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Solution of a two-leg spin ladder system
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A model for a spin-1/2 ladder system with two legs is introduced. It is demonstrated that this model is
solvable via the Bethe ansatz method for arbitrary values of the rung couplifigs is achieved by a suitable
mapping from the Hubbard model with appropriate twisted boundary conditions. We determine that a phase
transition between gapped and gapless spin excitations occurs at the critical y/afli@ of the rung coupling.

Research in spin ladder systems continues to attract comuently, this method was extended and generalized by a
siderable attention, primarily motivated by the desire to unnumber of authors!~*> All of these examples on bipartite
derstand the phenomenon of high temperature supercondul@dder lattices contain biquadratic spin exchange interaction
tivity observed in doped antiferromagnetic materials. Interms in order to maintain solvability.
studying ladder materials, important insights are gained into Our aim in this work is to obtain a solvable bipartite lad-
the transition to two-dimensional systems from the oneder system with arbitrarily coupled rung interactions and the
dimensional scenario, where there exists a greater undefoSence of biquadratic spin exchange interactions. To
standing of the physics from the theoretical perspective‘.”‘Ch'EVe this end, we begin Wlth the coupled spin formulation
Moreover, it is possible to experimentally study ladder ma-Of the Hubbard model as introduced by Shaé?rym a
terials and numerical simulations are easier to treat whiclglosed lattice with twisted boundary conditions. The alge-
facilitates a greater interaction between theory and phenonfraic Bethe ansatz solution of this model has been studied by
enology. For a review of these aspects we refer to Ref. 1. Martins and Ramo¥’ By means of carefully chosen trans-

In order to gain some results in the theory of spin laddeformations, we map this model to a spin ladder system with
systems many authors have considered generalized moddigriodic boundary conditiongSimilar transformations have
which incorporate biquadratic spin exchange interactfofs. recently been discussed in Ref. 18 in a different context.
Doing this has lead to some results in relation to ground statBemarkably, the resulting model assumes a simple form with
structures and phases for the excitation spectra. Simultdhree basic forms of interaction. The energy expression in
neously, there has been an effort to apply the mathematicall{grms of a Bethe. ansatz squtu_)n is also obtalneq. In this case,
rich techniques of Bethe ansatz procedures, which have suf€ rung interactions are not simply of the chem_lcal potential
cessfully been used in the study of one-dimensional quanturfyPe referred to above. Rather, the rung interaction parameter
systems, to obtain further results regarding the behavior of@Ppears explicitly in the Bethe ansatz equations, in contrast
the ladder systems. In order to extend the standard ond0 all other integrable bipartite ladders that have appeared in
dimensional approach of the Bethe ansatz to the case of lad)€ literature. So, it is reasonable to expect the behavior of
ders, a number of methods have thus far been proposed. this model to differ from the class of ladder models with

In the works of Refs. 6,7 a construction was developed fofhemical potential type rung interaction. We find t_he_cr|t|_cal
generalized zig-zag ladder systems where the extension froilue Jc=1/2 for the rung interaction parameter indicating
the one-dimensional system to the ladder was obtained by dhe transition between gapped and gapless phases.
algebra homomorphism. In this manner, the symmetry alge- We will show solvability of the following two-leg ladder
bra of the ladder system remains the same as the origingl@miltonian with an even number of rungs and periodic
one-dimensional model. Closely related to this approach i§oundary conditions. Explicitly, the global Hamiltonian is of
that adopted by Muramoto and Takahdswho employed the form
the higher order conservation laws of the Heisenberg chain
to define a two-leg system which generalizes the Majumdar-

Ghosh model, ’ ! H= IZl hii+2)+ P, @

Alternatively, the approach can be considered where the
symmetry algebra is extended to describe the ladder modelyhere the local Hamiltonians read
This notion was promoted by Watfywho constructed a
two-leg bipartite ladder system based on the symmetry alge- hij=(o; o] +07 o)) TiZTJ,Z)i+1+ (777 + 7 7))
bra sy4) as opposed to the &) symmetry of the one-
dimensional Heisenberg chain. Employing this method al- x(aizajz)i+J/2(5i .’;i+(;'j .;-J-). (2)
lows for the introduction of rung interactions by way of a
chemical potential-(or external field like term. Subse- Above, the couplingl can take arbitrary values.
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energy—6J for J>1/2 which is given by the product of the
two rung singlets. Fod =1/2 the ground state turns out to be
threefold degeneraféwo previous excitation states with en-

gi-1 Tiz1 ergy —2(1+J) “collapse” into the ground staflewhile for
J<1/2 no singlet rung exists in the ground state configura-
tion. ForL sites it then follows that whed> 1/2 the ground

a; Ti

state is still the product of rung singlets with energy:
—3JL. This is in fact the reference state used in the Bethe
ansatz calculation and corresponds to the édseN=0 for

Titl Titt the Bethe ansatz equations. To describe an elementary exci-
tation to a spin 1 state we také=1, M =0 in Eq.(4) which
yields real solutions for the variable viz.

. i 2ar
FIG. 1. The two-leg ladder lattice. K= =, F=01.2...L—1.

The ladder system is depicted graphically in Fig. 1 above.
Across the rungs there is the usual HeisenbexX interac- It is then apparent from the energy expressi8nthat for
tion while along the legs the interactions alternate betweed>>1/2 these elementary excitations are gapped. The choice
pure and correlateXX exchanges. Clearly the correlated r=L/2 (recalling thatL is assumed evershows that for all
exchange is a four body interaction depending on the sping>1/2 there is a gap
of the opposing leg. In thd=0 limit the correlated ex-
changes have no real physical significance since for this case A=43-2.

the model may be mapped back to two decoupied (or We therefore deduce thag=1/2 gives the critical point be-

free fermion chains with twisted boundary conditions. This 0 th d and | h f the el i .
is in some contrast to the case of Ref. 10 where in the ab-rccn 1€ gapped and gapless phases ol the elementary spin
excitations alluded to earlier. It is clear that the gapis

sence of rung interactions the model maintains nontrival bi- d dent of th : veand thi It extends t
guadratic spin exchange interactions between the legs. In ggeependent ot the system sizean IS resuft extends 1o
e thermodynamic limit.

LT - . t
thermodynamic limit, the boundary conditions become irrel- o .
evant and we conclude that this region is gapless. On the The mOdEI al_so exh|b|_ts elementa_ry bound state excita-
other hand for large) the system approximates that of the t|_o;s '\\;Ivfllclh k\:ve |II_ustrate| In the ftmo—ztehcase. For2, N .
two-leg Heisenberg ladder. In this limit the ground state con-__ “ b_ there is a solution of the Bethe ansatz equations
sists of a product of rung singlets and the excitations ar&'V€MN PY
gapped: Hence we expect there to exist a finite critical value

of J defining the phase transition.

A more detailed analysis of the model can be made usinghich describes an excited state of enefgy —2J. From
the fact that there exists an exact solution. The energy levelg o eigenvalue expression for EG) we see that this state
of this model take the form has zero spin. Such a state has the interpretation of the exci-

u=0, k;=-—k,=arcco$—J)

N tation of two bound quasiparticles of opposite spin.
E=4JN—3JL+E 2 cosk: 3) In order to obtain the solution of this model, we begin
i=1 I with the coupled spin version of the Hubbard model as in-

troduced by Shastt with the imposition of twisted bound-

where the variablek; are solutions of the following Bethe ary conditions. The local Hamiltonian has the form

ansatz equations:

M : hi(i+1):_Ur0(7+1)_og+l)ar_Tr7(7+l)_72;+1)7r
etk T ST
(= 1)7exp(iLk; i1 sinkj—u;—iJ’ u_ ., ; . ;

@ _§[(Ui+|)(Ti+|)+(0(i+1)+|)(7(i+1)+|)]
Tosinki—uHid S U U 2id !
i=1 Sinkj—U|_iJ k=1 U|_Uk+2iJ +Z,

with j=1,2,... Nandl=1,2,... M. The states associated

=+ z u z H
with solutions of the above equations are eigenstates of thwhere {oi" o7} and {77} are two commuting sets of
total spin operator Pauli matrices acting on the site For our convenience an

additional applied magnetic field term has been added and an

1 , overall factor of— 1 included. For the twisted boundary term
E;(Uﬁﬁ) ®)  we take
with eigenvalues\—2M. h 1=— efi‘/’la'f o1 — e ‘/’10'1+ o, — efi‘i’ZTL+ T — el ¢271+ T

The existence of the critical point is evident from the
Bethe ansatz equations. Exact diagonalization of the two-site

U U
R Z z z z =
Hamiltonian shows that there is a unique ground state with 8 LoDt D+ (o3t Dim D1+ 7
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The first step is to apply a nonlocal transformation givenues ofM andN are orthogonaindependenbf the values of

by

o 11 =

0(o7)=

0(of) =0},

L
0(7';:)=Tit H i,

k=i+1

o(r)) =17

Under the transformatiod we yield a new Hamiltonian of
the form(2) where the bulk two-site operators now read

_ + - + - + -
hi(i+1)—_0i U(i+1)7'iz_ff(i+1)‘7i 7'iz_7'i T(i+1)"fi+1)

+ -z
TTa+0)Ti OG+1)"

l(oTH ()

+(O’é+1)+|)(7'é+l)+|)]+z (6)
and the boundary term is given by
L L
h=—e o/ oy 2 |] i—€e%efo 711
k=1 k=1
L L
~eter il of-eerimof]] of
k=1 k=1
U z z z z U
_ §[(¢TL+I)(TL+I)+(cr1+I)(rl+|)]+ e (7)

¢+, and ¢,. Hence we may choose different valuesfgfand
¢, for each of the subspaces corresponding to a fiMezhd
N.
The next step is to now employ a local transformation on
the Pauli matrices which has the form

. 1
d(o7)=—=

A

(o™ + 1509,
1
d(oH)=—0c"7 —0 T+ E(Uz+ ),

1
O(r)= (o),

(%)=

-t -0 T+_—(O'Z+7')

It is worth noting that the above transformation can be ex-
pressed

d(x)=TxT 1,
where
_ 1+ 1 )% 1 e " 1
2 22 2 2( 2[ 2@0

is a unitary operator. Applying this transformation to the
local Hamiltoniang6),(7) gives us the local ladder Hamilto-
nians

_ o+ - — + - - 4\ 7z z
Ni+1)=7 o1t 7 ot (07 Tt oy i) Tio

An important observation to make is that the boundary

term above has nonlocal terms. To accommodate for this,

note that we may write

L
[I of=(-1)M,
k=1

L
H l)/\f /\/l
where M= m; ,N==F_n;, and
_1 I z
m= E( -0 ),
nzl—l(ol-i-Tz)
> .

Since the global operatot$1, N are conserved quantities,
we can treat the twisted boundary conditions in Ef).in a
sector dependent manner. LettifgandN denote the eigen-
values of M, N, respectively, we now choose

e'f1=(—1)(N"M  elfa=(—1)M ®)

The validity of making this choice without destroying the
solvability stems from the fact that states with differing val-

+§(5'i-;i+5'i+1-;’i+1) 9
and the global Hamiltonian has regular periodic boundary
conditions.

The final step in obtaining Eq2) is to setJ=U/4 and
perform the transformation

oi=0+UZ1=(=1)1(1— o),

r=m+Ud1-(-1)'1(o;— 7),

which has the effect of interchanging the leg spaces on the
odd rungs while leaving the even numbered rungs un-
changed.

The energy expression for the Shastry model with twisted
boundary conditions can be obtained through the Bethe an-
satz. The result is

N

U(4N-3L
¥+§ ZCOSkj
=1

4

such that the; satisfy the Bethe ansatz equations

M . .

. sink;—u,+iU/4
_1\M+Ng—i¢ Doy 220 e
()Mt enrinky) = - 1 G = o7
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N . i
M’:_(—l)Ne‘i(¢l_¢2)
j=1 sink;—u—iu/4

sion and Bethe ansatz equations which gives us EB)$4)
with the parametrizatiod=U/4.
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