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Integrable anisotropic spin-ladder model

Arlei Prestes Tonel* Angela Foerstet,” Jon Linkst?*and Andre Luiz MalvezZi®
nstituto de Fsica da UFRGS, Avenida Bento Gaaes 9500, Porto Alegre, RS-Brazil
°Department of Mathematics, The University of Queensland, Queensland, 4072, Australia
3Departamento de Bica da UNESP, Avenida Eng. Luiz Edmundo Carrijo Coube, s/n, Bauru, SP-Brazil
(Received 13 December 2000; published 16 July 2001

We present an integrable spin-ladder model, which possesses a free parameter besides the rung.coupling
Wang's system based on tB&J(4) symmetry can be obtained as a special case. The model is exactly solvable
by means of the Bethe ansatz method. We determine the dependence on the anisotropy parameter of the phase
transition between gapped and gapless spin excitations and present the phase diagram. Finally, we show that
the model is a special case of a more general Hamiltonian with three free parameters.
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With the discovery of high-temperature superconductivitythe XXX chain to the anisotropi¥ X Z version. The introduc-
in doped copper oxidéor cupraté materials: a tremendous tion of the additional free parameter in the present case al-
effort has been made to understand the physics underlyinigws for an example of a model with a critical line varying
this phenomenon. In the absence of doping these compoun@gntinuously with the anisotropy. More specifically, the size
are reasonably approximated by the two-dimensionaPf the gap in the massive region depends explicitly on the
Heisenberg mod&f or some suitable generalization describ- anisotropy parameter, which in turn shows dependence of the
ing spin-exchange-type interaction. It is well known that in@nisotropy parameter for the points at which the gap closes
one dimension the Heisenberg model is exactly solvable vi#hat define the phase transition. . .
Bethe ansatz methods and from this solution the spectrum of L€t us begin by introducing the generalized spin-ladder
elementary spin excitation is gapless. On the other hand, th®0odel, whose Hamiltonian reads
existence of the spin gap is critical for the observed phenom- L
enon of superconductivity to occur under doping. To maxi- H(— 2 h ST
mize the interaction between theory and experiment, much =R REAE 2 (op-7=1) |, @)
work is now focused on quasi-one-dimensional models
known as ladders. The introduction of these ladder systemghere
has brought about a significantly increased understanding of

the physics of the cuprate compounds. hjjr1= %(1+szgjz+1)(1+ TJ.ZTJ.Z+ 1)+(Uj+ Uj-+1+0-j—gj++l)
By introducing the concept of the ladder model the appar- *
ent contradiction in the excitation spectrum is resolved, since X(7) 1t 7 1) T 3(L+ ool )t 1
the ladder allows for the formation of singlet states along the _ B _ _
i ; ; ; +tr )+t e o tto o)
rungs which are responsible for the formation of the spin iy T2 i Vi i i

gap. However, the usual Heisenberg ladder model cannot be
solved. In order to gain some results in the theory of spin
ladder systems, many authors have considered generalized - - . ) ) )
models, which incorporate additional interaction terms that Aboveoj andr; are Pauli matrices acting on sjtef the
guarantee exact solvability. Remarkably, such generalizedPPer and lower legs, respectivelyis the strength of the
models still exhibit realistic physical properties such as theung coupling(we will consider only the cas@>0 in the
existence of a spin g4mand the magnetization plateaus at SUbsequent analysis correspondingudiferromagneticou-
fractional values of the total magnetization. pling), andt is a free parameter representing an anisotropy in
Th|s approach haS been used to derive quasi-onéhe |egS and Inter'ChaIn |nteract|0n.Thr0ughd).us the num-
dimensional systems using the well-established theories frofer of rungs(equivalently, the length of the laddeand pe-
the one-dimensional ca4e'® In all cases cited above, no fiodic boundary conditions are imposed. By setttrg1 in
free parameters are present, other than the rung interactided- (1), Wang's model based on tH2U(4) symmetry can
coupling and applied magnetic field, due to the strict condibe recovered(Strictly speaking, it isSSU(4) invariant in the
tions of integrability. With the presence of free parameters i@bsence of the rung interaction$he Hamiltonian is invari-
is reasonable to expect that the solution may provide betteant under interchange of the legs; i.ej— ;J-. Moreover,
test models for describing the various behaviors associateshder spin inversion for both leg spaces the Hamiltonian is
with ladder systems. invariant with the interchangie—t 2. For this reason we see
The purpose of this paper is to present an integrable genhat the parameterplays the role of spin anisotropy.
eralized spin ladder with one extra parameter, characterizing The energy eigenvalues of the Hamiltonian are given by
anisotropy, without violating integrability. This model is ex-

X(1+ TJ-ZT]-ZJrl).

actly solvable by the Bethe ansatz and it reduces to the M3
model introduced by Warfgior a special limit of this extra E=— > —-2J|+(1-2J3)L, 2
parameter. The situation here is akin to the generalization of =1 \Aj+1/4
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FIG. 1. EnergieE; (i=0,..., 8)versus rung coupling for different values of the anisotrogyNotice that there is mainly competition

betweerE, andE, to be the lowest-energy level of the model. In addition, the critical valukatfove whichE, is the ground-state energy
varies witht reaching its minimum value when=1.

where \; are solutions to the Bethe ansatz E(®. below. assumes the form of the product of the singlets with energy
The Bethe ansatz equations arise from the exact solution d&,=2—4J and the energies of the excitations are given by
the model through the nested algebraic Bethe ansatz method

and read Ey=—2J—(t+1h), E,=—2J+(t+1h),
N—ir2\E MU N =i M N Fif2
(L-amy| 21 =) T =L i = =—
t vear-i it ! Sverveny | veyrete2 Es=(t+1h),  Ey=—(t+1N),
J I J
E5:_2J+2, E6:_2J_2, E7:2, E8:_2

M . M .
{(L-2My) HZ L r Ma_M—f/Z
pra Mo pptl =1 o= N FI/2 A sample of these numerical results are presented in Fig. 1
above.
ForL sites it follows that the ground state is still given by
a product of rung singlets whedi>1+ 3(t+1/4) and the
energy is (1 2J)L. This is in fact the reference state used in
the Bethe ansatz calculation and corresponds to the case
M1=M,=M3=0 for the Bethe ansatz E3). To describe
an elementary spin-1 excitation, we také;=1 and M,
=M3=0 in Eq. (3), which leads to the imaginary solution
for the variable\ (strictly, the lattice length. is assumed to
be even,

M .
Ho—Vs—i112
<11 w—vyrize 9

Mj NV .
((L+2M5-2My) vs— vy~ Vs pg— 112

yEo Vo~ vyt o1 Ve g til2

We remark that although the anisotropy paraméehoes
not appear explicitly in the energy expressi@, the solu-
tions\; for the Bethe ansatz equation do depend as will
be illustrated later. _

The exact diagonalization of the two-site Hamiltonian A= — @)
shows that forJ>1+ (t+1/t) the (unique ground state
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phase transition line ied by numerical diagonalization the energy spectra of Eq.
(1) on ladders of sizes up to eight rungs and several values of
JandK.

As mentioned above, i1>1+K the spectra is gapped
and the ground state a product of singlets on each rung. As
we cross the phase transition line a state with finite magne-
tization becomes the ground state. By further decreading
with K fixed, the ground-state magnetization initially in-
creases and then, ¥is made small enough, drops to zero.
This behavior resembles that of the one-dimensional aniso-
tropic Heisenberg model, also called theXZ chain, in the
presence of a magnetic fiell.In the XXZ chain with no

7.0

6.0 -

_od=14(t111)2

50

, Wang’s point
3.0

o - T magnetic field applied, the anisotropy can be tuned to bring
oopless the system into a massive antiferromagneid) phase,
1o 15 Y 35 25 o where the ground state is a &lestate. By tuning the mag-
@ t netic field inside this AF phase we observe a behavior simil-

iar to the one found here in terms of the paramektein
particular, the Pokrovsky-Talapti!’ phase transition ap-

60 : : : pearing in the phase diagram of teXZ chain has many
features in common with the phase transition found here,
with J andK playing the roles of the magnetic field and the
50} gapped 1 anisotropy, respectively. Based on this analogy, we conjec-
ture that the ground state with null magnetization found in
our model for small values of suggests the presence of an

reparametrization

J 40 SN AF gapped phaséNeel phasg¢ Therefore, another phase-
B transition line is expected to exist below the one presented
here.
50 gapless The integrability of this model can be shown by the fact

that it can be mappefsee Eq.(7) below] to the following
Hamiltonian, which can be derived from &matrix obey-

20 . . , ing the Yang-Baxter algebra fal=0, while for J#0 the
® "° 20 82 4o 59 rung interactions take the form of a chemical-potential term.

FIG. 2. (a) Rung couplingJ versus anisotropy. This graphic L

represents the phase diagram and the dotted line shows Wang’s A= Ao . —23X0 6
point. The curvg J=1+ (t+ 1/t)/2] divides the gapped and gapless 2 Lhyj+1 il ©
phases(b) Rung couplingd versus reparametrization parameier
This graphic shows a reparametrization of the cudeel+ (t where
+1#)/2 in terms of K=(t+1/)/2. In this parameterization, the
phase boundary is a straight line. 3

Ry 1= E XEOXEE + XEOKO2 4+ X020 + XX
giving the minimal excited-state energy. The energy gap can
easily be calculated using the exact Bethe ansatz solution and T X31X-1§1+t(X10X0+1+ X12X2+1+ XOBX] 0,
has the form

FXECT )+t XPIXD XX+ XPOXPT

+XP2XET ).

1 1
TR TE |

2
Above X*#=|a;)(B;j| are the Hubbard operators with

By solving A=0 for J we find the critical valueJ®=1 |a,> the orthogonalized eigenstates of the local opera;or
+3(t+ 1), indicating the critical line at which the quantum . 7;, as in Wang's caséThe local Hamiltoniang1) and (6)
phase transition from the dimerized phase to the gaplessre related through the following basis transformation:
phase occurs.

The phase diagram in Fig(&@ assumes a simpler form N _ .
after a suitable reparametrization. We introduce a new pa- TD=1201.0=1LD) 11D=I1),
rameterK given byK = (t+1/t)/2=1. In Fig. 2b) the phase
diagram is represented in termskoaindJ. The phase bound- L= 2N2(11, D)+ [0 1), D=1
ary is now a straight line given by=1+K. As a prelimi-
nary attempt to characterize the gapless phase we have stud-The following R matrix,

()
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a 0O O O] 00O O O| 0 O O O] O 0 0 O
0Ot 0 0] ¢ 0 0O O] 0O 0O O O] O O O O
0 0O b 0] 0 0O O O] ¢ 0 0 0 | 0 0 0 0
0 0 0Otb | O 0O O O] O 0 0 0 | c 0 0 0
0O ¢c 0 0 |t 0o 0O 0[] 0 O O0OO| O 0 0 ©
0 0 0O 0] 0 a 0 0] O 0 0 0 | 0 0 0 0
0 0 0 0] O O th O | O c 0 0 | 0 0 0 0
0 0 0O 0] 0 0 0 b | O 0 0 0 | 0 c 0 0
R=| I I T , (8
0 0 ¢c 0] 00 O0O]| b 0 O0OO| O 0 0 ©
0 0 0O 0] 0 0 c O] ot 0o 0 | 0 0 0 0
0 0 0O 0] o o o O] O 0 a 0 | 0 0 0 0
0 0 0O 0] 0 0o 0 O] O 0 0 tb | 0 0 c 0
0 0 Oc | 00 0 O] 0 O O O/ tw™m o 0
0 0 O 0| 0 0 0 ¢ | O 0 0 0 | 0 b 0 0
0 0 0O 0] o 0o 0o 0| O 0 0 c | 0 0 ttb ©
o o o0 0| 0 O0OOTU O] O O OO] O 0 0 a
|
with whereP is the permutation operator.
This model studied above represents one particular case
a=x+1, b=x, andc=1 of a more general Hamiltonian that has three free parameters
obeys the Yang-Baxter algebra and reads

and originates the Hamiltoniai®) for J=0 by the standard
proceduré®

Ri2(X—Y)R13(X)Roa(Y) = Rog(Y) Ris(X)RiA(Xx—y)  (9)

L
1. .
nggl hij 1+530p 7-1) |, (10)

~ d
hj'j+1:P&R(X)|X=O’ where

ty ts _ _
T(1+ 7'1-2)(1-1— 7'J-Z+1)+ Z(l_ sz)(l— 7'jz+1)+t37'j+7'j+1+ 7| Tj++1

g _ 4+ - -+
hij+1=07 011 +oj 055

-1

X Z(1+sz)(1+7jz+1)+T(l_TjZ)(l_sz+1)+ TJ-+T]-+1+'[3 17-]. 7'J-++1 +Z(1+(rjz)(1+0'jz+1)

1 -1+ - — 1 1 + - -1 _+
X[§(1+szrjz+1)+t1 T Tip1H T Tj+1]+z(l—(rj»z)(l—ajz+1)[5(1+TjZTJ»Z+1)+t27j Tt T T
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This Hamiltonian can be mapped [tsee Eq.(7)]

L
g i 0
Hg_;l [h9; ., —23X",

where

3

" _ 20y/02 0220 1001
RO, L= D XOOXEE + X202, + XO2X2D +1(XOXDE

a=0

12y,21 304,03 32y23 31y13
+XI2XPE ) + (O3  + X322 ) + XX 2

—1/y01y/10 215,12 —1,y03y,30
g FOOIXED XX )+ 5 H(XO3XE0)

23y32 —1y13y,31
+XP3X32 ) 15 XL

Using the algebraic nested Bethe ansatz method, thig
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Mg
(M2~ M) = (L=My1+Mp), —(M3=Mp) Vs Vy '
1 2 3 yEs Vo~ Vyti

M2 Ve~ o112

A v 2

The physics of the integrable model presented here is ex-
pected to be much richer, since the presence of these extra
parameters will certainly influence the phase diagram of the
model. More details of this model are being studied and the
results will be shown in a future work.

To summarize, we have introduced a generalization of
Wang'’s spin-ladder model based on t8&J(4) symmetry.
This was achieved by introducing one extra parameter into
the system without violating integrability. The Bethe ansatz
equations as well as the energy expression of the model are
resented. We show also that the model has a gap that de-
ends on the free parameter and the critical point, and the

model can be exactly solved. The energy eigenvalues of thﬁhase diagram was obtained. We note that our model with

Hamiltonian(10) are also given by Eq2) while the Bethe

ansatz equations reads

Nj—il2\"

NERTZ

(L—=Mg3), M3, —Mg3
tl t2 t3

:“"1 Njm N2 N = g tif2
1#] )\j_)\|+ia:1 )\j_,LLa_iIZ’

Mo .

_ _ fog— Mg
tgl. M3)t2/|3t3 M3H @ B _
BFa Mo Mgt

T N2 = ve—if2

_j:1 Ma_)\j+i/25:1 Mo~ Vstil2’

one free parameter is a special case of a more general inte-
grable Hamiltonian that has three free parameters. A compre-
hensive analysis of the general model will be undertaken in
future work.
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