ion colliders, the heavy nuclei give
rise to strong electromagnetic fields, which can interact
with each other. In a similar way, these processes also
occur when considering energetic protons in pp� �p� col-
liders. Namely, quasireal photons scatter off protons at
very high energies in the current hadron colliders. In
particular, the heavy quark photoproduction cross section
in a proton-proton collision is given by
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where ! is the photon energy in the center-of-mass frame
(c.m.s.), W	p is the c.m.s. photon-proton energy and
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p

denotes the proton-proton c.m.s. energy. The photon spec-
trum is given by [9]
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2, where 	L

is the Lorentz factor. The expression above is derived
considering the Weizsäcker-Williams method of virtual
photons and using an elastic proton form factor (for more
detail see Refs. [8,9]). It is important to emphasize that the
expression (2) is based on a heuristic approximation, which
leads to an overestimation of the cross section at high
energies ( 
 11% at

���
s

p
� 1:3 TeV) in comparison with

the more rigorous derivation of the photon spectrum for
elastic scattering on protons derived in Ref. [12]. For a
more detailed comparison among the different photon
spectra see Ref. [13].

Another process of interest for heavy quark production
is the coherent interaction between two photons. As veri-
fied in Ref. [14] for ultraperipheral heavy ion collisions,
the QCD dynamics implies an enhancement of the cross
section in comparison with quark-parton model calcula-
tions [15]. However, its cross section is a factor about 800
smaller than for the one-photon process. Furthermore,
differently from two-photon interactions, which leave
both photons intact, photoproduction should only dissoci-
ate the proton target. Then, one way to select photopro-
duction events is to eliminate events where both protons
break up and to require a single rapidity gap.

In what follows, we briefly present sound models for
the heavy quark photoproduction at the photon level,
�tot�	p ! QQX�, which enter as input in the calculations
for proton-proton collisions in Eq. (1). Our results are
compared with the DESY-HERA data [16], and the pre-
diction from the IIM model for this process is presented for
the first time. In the last section, the numerical results for
the rapidity y of the produced states and their total cross
sections are shown. A comparison on the order of magni-
tude of the cross sections for the distinct approaches is
performed. Moreover, we present our main conclusions.

II. A COMPARISON AMONG HIGH ENERGY
APPROACHES

The photon-proton cross section can be calculated con-
sidering different theoretical scenarios [17]. Usually, one
calculates it assuming the validity of the collinear factori-
zation, where the cross sections involving incoming had-
rons are given, at all orders, by the convolution of
intrinsically nonperturbative, but universal, quantities—
the parton densities, with perturbatively calculable hard
matrix elements, which are process dependent. In this
approach, all partons involved are assumed to be on mass
shell, carrying only longitudinal momenta, and their trans-
verse momenta are neglected in the QCD matrix elements.
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The heavy quark cross section is given in terms of the
convolution between the elementary cross section for the
subprocess 	g ! QQ and the probability of finding a
gluon inside the proton, namely, the gluon distribution.
The photoproduction cross section at leading order is given
by [18]

�tot�	p ! QQX�
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where MQQ is the invariant mass of the heavy quark pair,
with x � M2

QQ
=W2

	p, and gp�x;�2
F� is the gluon density

inside the proton at the factorization scale �2
F. In addition,

mQ is the heavy quark mass, eQ is its electric charge, and
� � 4m2

Q=M
2
QQ

. For the present purpose we will use �2
F �

4m2
Q, with mc � 1:5 GeV and mb � 4:5 GeV. In our fur-

ther calculations on the collinear approach one takes the
gluon distribution given by the GRV98(LO) parametriza-
tion [19]. It should be noticed that different choices for the
factorization scale and quark mass produce distinct overall
normalization to the total cross section at photon-nucleon
interactions and that next-to-leading order (NLO) correc-
tions can be absorbed in these redefinitions of �2

F and m2
Q.

In the next section we discuss in more detail the depen-
dence of our results in the parton distributions used as input
in our calculations.

On the other hand, in the large energy (small-x) limit, the
effects of the finite transverse momenta of the incoming
partons become important, and the factorization must be
generalized, implying that the cross sections are now k?
factorized into an off-shell partonic cross section and a
k?-unintegrated parton density function F �x; k?�, charac-
terizing the k?-factorization approach [20–22]. The func-
tion F is obtained as a solution of the evolution equations
associated with the dynamics that governs the QCD at high
energies (see [17] for a review). The latter can recover the
usual parton distributions in the double leading logarithmic
limit (DLL) by its integration over the transverse momen-
tum of the k? exchanged gluon. The gluon longitudinal
momentum fraction is related to the c.m.s. energy, W	p, in
the heavy quark photoproduction case as x � 4m2

Q=W
2
	p.

This assumption is a very good approximation, though the
scaling variable x, in fact, depends on the kinematic vari-
ables of the incoming particles, namely, on z and parton
momenta (for details on these issues see [2] and references
therein). The cross section for the heavy quark photopro-
duction process is given by the convolution of the unin-
tegrated gluon function with the off-shell matrix elements
-2
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[2,17,23,24]. Considering only the direct component of the
photon, we have that the total cross section reads as [2]

�tot�	p ! QQX�

�
e2Q
�

Z
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where D1 � p2
1? �m2

Q and D2 � �k? 	 p1?�
2 �m2

Q.
The transverse momenta of the heavy quark (antiquark)
are denoted by p1? and p2? � �k? 	 p1?�, respectively.
The heavy quark longitudinal momentum fraction is
labeled by z. The hard scale �, in general, is taken to be
equal to the gluon virtuality, in close connection with the
Brodsky-Lepage-Mackenzie scheme [25]. Therefore, for
our purpose we will use the prescription �2 � k2? �m2

Q.
As some evolution equations for the unintegrated gluon
distribution, for instance the Catani-Ciafaloni-Fiorani-
Marchesini equation [26], enable also its dependence on
the scale �, we have explicitly written it down in Eq. (4)
for sake of generality.

In performing a numerical analysis within the
k?-factorization approach (hereafter labeled
SEMIHARD), we use two distinct parametrizations for
the unintegrated gluon distribution (for details see
Ref. [4]). First, one considers the derivative of the collinear
gluon distribution, quite successful in the proton case [2]
and investigated in the nuclear case in Ref. [4]. It simply
reads as

F DLL�x;k2?� �
@xg�x;k2?�

@ lnk2?
; (5)

where xg�x;Q2� is the gluon distribution, which was taken
from the GRV98(LO) parton distribution [19]. A short-
coming of the function above is that it eventually produces
negative values for the unintegrated gluon distribution at
large x. This has consequences in the description of the
behavior near threshold, being more important for bottom
production than for charm. This is due to the scaling
variable being proportional to the quark mass, x �

4m2
Q=W

2
	p, and, in general, the calculation slightly under-

estimates the cross section value at low energies. A more
accurate calculation consists of multiplying the collinear
gluon function above by the Sudakov-like form factor
Tg�k; �� [27].

As the heavy quark production is characterized by a
scale of order of the quark mass, the charm production,
in particular, is considered a primary candidate for inves-
tigating the kinematic region of QCD on the boundary
between perturbative and high density QCD (for recent
reviews see, e.g., Refs. [28,29]). Recently, we have dem-
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onstrated that the inclusive charm total cross section ex-
hibits the property of geometric scaling [30], which is one
of the main characteristics of the high density approaches.
This fact motivates us to estimate these features in the
photoproduction case. In order to do so, we consider the
Golec-Biernat-Wüsthoff parametrization [31] (hereafter
SAT-MOD), which gives the following unintegrated gluon
distribution,

F sat�x;k
2
?� �

3�0

4�2�s

�
k2?

Q2
sat�x�

�
exp

�
	

k2?
Q2

sat�x�

�
�1	 x�7;

Qsat�x� �
�
x0
x

�
"
GeV2;

(6)

where Q2
sat�x� is the saturation scale, which defines the

onset of the nonlinear QCD (saturation) effects. The pa-
rameters were obtained from a fit of the inclusive structure
function F2 and total photoproduction cross section data at
DESY-HERA. The fit using the expression of the color
dipole picture, as explained below, and the saturation
ansatz for the dipole cross section produced �0 �
29:12 mb, " � 0:277, and x0 � 0:41
 10	4. This fit pro-
cedure also includes the charm contribution. In addition,
we have included the large-x threshold factor �1	 x�7 (for
the heavy quark case) in Eq. (6) to take into account the
correct energy dependence at low energies near production
threshold.

The saturation model is based on the color dipole picture
of the photon-proton interaction [10]. In the proton rest
frame, the deep inelastic scattering process can be seen as a
succession in time of three factorizable subprocesses: (i)
the photon fluctuates in a quark-antiquark pair with trans-
verse separation r� 1=Q long after the interaction, (ii) this
color dipole interacts with the proton target, and (iii) the
quark pair annihilates in a virtual photon. The interaction
	�p is further factorized in the simple formulation [10]

�	�p
L;T �x;Q

2� �
X
f

Z
dzd2rj�f

L;T�z; r; Q
2�j2�dip�x; r�;

(7)

where z is the longitudinal momentum fraction of the
quark. The photon wave functions �f

L;T are determined
from light cone perturbation theory and read as

j�f
T j

2 �
6�em

4�2 e2ff�z
2 � �1	 z�2�"2K2

1�"r� �m2
fK

2
0�"r�g;

j�f
Lj

2 �
6�em

�2 e2ffQ
2z2�1	 z�2K2

0�"r�g;
(8)

where the auxiliary variable "2 � z�1	 z�Q2 �m2
f de-

pends on the quark mass mf. The K0;1 are the McDonald
functions and the summation is performed over the quark
flavors. The dipole-hadron cross section �dip contains all
information about the target and the strong interaction
physics. In general, the saturation models [11,31–33] in-
terpolate between the small and large dipole configura-
-3
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tions, providing color transparency behavior, �dip � r2, as
r � Qsat and constant behavior at large dipole separations
r<Qsat. Along these lines, the phenomenological satura-
tion model resembles the mains features of the Glauber-
Mueller resummation. Namely, the dipole cross section
takes the eikonal-like form

�dip�x; r� � �0

�
1	 exp

�
	
Q2

sat�x�r
2

4

��
: (9)

Its phenomenological application has been successful in a
wide class of processes with a photon probe. An important
aspect of the saturation models is that they resume a class
of higher twist contributions which should be non-
negligible towards the low Q2 region [34,35]. Moreover,
it is important to emphasize that the dipole approach was
extended for heavy quark production in proton-proton
(nucleus) collisions in Refs. [36,37], and its equivalence
with the collinear approach as well as the comparison with
pp data was presented in Ref. [38].

Although the saturation model describes reasonably
well the HERA data, its functional form is only an ap-
proximation of the theoretical nonlinear QCD approaches.
On the other hand, an analytical expression for the dipole
cross section can be obtained within the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) formalism. Currently, intense
theoretical studies have been performed towards an under-
standing of the BFKL approach in the border of the satu-
ration region [39,40]. In particular, the dipole cross section
has been calculated in both LO and NLO BFKL ap-
proaches in the geometric scaling region [41]. It reads as

�dip�x; r� � �0�r
2Q2

sat�x��
	sat exp

�
	
ln2�r2Q2

sat�

2� ��sY

�
; (10)

where �0 � 2�R2
p (Rp is the proton radius) is the overall

normalization and the power 	sat is the (BFKL) saddle
point in the vicinity of the saturation line Q2 � Q2

sat�x�
(the anomalous dimension is defined as 	 � 1	 	sat). As
usual in the BFKL formalism, ��s � Nc�s=�, � ’ 28*�3�,
and Y � ln�1=x�. The quadratic diffusion factor in the
exponential gives rise to the scaling violations.

The dipole cross section in Eq. (10) does not include
an extrapolation from the geometric scaling region to
the saturation region. This has been recently implemented
in Ref. [11], where the dipole amplitude N �x; r� �
�dip=2�R2

p was constructed to smoothly interpole between
the limiting behaviors analytically under control: the solu-
tion of the BFKL equation for small dipole sizes, r �
1=Qsat�x�, and the Levin-Tuchin law [42] for larger ones,
r � 1=Qsat�x�. A fit to the structure function F2�x;Q

2� was
performed in the kinematical range of interest, showing
that it is not very sensitive to the details of the interpola-
tion. The dipole cross section was parametrized as follows,
014025
�CGC
dip �x; r�

� �0

8>><
>>:
N 0

�
rQsat

2

�
2�	sat�

ln�2=rQsat �
+"Y �

; for rQsat�x� � 2;

1	 exp�	aln2�brQsat��; for rQsat�x�> 2;

(11)

where the expression for rQsat�x�> 2 (saturation region)
has the correct functional form, as obtained either by
solving the Balitsky-Kovchegov (BK) equation [43], or
from the theory of the color glass condensate (CGC)
[44]. Hereafter, we label the model above by CGC. The
coefficients a and b are determined from the continuity
conditions of the dipole cross section at rQsat�x� � 2. The
coefficients 	sat � 0:63 and + � 9:9 are fixed from their
LO BFKL values. In our further calculations we will use
the parameters Rp � 0:641 fm, " � 0:253, x0 � 0:267

10	4, and N 0 � 0:7, which give the best fit result. We
have included also a large-x factor as for the saturation
model. In the color dipole picture, the heavy quark photo-
production cross section using the CGC model reads as

�tot�	p ! QQX�

�
Z
dzd2rj�Q

T �z; r; Q
2 � 0�j2�CGC

dip �x; r�; (12)

where the longitudinal piece does not contribute as
j�Lj

2 / Q2. The transverse contribution is computed using
Eq. (8) and introducing the appropriated mass and charge
of the charm or bottom quark.

The dipole approach is very useful in providing semi-
analytic solutions for the cross section. In the heavy quark
case, it can be shown that the scattering process is domi-
nated by small-size dipoles with mean value r� 1=m2

Q. In
this scenario, the photon wave function selects the color
transparency region as the main contribution to the cross
section. Concerning the longitudinal fraction z of the di-
poles, at the limit Q2 � 4m2

Q only the symmetric configu-
rations hzi 
 1=2 contribute. In this case, which is valid in
the photoproduction regime, we can write in a semiquanti-
tative way

�tot�	p ! QQX� ’
�eme

2
Q

�

Z 1=m2
Q

0

dr2

r2
���x; r�; (13)

where �� is the small-r limit of the dipole cross section. For
heavy quark production we have that the saturation model
predicts �� � �0Q

2
satr

2=4, whereas for the CGC model it
reads as �� � �0N 0�Q

2
satr

2=4�	sat modulo the diffusion
term in Eq. (11). Therefore, by introducing these values
in Eq. (13) one produces the following analytical results for
both models,
-4
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�SAT	MOD
tot ’

�eme2Q
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�
�0Q

2
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4m2
Q

�
/ W2"

	p;

�CGC
tot ’

�eme2Q�0N 0

�m2
Q�1� 	sat�

�
Q2

sat

4m2
Q

�
	sat

/ W2	sat"
	p ;

(14)

which implies, in general, a slightly smoother energy
growth for CGC than for SAT-MOD since 	sat < 1. It
should be noticed that this behavior is obtained only in
the case of sufficiently small x (large rapidity Y), where we
could neglect the diffusion term for CGC and take only the
anomalous dimension at the saturation vicinity. On the
other hand, for not so small x the diffusion factor cannot
be disregarded and the effective anomalous dimension
	eff�x; r� � 	sat � �ln�2=rQsat�=+"Y� in Eq. (11) should
be taken. This situation can occur in the bottom production
at intermediate energies due to the large bottom mass,
which implies the CGC have practically the same slope
on energy as the saturation model. This can be understood
in realizing that the effective anomalous dimension for
SAT-MOD is 	SAT	MOD

eff � 1 and at sufficiently large x
they are very close to each other.

Having presented the main sound approaches for heavy
quark photoproduction at the photon level, let us compare
their numerical results with the experimental DESY-
HERA data [16]. They are shown in Fig. 1, where the
following notation is considered: the results from the satu-
ration model (SAT-MOD) are denoted by the solid lines
and the usual collinear factorization calculation is labeled
by the dot-dashed lines. The k?-factorization formalism
(SEMIHARD), using the unintegrated gluon function in
Eq. (5), produces the long-dashed lines, where the Iancu-
Itakura-Munier parametrization for the dipole cross section
(CGC) gives the dashed lines. In all calculations we have
used the same quark masses mc � 1:5 GeV and mb �
10
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FIG. 1 (color online). The total photoproduction cross section for
measurements are from DESY-HERA.
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4:5 GeV. We quote Refs. [2,4] for detailed investigations
on the dependence of the cross section in choosing differ-
ent collinear gluon parametrizations and different factori-
zation scales for both the collinear and k?-factorization
approaches.

Let us compare the distinct behaviors on energy and
overall normalizations. Both the collinear approach and the
semihard formalism give a consistent data description at
high energies. At the region near the threshold, the semi-
hard approach slightly underestimates the cross section,
being more pronounced in the bottom case. This is under-
stood in terms of the considered unintegrated gluon distri-
bution F DLL, as discussed before. The saturation model
underestimates the cross section at high energies by a
factor about 2, producing a reasonable description of the
region near threshold. The CGC model follows similar
trends, but the high energy values are closer to the experi-
mental measurements than the saturation model. The slope
on energy for SAT-MOD and CGC can be easily under-
stood from the semiquantitative results in Eq. (14). For the
bottom case, we are not in sufficiently small x and SAT-
MOD and CGC give similar energy slope in agreement
with our discussion above. Unfortunately, the current pre-
cision and statistics of the experimental measurements of
the photoproduction cross section are too low to formulate
definitive conclusions about the robustness of the different
approaches presented here. More precise measurements
could pose stringent constraints on the energy dependence
and overall normalization. Finally, it should be noticed that
the present calculations concern only the direct photon
contribution to the cross section, whereas the resolved
component has been neglected. To some extent the results
from the saturation models presented here let some room
for this contribution. Details on this calculation and size of
its contribution can be found, for instance, in Ref. [24].
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FIG. 2 (color online). Comparison among rapidity distribu-
tions for charm photoproduction at LHC, considering distinct
parameterizations for the collinear gluon distribution.
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III. RESULTS AND CONCLUSIONS

In what follows, we will compute the rapidity distribu-
tion and total cross sections for the photoproduction of
open charm and bottom from proton-proton collisions at
high energies. The approaches shortly reviewed in the
previous section serve as input for the numerical calcula-
tions using Eq. (1) for the energies of the current and future
pp and p �p accelerators. Namely, one considers the shorter
pp running at RHIC upon energy of

���������
SNN

p
� 500 GeV

and the Tevatron value
���������
SNN

p
� 1:96 TeV for its p �p run-
−6 −4 −2 0 2 4 6
y
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SAT−MOD
SEMIHARD
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FIG. 3 (color online). The rapidity distribution for open charm���������
SNN

p
� 500 GeV. Different curves correspond to distinct high ene
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ning. For the planned LHC pp running (ATLAS and/or
CMS) one takes the design energy

���������
SNN

p
� 14 TeV.

The distribution on rapidity y of the produced open
heavy quark state can be directly computed from Eq. (1),
by using its relation with the photon energy !, i.e., y /

ln�!=mQ�. A reflection around y � 0 takes into account
the interchanging between the proton’s photon emitter and
the proton target. Explicitly, the rapidity distribution is
written down as

d��p� p� �p� ! QQ� X� p� �p��
dy

� !
dN	�!�

d!
�	p!QQX�!�: (15)

Let us start by analyzing the predictions from the col-
linear approach, obtained using distinct gluon parton dis-
tribution functions (pdf’s). In Fig. 2, the comparison
among the resulting rapidity distributions for open charm
photoproduction at LHC energy is presented. It has been
considered the GRV (94 and 98) and MRST (2001) parton
parametrizations. The results for bottom and/or charm at
RHIC/Tevatron energies give somewhat very close curves
and they will not be presented here. The results presented
in Fig. 2 are strongly dependent on the gluon distribution,
which motivates the study of this process in order to
constrain it. Moreover, they can be useful in understanding
what is the underlying QCD dynamics at high energies. We
have that the deviations between the predictions from the
GRV98(LO) and MRST2001(LO) pdf’s are approximately
of 30%. In order to demonstrate the strong dependence of
the rapidity distribution on the gluon density, we also
present the result obtained from the obsolete GRV94(LO)
−4 −2 0 2 4
y

0

0.5

1

1.5

dσ
/d

y 
[n

b]

RHIC pp
BOTTOM

and bottom photoproduction on pp reactions at RHIC energy
rgy QCD approaches (see text).
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pdf, which has a steeper gluon distribution at small x. In
our further comparisons with other approaches, we will use
the GRV98 pdf.

The resulting cross sections coming out of the distinct
theoretical inputs considered in the previous section are
depicted in Figs. 3–5 at RHIC, Tevatron, and LHC ener-
gies, respectively. Let us discuss, in general, the present
results. At RHIC energies, larger values of x / mQ=W	p

are probed in the process than at Tevatron and LHC, mostly
for bottom. This fact explains the very similar result for all
approaches in the bottom case in Fig. 3 (right plot). For the
−8 −6 −4 −2 0 2 4 6 8
y
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200
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400
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/d

y 
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FIG. 4 (color online). The rapidity distribution for open charm
and bottom photoproduction on p �p reactions at Tevatron energy���������
SNN

p
� 1:96 TeV. Different curves correspond to distinct high

energy QCD approaches (see text).
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FIG. 5 (color online). The rapidity distribution for open charm
and bottom photoproduction on p �p reactions at LHC (CMS and/
or ATLAS) energy

���������
SNN

p
� 14 TeV. Different curves corre-

spond to distinct high energy approaches (see text).
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charm case, the situation starts to be different. The
SEMIHARD result presents a sharper tail at large rapidities
as a consequence of its behavior on energy near threshold,
as discussed before. The overall normalization and its
behavior at central rapidities follow the same trend coming
from the cross section at photon level (see Fig. 1).
Collinear and k?-factorization formalisms often give
closer results, whereas the saturation models (SAT-MOD
and CGC) produce smaller cross sections.

At Tevatron energies (Fig. 4), smaller x are being probed
in the reaction, and the cross section becomes more de-
pendent on the high energy behavior of the cross section at
-7
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photon level. The overall normalization becomes increas-
ingly sizable for different approaches. For the charm case,
the result could already distinguish between the saturation
approaches and the usual pQCD calculations. At LHC
energies (Fig. 5), the separation is more clear once smaller
x are probed. High values are obtained from the collinear
approach due to its steeper energy growth, followed by the
semihard approach. The latter still considers an uninte-
grated gluon function dependent on the collinear one and
therefore has closer behavior on energy. Concerning the
saturation approaches, SAT-MOD provides the lower limit,
whereas CGC gives somewhat larger values. This is once
again a consequence of their high energy behavior, as
verified in Fig. 1.

Let us now compute the integrated cross section consid-
ering the distinct QCD approaches. The results are pre-
sented in Table I for the open charm and bottom pair
production at RHIC, Tevatron, and LHC, respectively.
The collinear factorization approach gives the largest rates
among the models studied, followed by the semihard for-
malism, as a clear trend from the distribution on rapidity.
Concerning the saturation models, the CGC results in a
cross section of order 20% larger than SAT-MOD. The
values are large at both Tevatron and LHC, going from
some units of �bs at RHIC to hundreds of �bs at LHC.
Therefore, these reactions can have high rates at the LHC
kinematical regime. As stated before, we do not consider
the resolved photon contribution in our calculations.
However, it is possible to present an estimate of this
process considering the results from Refs. [15,45] for
ultraperipheral heavy ion collisions, where this contribu-
tion was studied using collinear factorization. One of the
main results is that these contributions are 
 15% and 20%
of the total charm and bottom photoproduction cross sec-
tions at LHC energy, respectively. On the other hand, in
Ref. [24] this contribution was estimated to be of order
of 20%–30% of the direct photon cross section using
k? factorization. It is important to emphasize that the
inclusion of resolved photon contribution brings the
predictions for bottom production closer to the 	p data,
but a major inconsistency cannot be claimed due to the
large experimental errors and theoretical uncertainties. We
TABLE I. The integrated cross section for the photoproduction
of heavy quarks in pp� �p� collisions at RHIC, Tevatron, and
LHC.

QQ SAT-MOD Semihard Collinear CGC

RHIC c �c 377 nb 687 nb 782 nb 492 nb
b �b 3.7 nb 3.6 nb 4.3 nb 4.2 nb

Tevatron c �c 1:04�b 2:77�b 3:21�b 1:36�b
b �b 13.3 nb 24.0 nb 29.2 nb 19.8 nb

LHC c �c 3:54�b 14:2�b 16:7�b 4:37�b
b �b 55.0 nb 182 nb 236 nb 108 nb
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postpone a detailed analysis on these issues for a future
publication.

The cross section computed here can be contrasted with
the open charm hadroproduction in central pp� �p� colli-
sions. Recently, Raufeisen and Peng [38] have computed
it considering the NLO parton model and the color dipole
formulation. They found that the results are subject to
uncertainties coming from different choices for quark
mass and parameters of the models, but they are able to
describe all data (except recent STAR measurement) in-
side the uncertainty band. The photoproduction cross
section is of order 0.1% from the corresponding hadropro-
duction. However, as we will see below, the production
rates are high and the experimental signal is significantly
clear.

At RHIC, where the luminosity is assumed to be
LRHIC � 1031 cm	2s	1, the open charm rate ranges
on 3:7	 7:8
 106 events by year. It should be noticed
that RHIC uses most of the running in the heavy ion mode,
so we used 106 s in the last estimation. For the bottom
case, the rates are 3:7	 4:3
 104 events by year. At
Tevatron, assuming the running time 107 s and design
luminosity LTevatron � 2
 1032 cm	2s	1, we have for
charm 2	 6
 109 and for bottom 2	 6
 107 events/
year. The LHC produces the greatest rates (LLHC �
1034 cm	2s	1), giving for charm 3:5	 17
 1010 and for
bottom 5:5	 24
 108 events/year. Notice the large rate
for bottom at LHC.

Finally, let us discuss the experimental separation of this
reaction channel. As emphasized in Ref. [8], although the
photoproduction cross section would be a small fraction of
the hadronic cross section, the separation of this channel is
feasible if we impose the presence of a rapidity gap in the
final state. It occurs due to the proton which is the photon
emitter that remains intact in the process. Similar to the
J=� case, we expect that a cut in the transverse momentum
of the pair could eliminate most of the contribution asso-
ciated with the hadroproduction of heavy quarks.
Moreover, in comparison with the hadroproduction of
heavy quarks, the event multiplicity for photoproduction
interactions is lower, which implies that it may be used as a
separation factor between these processes. As stated in
Ref. [15], one way to select photoproduction events is to
eliminate events where both protons break up. This should
eliminate almost all of the hadroproduction events while
retaining most of the photoproduction interactions. In
Ref. [15] the rejection factor R, which is the probability
of finding a rapidity gap with width y in a pp collision has
been calculated. For photoproduction, the authors have
obtained R � 0:04�0:005� at RHIC (LHC), requiring a
single rapidity gap and y � 2 (for details see Sec. VI of
Ref. [15]). These estimates can be directly applied in our
analysis. As photoproduction always leads to a rapidity
gap, this requirement should reject relatively few signal
events, leading to a good signal to noise ratio for selecting
-8
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these events. An important background which should be
analyzed is the diffractive heavy quark production in the
single diffraction process [46]. We postpone this study for
a future publication.

In summary, we have computed the cross sections for
photoproduction of open heavy quarks in pp and p �p
collisions. This has been performed using well established
QCD approaches, namely, the collinear and semihard fac-
torization formalisms as well as saturation models within
the color dipole approach. For the first time, quantitative
predictions for these approaches are presented. The ob-
tained values are shown to be sizable at the current accel-
erators’ energies (RHIC and Tevatron) and are increasingly
larger at LHC. The feasibility of detection of these reac-
tions is encouraging, since their experimental signature
014025
should be suitably clear. Furthermore, they enable to con-
straint already in the current colliders the QCD dynamics
since the main features from photon-proton collisions hold
in proton-proton collisions.
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[7] V. P. Gonçalves and M. V. T. Machado, Eur. Phys. J. C 31,
371 (2003).

[8] S. R. Klein and J. Nystrand, Phys. Rev. Lett. 92, 142003
(2004).

[9] M. Drees and D. Zeppenfeld, Phys. Rev. D 39, 2536
(1989).

[10] N. N. Nikolaev and B. G. Zakharov, Z. Phys. C 49, 607
(1991); 53, 331 (1992); A. H. Mueller, Nucl. Phys. B415,
373 (1994); A. H. Mueller and B. Patel, Nucl. Phys. B425,
471 (1994).

[11] E. Iancu, K. Itakura, and S. Munier, Phys. Lett. B 590, 199
(2004).

[12] B. A. Kniehl, Phys. Lett. B 254, 267 (1991).
[13] J. Nystrand, hep-ph/0412096.
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114023 (1999); Phys. Rev. D 59, 014017 (1998).
[32] J. Bartels, K. Golec-Biernat, and H. Kowalski, Phys. Rev.

D 66, 014001 (2002).
-9
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