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Integrable anisotropic spin-ladder model
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We present an integrable spin-ladder model, which possesses a free parameter besides the rung couplingJ.
Wang’s system based on theSU(4) symmetry can be obtained as a special case. The model is exactly solvable
by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase
transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that
the model is a special case of a more general Hamiltonian with three free parameters.
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With the discovery of high-temperature superconductiv
in doped copper oxide~or cuprate! materials,1 a tremendous
effort has been made to understand the physics underl
this phenomenon. In the absence of doping these compo
are reasonably approximated by the two-dimensio
Heisenberg model2,3 or some suitable generalization descr
ing spin-exchange-type interaction. It is well known that
one dimension the Heisenberg model is exactly solvable
Bethe ansatz methods and from this solution the spectrum
elementary spin excitation is gapless. On the other hand
existence of the spin gap is critical for the observed phen
enon of superconductivity to occur under doping. To ma
mize the interaction between theory and experiment, m
work is now focused on quasi-one-dimensional mod
known as ladders. The introduction of these ladder syst
has brought about a significantly increased understandin
the physics of the cuprate compounds.

By introducing the concept of the ladder model the app
ent contradiction in the excitation spectrum is resolved, si
the ladder allows for the formation of singlet states along
rungs which are responsible for the formation of the s
gap. However, the usual Heisenberg ladder model canno
solved. In order to gain some results in the theory of s
ladder systems, many authors have considered genera
models, which incorporate additional interaction terms t
guarantee exact solvability. Remarkably, such general
models still exhibit realistic physical properties such as
existence of a spin gap4 and the magnetization plateaus
fractional values of the total magnetization.5

This approach has been used to derive quasi-o
dimensional systems using the well-established theories f
the one-dimensional case.4–15 In all cases cited above, n
free parameters are present, other than the rung intera
coupling and applied magnetic field, due to the strict con
tions of integrability. With the presence of free parameter
is reasonable to expect that the solution may provide be
test models for describing the various behaviors associ
with ladder systems.

The purpose of this paper is to present an integrable g
eralized spin ladder with one extra parameter, characteri
anisotropy, without violating integrability. This model is e
actly solvable by the Bethe ansatz and it reduces to
model introduced by Wang4 for a special limit of this extra
parameter. The situation here is akin to the generalizatio
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theXXX chain to the anisotropicXXZ version. The introduc-
tion of the additional free parameter in the present case
lows for an example of a model with a critical line varyin
continuously with the anisotropy. More specifically, the si
of the gap in the massive region depends explicitly on
anisotropy parameter, which in turn shows dependence o
anisotropy parameter for the points at which the gap clo
that define the phase transition.

Let us begin by introducing the generalized spin-ladd
model, whose Hamiltonian reads

H (1)5(
j 51

L Fhj , j 111
1

2
J~sW j•tW j21!G , ~1!

where

hj , j 115 1
4 ~11s j

zs j 11
z !~11t j

zt j 11
z !1~s j

1s j 11
2 1s j

2s j 11
1 !

3~t j
1t j 11

2 1t j
2t j 11

1 !1 1
2 ~11s j

zs j 11
z !~ t21t j

1t j 11
2

1tt j
2t j 11

1 !1 1
2 ~ t21s j

1s j 11
2 1ts j

2s j 11
1 !

3~11t j
zt j 11

z !.

AbovesW j andtW j are Pauli matrices acting on sitej of the
upper and lower legs, respectively,J is the strength of the
rung coupling~we will consider only the caseJ.0 in the
subsequent analysis corresponding toantiferromagneticcou-
pling!, andt is a free parameter representing an anisotropy
the legs and interchain interaction. Throughout,L is the num-
ber of rungs~equivalently, the length of the ladder! and pe-
riodic boundary conditions are imposed. By settingt→1 in
Eq. ~1!, Wang’s model based on theSU(4) symmetry4 can
be recovered.~Strictly speaking, it isSU(4) invariant in the
absence of the rung interactions.! The Hamiltonian is invari-
ant under interchange of the legs; i.e.,sW j↔tW j . Moreover,
under spin inversion for both leg spaces the Hamiltonian
invariant with the interchanget↔t21. For this reason we se
that the parametert plays the role of spin anisotropy.

The energy eigenvalues of the Hamiltonian are given

E52(
j 51

M1 S 1

l j
211/4

22JD 1~122J!L, ~2!
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FIG. 1. EnergiesEi ( i 50, . . . ,8)versus rung couplingJ for different values of the anisotropyt. Notice that there is mainly competition
betweenE0 andE1 to be the lowest-energy level of the model. In addition, the critical value ofJ above whichE0 is the ground-state energ
varies witht reaching its minimum value whent51.
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wherel j are solutions to the Bethe ansatz Eqs.~3! below.
The Bethe ansatz equations arise from the exact solutio
the model through the nested algebraic Bethe ansatz me
and read

t (L22M3)S l j2 i /2

l j1 i /2D L

5)
lÞ j

M1 l j2l l2 i

l j2l l1 i )a51

M2 l j2ma1 i /2

l j2ma2 i /2
,

t (L22M3) )
bÞa

M2 ma2mb2 i

ma2mb1 i
5)

j 51

M1 ma2l j2 i /2

ma2l j1 i /2

3 )
d51

M3 ma2nd2 i /2

ma2nd1 i /2
, ~3!

t (L12M222M1) )
gÞd

M3 nd2ng2 i

nd2ng1 i
5 )

a51

M2 nd2ma2 i /2

nd2ma1 i /2
.

We remark that although the anisotropy parametert does
not appear explicitly in the energy expression~2!, the solu-
tionsl j for the Bethe ansatz equation do depend ont as will
be illustrated later.

The exact diagonalization of the two-site Hamiltoni
shows that forJ.11 1

2 (t11/t) the ~unique! ground state
05442
of
od

assumes the form of the product of the singlets with ene
E05224J and the energies of the excitations are given

E1522J2~ t11/t !, E2522J1~ t11/t !,

E35~ t11/t !, E452~ t11/t !,

E5522J12, E6522J22, E752, E8522.

A sample of these numerical results are presented in Fi
above.

For L sites it follows that the ground state is still given b
a product of rung singlets whenJ.11 1

2 (t11/t) and the
energy is (122J)L. This is in fact the reference state used
the Bethe ansatz calculation and corresponds to the
M15M25M350 for the Bethe ansatz Eq.~3!. To describe
an elementary spin-1 excitation, we takeM151 and M2
5M350 in Eq. ~3!, which leads to the imaginary solutio
for the variablel ~strictly, the lattice lengthL is assumed to
be even!,

l5
i

2

t21

t11
, ~4!
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giving the minimal excited-state energy. The energy gap
easily be calculated using the exact Bethe ansatz solution
has the form

D52S J212
1

2 S t1
1

t D D . ~5!

By solving D50 for J we find the critical valueJc51
1 1

2 (t11/t), indicating the critical line at which the quantum
phase transition from the dimerized phase to the gap
phase occurs.

The phase diagram in Fig. 2~a! assumes a simpler form
after a suitable reparametrization. We introduce a new
rameterK given byK5(t11/t)/2>1. In Fig. 2~b! the phase
diagram is represented in terms ofK andJ. The phase bound
ary is now a straight line given byJ511K. As a prelimi-
nary attempt to characterize the gapless phase we have

FIG. 2. ~a! Rung couplingJ versus anisotropyt. This graphic
represents the phase diagram and the dotted line shows W
point. The curve@J511(t11/t)/2# divides the gapped and gaple
phases.~b! Rung couplingJ versus reparametrization parameterK.
This graphic shows a reparametrization of the curveJ511(t
11/t)/2 in terms of K5(t11/t)/2. In this parameterization, th
phase boundary is a straight line.
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ied by numerical diagonalization the energy spectra of
~1! on ladders of sizes up to eight rungs and several value
J andK.

As mentioned above, ifJ.11K the spectra is gappe
and the ground state a product of singlets on each rung
we cross the phase transition line a state with finite mag
tization becomes the ground state. By further decreasinJ,
with K fixed, the ground-state magnetization initially in
creases and then, ifJ is made small enough, drops to zer
This behavior resembles that of the one-dimensional an
tropic Heisenberg model, also called theXXZ chain, in the
presence of a magnetic field.16 In the XXZ chain with no
magnetic field applied, the anisotropy can be tuned to br
the system into a massive antiferromagnetic~AF! phase,
where the ground state is a Ne´el state. By tuning the mag
netic field inside this AF phase we observe a behavior sim
iar to the one found here in terms of the parameterJ. In
particular, the Pokrovsky-Talapov16,17 phase transition ap
pearing in the phase diagram of theXXZ chain has many
features in common with the phase transition found he
with J andK playing the roles of the magnetic field and th
anisotropy, respectively. Based on this analogy, we con
ture that the ground state with null magnetization found
our model for small values ofJ suggests the presence of a
AF gapped phase~Néel phase!. Therefore, another phase
transition line is expected to exist below the one presen
here.

The integrability of this model can be shown by the fa
that it can be mapped@see Eq.~7! below# to the following
Hamiltonian, which can be derived from anR matrix obey-
ing the Yang-Baxter algebra forJ50, while for JÞ0 the
rung interactions take the form of a chemical-potential ter

Ĥ (1)5(
j 51

L

@ ĥ j , j 1122JXj
00#, ~6!

where

ĥ j , j 115 (
a50

3

Xj
aaXj 11

aa 1Xj
20Xj 11

02 1Xj
02Xj 11

20 1Xj
13Xj 11

31

1Xj
31Xj 11

13 1t~Xj
10Xj 11

01 1Xj
12Xj 11

21 1Xj
03Xj 11

30

1Xj
23Xj 11

32 !1t21~Xj
01Xj 11

10 1Xj
21Xj 11

12 1Xj
30Xj 11

03

1Xj
32Xj 11

23 !.

Above Xj
ab5ua j&^b j u are the Hubbard operators wit

ua j& the orthogonalized eigenstates of the local operatorsW j

•tW j , as in Wang’s case.4 The local Hamiltonians~1! and ~6!
are related through the following basis transformation:

u↑,↑&→1/A2~ u↑,↓&2u↓,↑&), u↑,↓&→u↑,↑&,
~7!

u↓,↑&→1/A2~ u↑,↓&1u↓,↑&), u↓,↓&→u↓,↓&.

The following R matrix,

g’s
0-3
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R5

¨

a 0 0 0 u 0 0 0 0 u 0 0 0 0 u 0 0 0 0

0 t21b 0 0 u c 0 0 0 u 0 0 0 0 u 0 0 0 0

0 0 b 0 u 0 0 0 0 u c 0 0 0 u 0 0 0 0

0 0 0 tb u 0 0 0 0 u 0 0 0 0 u c 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 c 0 0 u tb 0 0 0 u 0 0 0 0 u 0 0 0 0

0 0 0 0 u 0 a 0 0 u 0 0 0 0 u 0 0 0 0

0 0 0 0 u 0 0 tb 0 u 0 c 0 0 u 0 0 0 0

0 0 0 0 u 0 0 0 b u 0 0 0 0 u 0 c 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 c 0 u 0 0 0 0 u b 0 0 0 u 0 0 0 0

0 0 0 0 u 0 0 c 0 u 0 t21b 0 0 u 0 0 0 0

0 0 0 0 u 0 0 0 0 u 0 0 a 0 u 0 0 0 0

0 0 0 0 u 0 0 0 0 u 0 0 0 tb u 0 0 c 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 c u 0 0 0 0 u 0 0 0 0 u t21b 0 0 0

0 0 0 0 u 0 0 0 c u 0 0 0 0 u 0 b 0 0

0 0 0 0 u 0 0 0 0 u 0 0 0 c u 0 0 t21b 0

0 0 0 0 u 0 0 0 0 u 0 0 0 0 u 0 0 0 a

©
, ~8!
ase
ters
with

a5x11, b5x, and c51

obeys the Yang-Baxter algebra

R12~x2y!R13~x!R23~y!5R23~y!R13~x!R12~x2y! ~9!

and originates the Hamiltonian~6! for J50 by the standard
procedure18

ĥ j , j 115P
d

dx
R~x!ux50 ,
05442
whereP is the permutation operator.
This model studied above represents one particular c

of a more general Hamiltonian that has three free parame
and reads

Hg5(
j 51

L Fhj , j 11
g 1

1

2
J~sW j•tW j21!G , ~10!

where
hj , j 11
g 5s j

1s j 11
2 F t1

21

4
~11t j

z!~11t j 11
z !1

t2

4
~12t j

z!~12t j 11
z !1t3t j

1t j 11
2 1t j

2t j 11
1 G1s j

2s j 11
1

3F t1

4
~11t j

z!~11t j 11
z !1

t2
21

4
~12t j

z!~12t j 11
z !1t j

1t j 11
2 1t3

21t j
2t j 11

1 G1
1

4
~11s j

z!~11s j 11
z !

3@ 1
2 ~11t j

zt j 11
z !1t1

21t j
1t j 11

2 1t1t j
2t j 11

1 #1 1
4 ~12s j

z!~12s j 11
z !@ 1

2 ~11t j
zt j 11

z !1t2t j
1t j 11

2 1t2
21t j

2t j 11
1 #.
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This Hamiltonian can be mapped to@see Eq.~7!#

Ĥg5(
j 51

L

@ ĥ j , j 11
g 22JXj

00#, ~11!

where

ĥ j , j 11
g 5 (

a50

3

Xj
aaXj 11

aa 1Xj
20Xj 11

02 1Xj
02Xj 11

20 1t1~Xj
10Xj 11

01

1Xj
12Xj 11

21 !1t2~Xj
30Xj 11

03 1Xj
32Xj 11

23 !1t3Xj
31Xj 11

13

1t1
21~Xj

01Xj 11
10 1Xj

21Xj 11
12 !1t2

21~Xj
03Xj 11

30

1Xj
23Xj 11

32 !1t3
21Xj

13Xj 11
31 .

Using the algebraic nested Bethe ansatz method,
model can be exactly solved. The energy eigenvalues of
Hamiltonian~10! are also given by Eq.~2! while the Bethe
ansatz equations reads

t1
(L2M3)t2

M3t3
2M3S l j2 i /2

l j1 i /2D L

5)
lÞ j

M1 l j2l l2 i

l j2l l1 i )a51

M2 l j2ma1 i /2

l j2ma2 i /2
,

t1
(L2M3)t2

M3t3
2M3 )

bÞa

M2 ma2mb2 i

ma2mb1 i

5)
j 51

M1 ma2l j2 i /2

ma2l j1 i /2)d51

M3 ma2nd2 i /2

ma2nd1 i /2
,

A

05442
is
he

t1
(M22M1)t2

2(L2M11M2)t3
2(M12M2) )

gÞd

M3 nd2ng2 i

nd2ng1 i

5 )
a51

M2 nd2ma2 i /2

nd2ma1 i /2
.

The physics of the integrable model presented here is
pected to be much richer, since the presence of these e
parameters will certainly influence the phase diagram of
model. More details of this model are being studied and
results will be shown in a future work.

To summarize, we have introduced a generalization
Wang’s spin-ladder model based on theSU(4) symmetry.
This was achieved by introducing one extra parameter
the system without violating integrability. The Bethe ans
equations as well as the energy expression of the mode
presented. We show also that the model has a gap tha
pends on the free parameter and the critical point, and
phase diagram was obtained. We note that our model w
one free parameter is a special case of a more general
grable Hamiltonian that has three free parameters. A com
hensive analysis of the general model will be undertaken
future work.
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