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We study the nonrelativistic limit of the theory of a quantum Chern-Simons field minimally coupled to Dirac
fermions. To get the nonrelativistic effective Lagrangian one has to incorporate vacuum polarization and
anomalous magnetic moment effects. In addition to that, an unsuspected quartic fermionic interaction may also
be induced. As a by-product, the method we use to calculate loop diagrams, separating low and high loop
momenta contributions, allows us to identify how a quantum nonrelativistic theory nests in a relativistic one.
@S0556-2821~97!01418-5#

PACS number~s!: 11.10.Kk, 11.15.Tk

I. INTRODUCTION

Nonrelativistic quantum field theories are important to the
description and clarification of conceptual aspects of the
physics of systems in the low energy regime. One example
of such a situation is provided by the treatment of the
Aharonov-Bohm effect@1# by means of the model of a scalar
field minimally coupled to a Chern-Simons~CS! field. In
order to achieve accordance between the exact and perturba-
tive one-loop calculations, it was necessary to include in the
perturbative approach a quartic scalar self-interaction with a
coupling tuned to eliminate divergences and to restore the
conformal invariance of the tree approximation@2#. It was
later also shown that this quadrilinear interaction automati-
cally arises in the low energy limit of the corresponding full-
fledged relativistic quantum theory@3#.

In this paper we will extend the above considerations to
the fermionic case. Specifically, we study the low energy
limit of the ~211!-dimensional theory of a CS field mini-
mally coupled to fermions, as specified by the Lagrangian
density@4#
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2
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i

2
~]mc̄ !gmc2mc̄c

1ec̄gmcAm , ~1.1!

whereFmn5]mAn2]nAm and c is a two-component Dirac
field representing a fermion and an antifermion of the same
spin @5#. In particular, we investigate up to which extent the
Pauli-Schro¨dinger ~PS! nonrelativistic Lagrangian
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wheref is a one-component anticommuting Pauli field, cor-
rectly describes the low energy limit of Eq.~1.1!. Here,
B52F12 is the magnetic field.

By rescaling theAm field we could formulate the models
above with only one dimensionless interaction strength
(e/Au). Actually, this is the small parameter which appears
in our perturbative expansions. Nevertheless, Eqs.~1.1! and
~1.2! are conventional in the literature,Am having the same
canonical dimension as a Maxwell field in 211 dimensions.

To fix ideas, we choose once and for all to work in the
Coulomb gauge, where theAm free propagator is known to
be

Dmn~k!5
1

u
emnr

k̄ r

kW2
, ~1.3!

where k̄ a[(0,kW ). Thek0 independence of this propagator is
the basic reason why the use of the Coulomb gauge is con-
venient for nonrelativistic calculations.

Let us begin by pointing out that Eq.~1.2! cannot fully
reproduce the two and three point vertex functions arising
from Eq. ~1.1!. This is due to the absence of one-loop radia-
tive corrections in Eq.~1.2!, which follows from the anti-
symmetry of Eq.~1.3! and the fact that nonrelativistic fermi-
ons only propagate forward in time. On the other hand, the
radiative corrections arising from Eq.~1.1! do not vanish.
The contributions to the two and three point functions are,
actually, superficially divergent and need to be subtracted.

We begin our study by investigating the nonrelativistic
model ~1.2!. In Sec. II we verify the absence of one-loop
radiative corrections to the two and three point vertex func-
tions. We study also the fermion-fermion scattering ampli-
tude and confirm the assertion made in@2# that the Pauli’s
interaction term regularizes the theory and gives a contribu-
tion essential to reproduce the correct Aharonov-Bohm am-
plitude up to ordere4.

In Sec. III we examine the relativistic model~1.1!. After
summarizing the renormalization program@6#, we prove that
radiative corrections induce both an ‘‘anomalous’’ magnetic
term and a Maxwell term, absent in Eq.~1.2!. To calculate
the one-loop corrections to the fermion-fermion scattering
amplitudes we will employ a scheme which separates the
contributions of the low and high momenta intermediary
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states@7#. This allows a direct simplification of the inte-
grands and it is closely related to the methods of effective
field theories@8#. We will show that the low momenta inter-
mediary part coincides with the result for the same process
calculated from the Lagrangian~1.2!. On the other hand, the
contributions from the high intermediary momenta can be
thought as coming from new interactions in the effective
nonrelativistic theory. We finish this section presenting a dis-
cussion of our results.

II. NONRELATIVISTIC THEORY

Our purpose here is to use Eq.~1.2! to study the interac-
tion of the CS field with fermions up to the one-loop ap-
proximation. Afterwards, we shall compare these results with
those for Dirac fermions, calculated from Eq.~1.1! in the low
energy regime.

As said in the Introduction, we shall work in the radiation
gauge where the free gauge field propagator is given in Eq.
~1.3!. From that expression we can get the free propagator

DB~x!5^TB~x!A0~0!&52
i

u
d3~x!, ~2.1!

which is also necessary to construct Feynman amplitudes.
As the second quantized free fermionic field is

f~xW ,t !5E d2k

2p
b~kW !exp@2 i ~kW2/2m t2kW•xW !#, ~2.2!

where the annihilation operatorb(kW ) satisfies

$b~kW !,b†~kW8!%5d2~kW2kW8!, ~2.3!

the freef propagator turns out to be given by

G~x2y![^Tf~x!f†~y!&5u~x02y0!^f~x!f†~y!&

5E d3k

~2p!3
exp@2 ik0~x02y02h!1 ikW•~xW2yW !#

3
i

k02 kW2/2m1 i e
, ~2.4!

whereh ande are positive parameters to be set to zero at the
end of the calculations. In the above definition a time-
ordering prescription was chosen so that the propagator is
zero for x05y0. This implies that any closed fermion loop
automatically vanishes.

Our graphical notation is shown in Fig. 1. Using these
rules, one can demonstrate that there are no one-loop correc-
tions to the propagators and vertices. The would-be one-loop
corrections to the fermion two point function are represented
in Fig. 2. The first two of those diagrams cancel each other
due to the antisymmetry of theAm propagator and the third
and fourth are in fact closed fermionic loops@see Eq.~2.1!#
and, therefore, give no contribution as remarked following
Eq. ~2.4!. Similar arguments allow one to extend these con-
clusions to all remaining one-loop vertex and propagators
graphs.

We will next study the fermion-fermion elastic scattering.
To consider the possibility of the scattering of nonidentical
fermions we will not antisymmetrize our amplitudes. The
incoming and outgoing fermions are assumed to have mo-
menta p15(pW 1

2/2m ,pW 1), p25(pW 2
2/2m ,pW 2) and p18

5(pW 18
2/2m ,pW 18), p285(pW 28

2/2m ,pW 28), respectively. We shall

work in the center-of-mass frame wherepW 152pW 25pW ,
pW 1852pW 285pW 8, andupW u5upW 8u.

Up to one loop the nonvanishing contributions come from
the diagrams in Figs. 3 and 4. The amplitude corresponding
to the diagrams in Fig. 3 is

A~0!5
e2

mu
F11 i

sW3qW

qW 2 G , ~2.5!

where sW5pW 1pW 8, qW 5pW 82pW , and sW3qW stands fore i j siqj .
The qW -dependent term result from the graph containing the
propagator̂ TA0Ai& and theqW -independent one comes from
the contact Pauli interaction mediated by^TBA0&.

Let us now examine the one-loop diagrams. We will first
do the k0 integration and then regularize the remainingkW
integration by a cutoffL. The box diagrams@Fig. 4~a!# yield

FIG. 1. Feynman rules for the PS theory.

FIG. 2. One-loop contributions to the PS fermion self-energy.
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while the ‘‘contact’’ diagram@Fig. 4~b!# gives
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Finally, the triangle graphs@Figs. 4~c! and 4~d!# give
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~2.8!

where theko integration was done symmetrically. The final
result is then

Atri
~1!52

e4

4pmu2H ln
qW 2

L2J 1O~pW 2/L2!. ~2.9!

By summing up the above contributions we get

A5A~0!1Acont
~1! 1Abox

~1!1Atri
~1!5

e2

mu
F11 i

sW3qW

qW 2 G1O~pW 2/L2!.

~2.10!

This result shows that, up to one loop, there is no radiative
correction to the nonrelativistic scattering. This holds for all
values of the coupling constante. In the model of a nonrel-
ativistic boson coupled to a CS field, a similar result was first
obtained in@2#. There, the role of the contact Pauli interac-
tion was played by al(f†f)2 interaction withl chosen to
restore the scale invariance@9# present in the tree approxi-
mation. Observe also that in terms of the anglex betweenpW

andpW 8, Eq. ~2.10! becomes

i
e2

mu

e2 ix/2

sin~x/2!
, ~2.11!

which is the expansion up to ordere4 of the Aharonov-Bohm
amplitude for fermions@10#.

III. RELATIVISTIC THEORY

We now consider the relativistic theory defined by Eq.
~1.1!. The corresponding Feynman rules are depicted in Fig.
5. By power counting the model is renormalizable, the de-
gree of divergence of a graphg being d(g)532F2B,
whereF andB are the number of external fermion and boson
lines, respectively. Thus, the only divergences are those as-
sociated with the fermion two point function, the CS two
point function, and with the vertex. The renormalization of
the model in the Coulomb gauge, up to one loop, was studied
in @6#, using dimensional regularization. Here, for complete-
ness, we just stress the main points of that calculation.

The ambiguities in the finite parts are eliminated by add-
ing to Eq.~1.1! the counterterm Lagrangian density

Lc5dZS i

2
c̄gm]mc2

i

2
~]mc̄ !gmc D2dmc̄c

1
du

4
emnaFmnAa1dec̄gmAmc, ~3.1!

where the coefficientsdZ, dm, du, andde are fixed by the
normalization conditions specifying thec field intensity, the
values of the physical mass, CS parameter, and charge, re-
spectively.

FIG. 3. Graphs for the PS fermion-fermion scattering in the tree
approximation.

FIG. 4. Nonvanishing contributions to the PS fermion-fermion
scattering in one-loop approximation.
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First, consider the CS self-energy,

)ab ~k!52e2E d3q

~2p!3

Tr@ga~q” 1k”1m!gb~q” 1m!#

@~k1q!22m2#~q22m2!

22dueabrkr

52 i @k2gab2kakb#A~k2!1eabrkr@B~k2!

22du#, ~3.2!

where

A~k2!5S m

k2
1

1

4mD B~k2!2
e2m

4pk2
, ~3.3!

and

B~k2!5
e2m

4p
E

0

1

dx
1

Ak2x~x21!1m22 i e
. ~3.4!

By choosingdu5B(k50)/25 (e2/8p) «(m), where« de-
notes the sign function, we fixu to be the renormalized CS
parameter~this renormalization could, equivalently, be inter-
preted as a wave function renormalization forAm). For low
momentum,)ab approaches the expression

) ab~k!52 i
e2

12pumu
~k2gab2kakb!, ~3.5!

showing the well-known phenomena of induction of a Max-
well term in the effective Lagrangian of the model@11#.

The fermion self-energy is

( ~p!52
e2i

u
E d3k

~2p!3

gm~k”1p” 1m!gn

~k1p!22m2

emnr k̄ r

~kW !2

1 idZp” 2 idm

52
ie2

2pu F ~pW 22mpW •gW !

m1wp

2mG1 idZp” 2 idm.

~3.6!

Choosingdm5 me2/2pu, we guarantee that the pole of the
fermion propagator up to this order is atp25m2. In addition
to that, takingdZ50 the form of the propagator in the fer-
mion rest frame is the same as for the free case@12#.

Finally, the radiative correction to the vertex is given by

Gr~p,p8!5
ie3

u
E d3k

~2p!3

gm~p” 82k”1m!gr~p” 2k”1m!gaeamn k̄ n

@~p82k!22m21 i e#@~p2k!22m21 i e#~2kW2!
1 i ~e1de!gr. ~3.7!

Thus, choosingde50, we get in the low momentum regime

ū~p8!G0u~p!5 ie, ~3.8!

ū~p8!G iu~p!5 ieS 12
e2

4pu
D ~p1p8 i !

2m

1eS 11
e2

4pu
D e i j

~p82p! j

2m
. ~3.9!

In a covariant gauge the magnetic moment of the fermion
could be read as the coefficient ofe i j (p82p) j in this last
expression. This happens because only the first of the three
diagrams of Fig. 6, which appear in the calculation of the
scattering of the fermion by an external fieldAr, is nonvan-
ishing on shell. In the Coulomb gauge this is not so and only
after taking into account the contribution of all three dia-
grams we gete3/(4pmu) for the anomalous magnetic mo-
ment of the fermion. This result is in accord with calcula-
tions in covariant gauges where only graph@Fig. 6~a!#

contributes@13#. If we take into account that the spin also
changes@4,13,14# we conclude that relationm5e/mS be-
tween the magnetic momentm and the spinS of the particle
holds, keepingg52.

It is now clear that, up to one loop, instead of Eq.~1.2!,
these radiative corrections induce the effective nonrelativistic
Lagrangian,

Leff5f†S i
d

dt
2eA0Df2

1

2m
~¹W f2 ieAW f!†

•~¹W f2 ieAW f!

1
e

2m
gBf†f1

u

4
emnrAmFnr2

1

4 S e2

12pm
D FmnFmn ,

~3.10!

whereg[11e2/2pu.
We shall next look for the appearance of a (f†f)2 vertex

in the effective nonrelativistic Lagrangian. We so focus on
the elastic fermion-fermion scattering amplitude@15#. In the
center-of-mass frame, the incoming and outgoing fermions

FIG. 5. Feynman rules for the relativistic theory of a Dirac
fermion coupled to a CS field.
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are assumed to have momentap15(wp ,pW ), p25(wp ,2pW ),
and p185(wp ,pW 8), p285(wp ,2pW 8), where upW u5upW 8u and

wp5Am21pW 2.
The various contributions, up to one loop, are shown in

Figs. 7 and 8. The tree approximation~Fig. 7! is given by

T~0!52 ie2 ū~pW 8!gmu~pW !Dmn~pW 82pW ! ū~2pW 8!gnu~2pW !.
~3.11!

Its low energy approximation is gotten by expanding
wp5(m21p2)1/2 in powers of (upW u/m) (!1). To leading or-
der, we have

T~0!5
e2

um
S 11 i

sW`qW

qW 2 D . ~3.12!

Observe that Eq.~3.12! is the same as thee2 amplitude
~2.5! in the PS theory, due to exchange of one photon, in-
cluding the contribution of the Pauli interaction.

Self-energy and vertex radiative corrections to the tree
approximation~Fig. 7!, in leading 1/m order, give

TR5
e4

12pmu2
1

e4

2pmu2
5

7e4

12pmu2
, ~3.13!

where the first and second terms in the first equality come,
respectively, from the vacuum polarization and vertex inser-
tions.TR must not be considered for the induction of a term
(f†f)2 since self-energy and vertex corrections have al-
ready been incorporated in Eq.~3.10! through the fermion
anomalous magnetic moment and the Maxwell terms.

It remains to calculate the graphs in Figs. 8~a! and 8~b!.
They are, respectively, given by~the subscriptsB and X
stand for box and crisscross two photons exchange ampli-
tudes!

TB5 ie4E d3k

~2p!3
@ ū~pW 8!gmSF~r !gnu~pW !#

3@ ū~2pW 8!gaSF~r 8!gbu~2pW !#

3Dnb~kW2pW !Dam~kW2pW 8! ~3.14!

and

TX5 ie4E d3k

~2p!3
@ ū~pW 8!gmSF~r !gnu~pW !#

3@ ū~2pW 8!gaSF~ t !gbu~2pW !#

3Dna~kW2pW !Dbm~kW2pW 8!, ~3.15!

where r[(wp1k0,kW ), r 8[(wp2k0,2kW ), and t[(wp

1k0,kW2pW 2pW 8).
In what follows, the free fermion propagator will be writ-

ten in terms of fermion and antifermion wave functions@5#:

SF~p!5 i
u~pW ! ū~pW !

p02wp1 i e
1 i

v~2pW ! v̄ ~2pW !

p01wp2 i e
. ~3.16!

This device greatly simplifies the calculation of thek0 inte-
grals. As a by-product, we can trace the contribution of fer-
mions or antifermions in intermediary states.

Replacing Eq.~3.16! in the expressions above, we get

TB52 ie4E d3k

~2p!3
Dnb~kW2pW !Dam~kW2pW 8!

3 ū~pW 8!gmF u~kW ! ū~kW !

k01wp2wk1 i e

1
v~2kW ! v̄ ~2kW !

k01wp1wk2 i e
Ggnu~pW ! ū~2pW 8!ga

3F u~2kW ! ū~2kW !

wp2k02wk1 i e
1

v~kW ! v̄ ~kW !

wp2k01wk2 i e
Ggbu~2pW !

~3.17!

and

TX52 ie4E d3k

~2p!3
Dna~kW2pW !Dbm~kW2pW 8!

3 ū~pW 8!gmF u~kW ! ū~kW !

k01wp2wk1 i e

1
v~2kW ! v̄ ~2kW !

k01wp1wk2 i e
Ggnu~pW !

3 ū~2pW 8!gaF u~kW2sW ! ū~kW2s!

k01wp2wk2s1 i e

1
v~sW2kW ! v̄ ~sW2kW !

k01wp1wk2s2 i e
Ggbu~2pW !. ~3.18!

FIG. 6. One-loop contributions to the fermion anomalous mag-
netic moment.

FIG. 7. Graph for the relativistic fermion-fermion scattering in
the tree approximation.
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The integration ink0 can be done by closing the contour in
the upper halfk0 complex plane. After some simplifications,
we get

TB5TB
el,el1TB

pos,pos, ~3.19!

where

TB
el,el52

e4

2
E d2k

~2p!2

wk1wp

kW22pW 21 i e
F* ~kW ,pW 8!F~kW ,pW !

~3.20!

and

TB
pos,pos52

e4

2
E d2k

~2p!2

1

wk1wp

H~pW 8,kW !H* ~pW ,kW !.

~3.21!

For TX it results

TX5
e4

2
E d2k

~2p!2

1

wk1wk2s

@G~kW2sW,2pW ,pW 8!

3G* ~kW2sW,2pW 8,pW !1G~kW ,pW ,2pW 8!G* ~kW ,pW 8,2pW !#,

~3.22!

where, as before,sW5pW 1pW 8, and

F~kW ,pW !5@ ū~kW !gmu~pW !#Dmn~kW2pW !@ ū~2kW !gnu~2pW !#,

H~pW ,kW !5@ ū~pW !gmv~2kW !#Dmn~pW 2kW !@ ū~2pW !gnv~kW !#,
~3.23!

G~aW ,bW ,cW !5@ ū~aW !gmu~bW !#Dmn~aW 2bW !

3@ ū~cW !gnv~bW 2aW 2cW !#.

The termsTB
el,el and TB

pos,posare, respectively, the contri-
butions of theu andv fermion wave functions~electron and
positron! to the two internal fermion lines in Fig. 8~a!. Mixed
contributions, in whichu ‘‘runs’’ in one line andv in the
other, cancel in this model. On the other hand, each of the
two terms inTX corresponds to a graph in which one of the
internal fermion line is au and the other av.

We will break the integration regionukW u5(0,̀ ) in two
ranges

~1! Contributions of the nonrelativistic intermediate
states, corresponding to the loop momentum in the range
ukW u5(0,L) whereL is a parameter satisfyingupW u!L!m.

~2! The relativistic energy intermediate states contribu-
tions, corresponding to the rangeukW u5(L,`) for the loop
momentum.

In the region (0,L), the integrands can be expanded in
powers of 1/m up to the desired order of approximation
(wk5m1kW2/2m1 kW4/8m31•••). We will limit ourselves to
the leading (1/m) order which suffices for comparison with
the nonrelativistic PS theory. For the region (L,`), we will
expandwp aroundpW 50, but keepwk exact. So, to extract the
leading (1/m) approximation of this part of the integral, an
extra expansion in 1/m must be made after the integral is
computed. With these mentioned approximations, we can
write Eqs.~3.14! and ~3.15! in leading order as

TB
el,el52

e4

u2m
E

0

L d2k

~2p!2

1

kW22pW 21 i e

3F114
kW`pW

~kW2pW !2

kW`pW 8

~kW2pW 8!2G
2

e4

2u2EL

` d2k

~2p!2

wk1m

kW2wk
2

, ~3.24!

TB
pos,pos52

e4

2u2EL

` d2k

~2p!2

1

~wk1m!wk
2

, ~3.25!

TX5
e4

mu2E0

L d2k

~2p!2

kW

kW2
•

~kW2qW !

~kW2qW !2
1

e4m2

u2 E
L

` d2k

~2p!2

1

kW2wk
3

.

~3.26!

In the integration region (0,L) of TB
el,el, the contributions

of graphs in which one of the photon propagators is^TA0Ai&
and the other̂TA0B&, vanish after integrating~they have not
been written above!; moreover, inTB

pos,pos, the integrand does
not have a 1/m order contribution. Actually, its leading con-
tribution starts at (1/m)3 which lies beyond the approxima-
tion we want to keep.

The low energy parts ofTB andTX can be identified with
amplitudes in the PS theory: The first term in the low energy
part ofTB

el,el corresponds to the Fig. 4~b! and the second term
to the diagram Fig. 4~a! of the PS theory; the low energy part
of TX exactly corresponds to the PS result~2.8! coming from
the Figs. 4~c! and 4~d!.

After performing the integrations, one obtains

TB
el,el5F2

e4

4pmu2
ln

L2

qW 2 G
low

1F2
e4

4pmu2
ln

2m2

L2 G
high

,

~3.27!

TB
pos,pos5F2

e4

4pmu2
ln2G

high

, ~3.28!

FIG. 8. Graphs contributing to the relativistic fermion-fermion
scattering in one-loop approximation.
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TX
pos,el5F2

e4

4pmu2
ln

qW 2

L2G
low

1F2
e4

4pmu2 S 21 ln
L2

4m2D G
high

, ~3.29!

where low and high refer to the integration intervalsukW u
,L andukW u.L, respectively, of the loop momentumkW . Ob-
serve that for each graph the sum of the high and low parts is
actuallyL independent, as they should be.

If L is thought as an ultraviolet cutoff (L→`), each
graph of the nonrelativistic theory~low part of the relativistic
theory! diverges. On the other hand, the corresponding am-
plitudes in the relativistic Dirac theory are finite. It is inter-
esting to see that their high energy parts exactly provide the
counterterms to render the nonrelativistic PS theory finite.

Separately adding the low and the high energy parts of the
above amplitudes, we obtain

TB1TX5F2
e4

2pmu2G
high

. ~3.30!

The cancellation of the sum of all low energy parts is
connected with the absence of scale anomalies in the PS
theory. As already observed at the end of Sec. II, in the
scalar nonrelativistic theory it was first noticed in@2#.

The high energy result~3.30!, which is of the same order
in 1/m as the tree approximation~3.12!, is new and could not
be suspected from the PS theory. If we are restricted to the
model ~1.1! with fermions of just one flavor and spin, it in
fact gives no contribution after antisymmetrization of the
amplitude. Let us so enlarge our model~1.1! by assuming
thatc is anN flavor fermion field. If, analogously,f now is
also anN flavor PS fermion, the theory equivalent to the
enlarged Eq.~1.1! model will be

Leff5f†S i
d

dt
2eA0Df2

1

2m
~¹W f2 ieAW f!†

•~¹W f2 ieAW f!

1
e

2m
~11e2/2pu!Bf†f1

u

4
emnrAmFnr

2
1

4 S Ne2

12pm
D FmnFmn1

e4

4pmu2
~f†f!2. ~3.31!

Using this new Lagrangian, the total fermion-fermion
scattering amplitude, up to one loop, before antisymmetriza-
tion, is

T5 i
e2

mu

e2 ix/2

sin~x/2!
1

Ne4

12pmu2
. ~3.32!

For nonidentical fermions the last term survives and provides
a correction to the PS result.

Our study has been restricted to the investigation of the
induction of terms in the effective Lagrangian in leading
order of 1/m. Of course, a whole series of new terms will be
induced in higher orders.

The above Lagrangian summarizes our main results. The
low energy limit of the theory of a CS field minimally
coupled to Dirac fermions differs from the PS theory by an
anomalous magnetic moment, a Maxwell term, and a quartic
fermionic term, all of the same 1/m order. They are purely
quantum field theoretical effects. These results show that tak-
ing the nonrelativistic limit of a classical relativistic La-
grangian and then quantizing, leads to a different theory than
first quantizing and then taking the nonrelativistic limit.
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