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Low energy limit of the Chern-Simons theory coupled to fermions
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We study the nonrelativistic limit of the theory of a quantum Chern-Simons field minimally coupled to Dirac
fermions. To get the nonrelativistic effective Lagrangian one has to incorporate vacuum polarization and
anomalous magnetic moment effects. In addition to that, an unsuspected quartic fermionic interaction may also
be induced. As a by-product, the method we use to calculate loop diagrams, separating low and high loop
momenta contributions, allows us to identify how a quantum nonrelativistic theory nests in a relativistic one.
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I. INTRODUCTION By rescaling theA* field we could formulate the models
above with only one dimensionless interaction strength
Nonrelativistic quantum field theories are important to the(e/ \/6). Actually, this is the small parameter which appears
description and clarification of conceptual aspects of thén our perturbative expansions. Nevertheless, Efid) and
physics of systems in the low energy regime. One examplél.2) are conventional in the literaturd,, having the same
of such a situation is provided by the treatment of thecanonical dimension as a Maxwell field int2L dimensions.
Aharonov-Bohm effecfl] by means of the model of a scalar  To fix ideas, we choose once and for all to work in the
field minimally coupled to a Chern-Simor(€9) field. In  Coulomb gauge, where the, free propagator is known to
order to achieve accordance between the exact and perturhige
tive one-loop calculations, it was necessary to include in the

perturbative approach a quartic scalar self-interaction with a 1 kP
coupling tuned to eliminate divergences and to restore the A, (k)= = €uvp =y 1.3
conformal invariance of the tree approximatif]. It was Y k

later also shown that this quadrilinear interaction automati-

cally arises in the low energy limit of the corresponding full- Wherek“E(O,IZ). Thek® independence of this propagator is
fledged relativistic quantum theofg]. the basic reason why the use of the Coulomb gauge is con-
In this paper we will extend the above considerations toyenient for nonrelativistic calculations.
the fermionic case. Specifically, we study the low energy [et us begin by pointing out that Eq1.2) cannot fully
limit of the (2+1)-dimensional theory of a CS field mini- reproduce the two and three point vertex functions arising
mally coupled to fermions, as specified by the Lagrangiarfrom Eq.(1.1). This is due to the absence of one-loop radia-
density[4] tive corrections in Eq(1.2), which follows from the anti-
symmetry of Eq(1.3) and the fact that nonrelativistic fermi-
ons only propagate forward in time. On the other hand, the
radiative corrections arising from E@l.1) do not vanish.
_ The contributions to the two and three point functions are,
+eyyryA,, (1.1)  actually, superficially divergent and need to be subtracted.
We begin our study by investigating the nonrelativistic
whereF ,,=d,A,—d,A, and ¢ is a two-component Dirac model (1.2). In Sec. Il we verify the absence of one-loop
field representing a fermion and an antifermion of the sameadiative corrections to the two and three point vertex func-
spin[5]. In particular, we investigate up to which extent the tions. We study also the fermion-fermion scattering ampli-
Pauli-Schrdinger (PS nonrelativistic Lagrangian tude and confirm the assertion made[#] that the Pauli's
interaction term regularizes the theory and gives a contribu-
tion essential to reproduce the correct Aharonov-Bohm am-
plitude up to ordee®.
In Sec. Il we examine the relativistic modél.1). After
n iB¢T¢+ ff ARE?P, (1.2 summ_arizing thg renqrmalization progriﬁi, we preve that _
2m 4 K radiative corrections induce both an “anomalous” magnetic
term and a Maxwell term, absent in Ed..2). To calculate
where¢ is a one-component anticommuting Pauli field, cor-the one-loop corrections to the fermion-fermion scattering
rectly describes the low energy limit of E¢l.1]). Here, amplitudes we will employ a scheme which separates the
B= —F, is the magnetic field. contributions of the low and high momenta intermediary

6 i— i — —
L= Ze“”“FMAa-i- Elﬂ)’“aﬂlﬁ_ E(aﬂl//)‘yﬂlff_m‘ﬂw
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dt 2m
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_ G(p)= _h oy M e
po - p2/2m+ ie rmek@ e T W e T e  Te o w
. FIG. 2. One-loop contributions to the PS fermion self-energy.
‘ _
VWVV; Apv (k)='é— €pvp ;z—k_'l; ) A o
{b(k),bT(K")} = 8%(k—K"), 23
________ AB (k) = .L .
© the free¢ propagator turns out to be given by
]
]
—t de G(x—y)=(To(x) " (y))=0(x’—y°)(S(x) #'(y))
®) 2m £k
:f exd —iko(x?—y°— 7)) +ik- (x—y)]
(2m)®
o
b A P -ie — (2.4)

KO— Kk2/2m+ie’

wheren ande are positive parameters to be set to zero at the
iq ] end of the calculations. In the above definition a time-

R TR é—:‘- +p) ordering gresgriptign.was. chosen so that the prqpagator is
zero forx”=y". This implies that any closed fermion loop
automatically vanishes.

ﬁ i . Our graphical notation is shown in Fig. 1. Using these
. -12 5l rules, one can demonstrate that there are no one-loop correc-
p &) p 2m tions to the propagators and vertices. The would-be one-loop

corrections to the fermion two point function are represented
in Fig. 2. The first two of those diagrams cancel each other
states[7]. This allows a direct simplification of the inte- due to the antisymmetry of th&,, propagator and the third
grands and it is closely related to the methods of effectivéd fourth are in fact closed fermionic loofsee Eq(2.1)]
field theorieg8]. We will show that the low momenta inter- @nd, therefore, give no contribution as remarked following
mediary part coincides with the result for the same proces§9- (2.4). Similar arguments allow one to extend these con-
calculated from the Lagrangida.2). On the other hand, the clusions to all remaining one-loop vertex and propagators
contributions from the high intermediary momenta can bed"@phs.

thought as coming from new interactions in the effective_ We Wil next study the fermion-fermion elastic scattering.
nonrelativistic theory. We finish this section presenting a dis-1© consider the possibility of the scattering of nonidentical

FIG. 1. Feynman rules for the PS theory.

cussion of our results. fermions we will not antisymmetrize our amplitudes. The
incoming and outgoing fermions are assumed to have mo-
s - s -
Il. NONRELATIVISTIC THEORY menta py=(p1/2m,p;), pP.=(p3/2m,p;) and p;

~r2 ~r ’ =12 = :
= 2m,p1), py= /2m,p5), respectively. We shall
Our purpose here is to use Hd..2) to study the interac- (pkl , hpl) P2 (pi pzf) P her y_ -
tion of the CS field with fermions up to the one-loop ap- WOK In the center-oi-mass frame whei=—p;=p,

proximation. Afterwards, we shall compare these results witP1=—P2=p’, and|p|=|p’[.

those for Dirac fermions, calculated from Hd.1) in the low Up to one loop the nonvanishing contributions come from

energy regime. the diagrams in Figs. 3 and 4. The amplitude corresponding
As said in the Introduction, we shall work in the radiation to the diagrams in Fig. 3 is

gauge where the free gauge field propagator is given in Eq.

(1.3). From that expression we can get the free propagator o2 ixg
i AO=—11+j — | (2.5
Ae(0=(TBOAYA0)=— 580, (2 m

which is also necessary to construct Feynman amplitudes. where s=p+p’, g=p’—p, and sxq stands fore'sg; .
As the second quantized free fermionic field is The g-dependent term result from the graph containing the
&K 'E)hropagatltorgLAO,?i} ztsmd t?eﬁ-ind(ejpe;n(gji%;?’o:oe> comes from
) % R2 g e contact Pauli interaction mediate .
PR = f ;b(k)exp:—l(k me=k-x)], (2.2 Let us now examine the one-loop diagrams. We will first
R do thek? integration and then regularize the remainilﬁg
where the annihilation operatbi(k) satisfies integration by a cutoff\. The box diagramfFig. 4(a)] yield
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AL ! fA o - : (k=p') (k_p)n< "—k)'(p'+k)'
b0 T 2 )0 (2m)° Ko+ (- R2)i2m +ie —k0+ (PP—KD2m+ie D K—p |7 [k—pP? " P
4e* (A d%k 1 p'xXk pxk e* 92| B,
=— f —— = In| =|+im{ +O(p¥A?), (2.6)
me?Jo (2m)2 k>—p?—ie |[k—p'|? |k—p|?> 47me? 2
while the “contact” diagramFig. 4(b)] gives
W € JA dk 1 1
" " m2g2)o (2)3 KO+ (p2—K2)/2m+ie —KO+ (p2—K2)/2m +ie
¢ fA ok . < 1 A2+ +0(p?A?) 27
=— ——— =— N— +i : .
me?Jo (2m)2 k>—p?—ie  4wm@*| p? i P
Finally, the triangle graphFigs. 4c) and 4d)] give
A 2e4ifA d3k 1 i n K K (p'—p-k" & fA d’%k k-(p'—p—kK)
i me?Jo (2m)3 —Ko+ 52/2m—(|5+|2|2)/2m+ie K2 [p'—p—kZ  me2Jo (2m)% |[k2p' —p—K|2’

(2.9

where thek, integration was done symmetrically. The final which is the expansion up to ordet of the Aharonov-Bohm

result is then amplitude for fermiong$10].
4 52
q > lll. RELATIVISTIC THEORY
(V=— In—t +O(p%/A?). 2.9
tri 47Tm02 Az (p ) ( )

We now consider the relativistic theory defined by Eg.
(1.1. The corresponding Feynman rules are depicted in Fig.
5. By power counting the model is renormalizable, the de-
gree of divergence of a graph being 6(y)=3—-F—B,
+O(52/A2). whereF andB are the number of external fermion and boson

lines, respectively. Thus, the only divergences are those as-
(2.10  sociated with the fermion two point function, the CS two
point function, and with the vertex. The renormalization of
This result shows that, up to one loop, there is no radiativehe model in the Coulomb gauge, up to one loop, was studied
correction to the nonrelativistic scattering. This holds for allin [6], using dimensional regularization. Here, for complete-
values of the coupling constaat In the model of a nonrel- ness, we just stress the main points of that calculation.
ativistic boson coupled to a CS field, a similar result was first The ambiguities in the finite parts are eliminated by add-
obtained in[2]. There, the role of the contact Pauli interac- ing to Eq.(1.1) the counterterm Lagrangian density
tion was played by a (4'¢)? interaction withh chosen to
restore the scale invarian¢@] present in the tree approxi-

i— i — _
mation. Observe also that in terms of the anglbetweenp Lo=0Z| Sy"d, =5 (9, 0) v | — Smypip
andp’, Eq. (2.10 becomes

By summing up the above contributions we get

> -

><q

2

cont box

60 —
2 oint + TG'U“VQFMVAQ‘F oeyy AL, 3.1
i— — , (2.11
mé sin(x/2) where the coefficient$Z, sm, 56, and se are fixed by the
normalization conditions specifying thefield intensity, the
P4 P} values of the physical mass, CS parameter, and charge, re-
_’_7_’_ spectively.
+ I
! Py P
—_—— o
P, P, ;é § > - i &»
@ (b) (a) (b) (©) )

FIG. 3. Graphs for the PS fermion-fermion scattering in the tree  FIG. 4. Nonvanishing contributions to the PS fermion-fermion
approximation. scattering in one-loop approximation.
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p S@E)= i 7p,+m By choosing86=B(k=0)/2= (e?/87) e(m), wheree de-

—— p?-m2+ie notes the sign function, we fig to be the renormalized CS
parametefthis renormalization could, equivalently, be inter-
AAAPAAA same as in the PS theory preted as a wave function renormalization fgy). For low
v » momentumJ1%# approaches the expression
—O—QD—
-ieyY g2

P P IT “#(o =~ (Kg* -k, (35

N . 127r|m|
FIG. 5. Feynman rules for the relativistic theory of a Dirac

fermion coupled to a CS field.

) ) showing the well-known phenomena of induction of a Max-
First, consider the CS self-energy, well term in the effective Lagrangian of the modat].

The fermion self-energy is
Haﬁ(k)z_ezj d3q T y*(g+k+m)yP(g+m)]
(2m)®  [(k+Qq)°—m?](q?—m?)

i [ Pk yEk+P+m)Y” €,,,K”

_ apBp (p)=—— -
250€°Prk, > (p Pl R
= —i[k?g*¥—k*KkP1A(K?) + e“ﬁ”kp[B(kz) +i6Zp—iom
—264], (3.2 _ - - -
__ e Emmey) +isZp—ism
where - N - :
270 m+w,
ACK2) = m 1 B (K2 e’m 23 (3.6
(k)= 2t am (k%) Al 3.3
q Choosingdm= me?/26, we guarantee that the pole of the
an fermion propagator up to this order is@t=m?. In addition
20 to that, taking6Z=0 the form of the propagator in the fer-
B(k?)= ﬂf dx _ (3.4) mion rest frame is the same as for the free ddsg.
47 o Kx(x—1)+m’—ie Finally, the radiative correction to the vertex is given by

ied [ d% M —ktm)y(p—K+m)ye,, kT
(o )= & . 5e)y”. 3.
(p,p") P) (277-)3[(p’—k)z—m2+ie][(p—k)z—m2+ie](—kz)+|(e+ e)y (3.7

Thus, choosingge= 0, we get in the low momentum regime contributes[13]. If we take into account that the spin also
changeg4,13,14 we conclude that relatiope=e/mS be-

u(p")Iu(p)=ie, (3.8 tween the magnetic momept and the spirS of the particle
holds, keepingy=2.
_ . ) e \(p+p') It is now clear that, up to one loop, instead of Ef}.2),
u(p")I'u(p)= 'e( 1- Y these radiative corrections induce the effective nonrelativistic
m m Lagrangian,
e\ . (p'—p)
ij d 1 . - - -
+e(1+4770>6 om %9 Lame ia—eA°)¢— 5 (Vo—ieAd)" (V p—ieA)
In a covariant gauge the magnetic moment of the fermion e 0 1 2
could be read as the coefficient ef (p’—p)’ in this last + 2—gB¢T¢+ Zepr“FVP— 2 FAYF L,
expression. This happens because only the first of the three m 127m
diagrams of Fig. 6, which appear in the calculation of the (3.10

scattering of the fermion by an external fieltf, is nonvan-

ishing on shell. In the Coulomb gauge this is not so and onlyhereg=1+e?/276.

after taking into account the contribution of all three dia- We shall next look for the appearance ofdl ¢)? vertex
grams we gee®/(47mé) for the anomalous magnetic mo- in the effective nonrelativistic Lagrangian. We so focus on
ment of the fermion. This result is in accord with calcula- the elastic fermion-fermion scattering amplitudé]. In the
tions in covariant gauges where only graphig. 6(@] center-of-mass frame, the incoming and outgoing fermions
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o—i%&»— b-ﬂ&og ?ﬁ\’—‘i; p1 p1
(a) (b) (©

FIG. 6. One-loop contributions to the fermion anomalous mag-
netic moment.

o P,

are assumed to have momemta=(w,,p), P2=(W,,—p),

and p;=(wp,p'), p,=(w,,—p’), where |p[=|p’| and FIG. 7. Graph for the relativistic fermion-fermion scattering in
Wp=V m?+ p2. the tree approximation.

The various contributions, up to one loop, are shown in
Figs. 7 and 8. The tree approximati@fig. 7) is given by where r=(w,+k%K), r'=(w,—k%—K), and t=(w,
+Ko.k—p—p").

In what follows, the free fermion propagator will be writ-
ten in terms of fermion and antifermion wave functigss:

TO=—ie’u(p’) y*u(p)A,,(p'~P)u(—p’)y"u(—p).
(3.11)

Its low energy approximation is gotten by expanding

w,= (m?+p?)¥2in powers of (p|/m) (<1). To leading or- _u(Pu(p)  v(=pv(-p)
dgr \(Ne har\)/e) P (plrm) (<1) ’ Se(p)=i 0 — —. (318
’ P —Wwptle p-twp—le
) . -
T(O):e_< 1+i s{\_q) ) (3.12  This device greatly simplifies the calculation of k& inte-
om q? grals. As a by-product, we can trace the contribution of fer-

mions or antifermions in intermediary states.
Observe that Eq(3.12 is the same as the? amplitude Replacing Eq(3.16 in the expressions above, we get
(2.5 in the PS theory, due to exchange of one photon, in-
cluding the contribution of the Pauli interaction. &K
Self-.ene_rgy gnd vertex rqdlatlve corrections to the tree TB=—ie4f A, (K= P)A o, (K—P')
approximation(Fig. 7), in leading 1 order, give

- e e (3.13 xu(p’)y* uu()
= + = , . _—
R 120me?2  27me?  127me? KO+wp—wy+ie
where the first and second terms in the first equality come, v(—Kjv(—k) VN T P
respectively, from th larizati d vertex inser- o [Yu(p)u(=p")y
p y, from the vacuum polarization and vertex inser KO+ wp+w,—ie

tions. Ty must not be considered for the induction of a term
(¢T#)? since self-energy and vertex corrections have al-
ready been incorporated in E(B.10 through the fermion
anomalous magnetic moment and the Maxwell terms.

It remains to calculate the graphs in Fig$a)8and §b). (3.19
They are, respectively, given bithe subscript8 and X
stand for box and crisscross two photons exchange ampligng

u(—li’>_<—|2>+ v(K)v (K) g
wW,—Ko—wy+ie  w,—Ko+w—ie

tudes
3
i Pk —-, - Ty=—ie* dkA K—p)A 4, (K—p’
TB=|e4f(27)3[u<p)W&(r)wu(p)] x=—le f(27)3 ol PIA (k=P
X[u(=p")y"Se(r") yPu(—p)] K U(p!) y#| 1tk utk)
- - . KO+w,—wy+ie
XAV,B(k_p)Aa,u(k_p,) (314) o
v(=Kv(=K) -
and 0—.17VU(I0)
K'+w,+w,—ie
Bk i I
Tx=ie* [u(p’)¥*Se(r)y"u(p)] —_ = o _UKk=S)u(k=s)
" f(2w)3 " Xu(=p')y ET——p

X[u(=p")y*Se(t) yPu(—p)] 0(5-K) 0 (5-K)
_l’_

L. L Pu(—p). (3.18
XA, (K~ P)A g (K~ ), (315 rwy o ie)” P
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(2) The relativistic energy intermediate states contribu-
tions, corresponding to the randle|=(A,) for the loop
momentum.

In the region (Q\), the integrands can be expanded in
powers of I up to the desired order of approximation

(W= m+K2/2m+ k*/8m3+---). We will limit ourselves to

FIG. 8. Graphs contributing to the relativistic fermion-fermion the leading (Ih) order which suffices for comparison with

scattering in one-loop approximation.

the nonrelativistic PS theory. For the regioh,fo), we will
expandw, aroundp=0, but keepw, exact. So, to extract the

. N
The integration irk” can be done by closing the contour in leading (1v‘n) approximation of this part of the integral, an

the upper halk® complex plane. After some simplifications

we get
Tg=Tehely TRos PO (3.19
where
Tgl’elz_egf (s;k)Z kZWkJ:Wp. F*(k,p")F(K,p)
(3.20
and

4 2
e d<k
Tréos,pos: _ _f

H(p',K)H* (p,k).
(2m)2 wy+w,,

(3.2)

For Ty it results

———[G(k—s,—p.p')

B deK 1
(27T)2 Wk+Wk s

XG*(K—$,—p’,p)+G(K,p,—p")G*(K,p’,—p)],
(3.22

where, as befors=p+p’, and
F(K,p)=[u(k)y*u(p)]A ., (k—p)[u(—K)y"u(—p)1,

H(p,K)=[u(p)y*v(—K)1A . (p—K)[u(—p)y"v(k)],
(3.23
G(a,b,c)=[u(a)y*u(b)]A,,(a—b)

x[u(c)y'v(b—a—c)].

' extra expansion in i must be made after the integral is

computed. With these mentioned approximations, we can
write Egs.(3.14) and(3.15 in leading order as

-I—el,eI:_ f d2k 1

. 9>mJo (2m)2 K2—p2+ie
kA\p  kAp’

e
(k=p)° (k=p")

e4 © d2k Wk+m

X

-—| —— =, 3.2
20°)a (27)% KPwE (329
w A2
TRoSPOL — I’k ! ., (3.29
2602JA (27)% (Wie+ m)wg
e fA d%k k (k—q) +e4m2f°° d’%k 1
me?Jo (2m)2 k2 (k—q)2 6% Ja(2m)? Kwi

(3.26

In the integration region (@) of T&*®, the contributions
of graphs in which one of the photon propagator&Tia°A')
and the othe¢TA®B), vanish after integratin¢hey have not
been written above moreover, inTR>>P%, the integrand does
not have a Ih order contribution. Actually, its leading con-
tribution starts at ()2 which lies beyond the approxima-
tion we want to keep.

The low energy parts of g and Ty can be identified with
amplitudes in the PS theory: The first term in the low energy
part of T§"® corresponds to the Fig(#) and the second term
to the dlagram Fig. @) of the PS theory; the low energy part
of Ty exactly corresponds to the PS red@it8) coming from

The termsT&"® and TRSP*Sare, respectively, the contri- the Figs. 4c) and 4d).
butions of theu andv fermlon wave functiongelectron and After performing the integrations, one obtains
positron to the two internal fermion lines in Fig(&. Mixed
contributions, in whichu “runs” in one line andv in the
other, cancel in this model. On the other hand, each of the _
two terms inTy corresponds to a graph in which one of the B —
internal fermion line is ai and the other a.

We will break the integration regiotk|=
ranges

(1) Contributions of the nonrelativistic intermediate
states, corresponding to the loop momentum in the range

|k|=(0,A) whereA is a parameter satisfying|<A<m.

e4 | A2
N—=;
47me? g2

4

e 2m?

In—-
4mme?  A?

J’__

L
high

(3.27

low

(0,) in two

4
In2

, (3.28

high

pos,pos_ | __
Tg =

47m6?
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pos.eL_ N Lo= 4 en ¢—i(§¢—ieﬂ¢)T-(ﬁ¢—ieA¢)
T e ™ SN 2m
low
et A? +i(1+e2/2770)B¢T¢+ 0 ¢ AUE
+| - 2+1n ) . (3.29 2m 40
47me? 2 high
’ L NS e & (') (3.31
where low and high refer to the integration intervalg 4\ 127m K" 4rme? ' '

<A and|l2|>A, respectively, of the loop momentuikn Ob-
serve that for each graph the sum of the high and low parts i§c
actually A independent, as they should be.

If A is thought as an ultraviolet cutoffA(— ), each
graph of the nonrelativistic theojow part of the relativistic g2 e ix2 Ne?
theory diverges. On the other hand, the corresponding am- T=i—— + >+ (3.32
plitudes in the relativistic Dirac theory are finite. It is inter- mé sin(x/2) 12mm¢
esting to see that their high energy parts exactly provide theor nonidentical fermions the last term survives and provides
counterterms to render the nonrelativistic PS theory finite. 3 correction to the PS result.

Separately adding the low and the high energy parts of the QOur study has been restricted to the investigation of the
above amplitudes, we obtain induction of terms in the effective Lagrangian in leading

order of 1m. Of course, a whole series of new terms will be

Using this new Lagrangian, the total fermion-fermion
attering amplitude, up to one loop, before antisymmetriza-
tion, is

e’ induced in higher orders.
TetTx=|— 27me2 (3.30 The above Lagrangian summarizes our main results. The
high low energy limit of the theory of a CS field minimally

The cancellation of the sum of all low energy parts iScoupled to Dirac fe_rmions differs from the PS theory by an
connected with the absence of scale anomalies in the O”.”a"?us magnetic moment, a Maxwell term, and a quartic
theory. As already observed at the end of Sec. II, in thdermionic term, all of the same @ order. They are purely
scalar nonrelativistic theory it was first noticed|[@] quantum field theoretical effects. These results show that tak-

The high energy resulB.30, which is of the same order ing th_e nonrelativistic Ii_m_it of a classica_l relativistic La-
in 1/m as the tree approximatigB.12), is new and could not grangian a_m_d then quantizing, leads to a dlﬁgr_ent theqry than
be suspected from the PS theory. If we are restricted to thgrst quantizing and then taking the nonrelativistic limit.
model (1.1) with fermions of just one flavor and spin, it in
fact gives no contribution after antisymmetrization of the
amplitude. Let us so enlarge our modéll) by assuming This work was supported in part by Conselho Nacional de
that ¢ is anN flavor fermion field. If, analogouslyp now is  Desenvolvimento Cierfico e Tecnolgico (CNPg e Fun-
also anN flavor PS fermion, the theory equivalent to the da@o de Amparo aPesquisa do Estado de ®d@aulo
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