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Rotating Skyrmion in 2+1 dimensions
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The collective rotation of the Skyrmion in two-dimensional space is considered. In contradistinction to the
three-dimensional case, inertial effects do not spoil the hedgehog form and can, therefore, be investigated
consistently without great computational difficulty. The energy, the moment of inertia, and the mean radius of
the rotating soliton are calculated for a wide range of model parameters. It is found that the “frozen hedgehog”
treatment—commonly assumed adequate in the Skyrme model on the basis dfl{afgamber of colors
arguments—is invalid in a sizable portion of parameter space. The phase shifts associated with radial fluctua-
tions of the rotating soliton are also investigated and are found to be significantly affected by the rotation.
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I. INTRODUCTION model itself, without relying upon its supposed relation to
QCD.
The Skyrme mode]1], in its simplest version, is a non- ~ One way to take inertial effects into account is to mini-

linear theory of pion fields endowed with an @)» SU2)  Mize the energy of the rotating hedgehog with respect to
chiral symmetry, weakly broken by the pion mass. Largevarations of the profile function, for fixed angular momen-
N¢ (number of colorsarguments have revived it as a can- tum [3,4]. However, this procedure is rather unsatisfactory

didate for an effective theory of hadron physics at low andSince the field equations do not admit rotating hedgehog so-
intermediate energie] lutions in 3+1 dimensions. This simple kinematical fact is

The description of baryon structure in this model is base jndependent of the dynamics of the model and can be noticed

on a static soliton solution of the field equations with unit y considering the application of the d’Alembertian operator

to the rotating hedgehog. One verifies easily that the result-

topological charge, in which the pion-field triplet takes on; “fieiq vector will not in general be radial, although it will

the so-called hedgehog form, pointing out radially at eacthe’ contained in the meridian plane defined with respect to
point. The field strength is given by a radial profile function, the rotation axis. Therefore, the reduction of the isovector-

which is obtained by minimizing the energy of the staticfie|q equations to a single equation for the profile function
soliton. Baryon spin and isospin states are constructed byji|| not be possible. In physical terms, a rotating nonrigid
quantizing the collective rotations of the hedgehog. For theypject is expected to acquire an oblate shape, losing the
hedgehog, an isospin rotation is equivalent to a coordinatespherical symmetry of the hedgehog. Thus, i13dimen-
space rotation and consequently, the isospin is equal to thstons, rotating solitons only possess cylindrical symmetry
angular momentum. and their construction requires the solution of coupled
In the simplest—and most usual—description, the profilepartial-differential equations involving two field functions.
function of the rotating soliton is taken to be equal to that ofAttempts in this direction have been made in the context of
the static soliton. This approximation ignores the reaction othe nonlineaw model[5], but no complete solution has been
the soliton to the rotation and results in the quantum mecharpresented.
ics of a spherical top with constant moment of inertia. We  The relevance of rotating soliton solutions has recently
shall frequently use the phrase “frozen hedgehog” approXiheen emphasized by an analysis of collective quantization in
mation to refer to this picture. The rationale for it is found in the framework of the phase-space path intef@al]. It has
the assumption that the Skyrme model is a realization opeen shown that the saddle-point condition on the effective
large N¢ quantum chromodynamic€QCD), which allows  action for nonvanishing angular momentuar isospin
the specification of thél. dependence of the model param- |eads to a field configuration which minimizes, not the static
eters. On this basis, it is argued that the rotational contribuenergy, but the energy augmented by a rotational contribu-
tion to the energy of the soliton is of ordii; 2 compared to  tion. In fact, the resulting equation is identical to that satis-
the static mass; therefore, rotational effects are small and cdied by the intrinsic field of a classical soliton rotating with
be treated to lowest order inN{. One should, however, constant angular velocity. The distortion of the rotating soli-
note thatN. does not appear explicitly in the Skyrme model ton away from the hedgehog shape it B dimensions has
Lagrangian. Once the parameters of the model are fixed phelso been stressed ji].
nomenologically, the validity of the “frozen hedgehog” ap-  The present work is motivated by the elementary obser-
proximation becomes a question to be settled within thevation that, in two-dimensional space, the meridian plane
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collapses to the radial direction and it can therefore be ex- Il. SKYRME MODEL IN 2 +1 DIMENSIONS
pected that the rotating hedgehog ansatz reduces the field The Skyrme model in 31 dimensions is a nonlinear re-

equations to a single differential equation for the proﬁlealization of SU2)® SU(2) chiral symmetry in terms of pion
function, from which exact classical solutions c:orrespondinq:ields The chiral symmetry is weakly broken by the pion

to rotating solitons can be constructed. Thus, there is at leagt,ss The Lagrangian density for this model is written in
no a priori inconsistency in studying inertial effects in the (orms of an S() field matrix U as

framework of the collective rotation of the hedgehog in two-

dimensional space. Preliminary results for rotating Skyrmion 1, N 1, + $2

properties in 2-1 dimensions have already been presented in L=— waTr(auU‘WU )+ g€ Trd,Uu",d,UU7]

[8]. Similar calculations have also been performed by Piette

et al. [9]. The first part of the present work complements n Emzfz(TrU—Z) 2

these analyses through a more complete mapping of the pa- 2 ™7 '

rameter space of the model and a discussion of the limita-

tions of the standard “frozen hedgehog” or “lardé.” ap-  Wheref . is the pion decay constart,is a phenomenological

proximation. coupling constant andh,, is the pion mass. The constants
Inertial effects caused by the soliton rotation are also ex{~ ande have dimensiongf ;]= L™t and[€]=L° respec-

pected to be present in the calculation of meson-soliton scaflvelY- _ _

tering phase shifts. As demonstrated6q7], these should be ~ AS SU2) ® SU(2) ~O(4), the Lagrangian density can

extracted from the quantum field fluctuations about the?!SC be written as an invariant function of a unitary four-

rotation-distorted soliton instead of the static hedgehog, a¥ector in field spacePp={®,,d}, with

has been assumed in all extensive studies of meson-baryon & b1 @)

scattering in the Skyrme modgl0,11]. Although the com- '

plete formulation of this problem is beyond the scope of thisthis is implemented by inserting in the Lagrangian density

work, we shall perform an analysis of the phase shifts assq() the following parametrization ofl:

ciated with radial quantum fluctuations about the rotating

Skyrmion in 2+1 dimensions. Preliminary results have been U =<I>0+i;~<f>, 3

reported in[12]. A similar study has already been presented

in 3+1 dimensiong3] but, as mentioned above, the use ofwhere 7 is a three-vector whose components are the Pauli

the hedgehog ansatz is questionable in that case. matrices. This leads to

Of course, by considering a two-dimensional toy model,
we give up the possibility of making direct contact with the L=2129,®- *D+ = €0, ®-3,BI D 3D
real world. In compensation, by working with a model that 2 ™H 2 u v

admits rotating hedgehog solutions, we should be able to
draw some reliable conclusions, from which one may hope
to gain at least qualitative insight on the importance of rota- Since, for localized configurations, the field must tend to
tional inertial effects for the calculation of baryon properties ' . o N )

and meson-baryon interactions in the physical threeltS vacuum value at large distangeho, @} —1{1,0}, solitons

— (9, @ " ®)2 ]+ mef2(dy—1). (4

dimensional Skyrme model. correspond to mappings of the compactified geometrical
This paper is organized as follows. In Sec. II, we summaSPaceSs onto the field manifolds?. _
rize the relevant features of the Skyrme model in12di- An analogous model in-21 dimensions is obtained by

mensions. The differential equation satisfied by the profilconsidering the Lagrangian density as ar3)dnvariant
function of a classical rotating hedgehog is derived, togethef(lmCtlon *of a unjtary three-vector in field space,
with the expressions of the associated physical quantities. ®={®P,,P}, whered is now a two-component vector and
In Sec. Ill, we perform a partial quantization of the rotat- ® again satisfies the constraif®). Solitons are now
ing hedgehog, treating the rotation angle and the profilesgas,% mappings. In this two-dimensional model, the con-
function as dynamical variables. The rotating mean-field apstants f_. and e are easily seen to have dimensions
proximation then yields a quantum-mechanical interpretatiofif _]=L "2 [¢]=LY2 Although we are now dealing with a
of the classical solutions introduced in Sec. Il. We perform aoy model, we shall continue to refer tb as the pion field
detailed analysis of the properties of the first few rotationaland tom._, as the pion mass.
collective states, over a large range of model parameters. By It is convenient to make the space-time variables adimen-
comparing our results to those obtained ignoring inertial efsional by rescaling them bfy, /e. Rescaling the pion Comp-
fects, we assess the limitations of standard “lahy¢’ ar-  ton wavelength in the same way, we introduce the adimen-
guments, which are usually invoked to neglect such effectssjonal parametep.=em_/f.. The Lagrangian density is

In Sec. IV, we analyze the quantum fluctuations of thecorrespondingly rescaled by a face’ % and then takes the
profile function of a rotating hedgehog, in a linearized ap-form

proximation. We extract the phase shifts associated to the
scattering of a field quantum off a rotating soliton. Again, the 1 1
results are compared to those obtained by taking the static Ladin=25 0, P *®+ 5[, ®- 9, PP 5"
hedgehog as background field, in the usual fashion.
Section V contains our conclusions and final comments. —(0,®- DY+ u(Dy—1). (5)
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From here on, we shall use adimensional variables and worWhereR;;[ ¢(t) ] denotes the X2 orthogonal matrix which

with the Lagrangian densit{p). operates a rotation by the angtét). Indeed, the substitution
The field equations are of this ansatz in the field equatiof®) reduces these consis-
" s . ) tently to a single differential equation for the profile function
9,0 ®+2(9,®- 9,0 PP+ 9, ®- P, " f(r), if the angular velocityw = ¢ is assumed to be constant.
— 0,8 "B, D~ 3,D- 9,0" DI D) This equation reads
+AP— u?gy=0, (6) P27+ rf' +(1— 0?r?)[sin2f(f'2— 3)+2sirfff"]—2(1

!

. . ~ . . — g f
whereg, is a unit three-vector in field space;={1,0}. The + 02r?)siret - — uPrsin=0. (14)

Lagrange multipliern, introduced to enforce the constraint
(2), is given by

For a soliton of unit topological chargd 1), the boundary
AN=0,® I ®+2[J,P HDPI'P-J,P conditions

— LM 2 2
(9,®-"®) ]+ u Dy, (7) F(0)=m f()=0 (15)
The energy-momentum tensor is easily constructed. From

it, one derives the expressions for the energy, must be satisfied. _
The solutions of Eqs(14) and (15) have been obtained

1 o for one value of the parameter in [9]. A more complete
E= Ef d°X[(P- P+ ;P 6, @) (1+9;®- 5; D) study will be presented in the next section.
) _ The physical quantities associated with the classical rotat-
—2®- ;PP 9, P— ;P 9; P P- 9P+ 2u2(1-Dy)], ing hedgehog can easily be obtained by substituting(E3).
®) in the expression&)—(12). For the angular momentum, one
gets, from Eqs(13) and (9),
and the angular momentum,

J=wl[f], (16)
J:&jf d*XX[3;@- (1 +25,®- 5, D) where the moment of inertig f] is
—20,®- 5, DdD- 9 P]. 9 =
ok @] © I[f]=27rJ drrsin?f(1+2f'2). 17)
0

Since the vacuum configuration(kvacz{l,ﬁ}, the origi-
nal O(3) symmetry of Eq(5) is broken to the UL) symmetry  As expected for the hedgehog, an identical expression is ob-
corresponding to rotations of thé field. The associated tained for the isospin, by substituting Ed.3) into Eq. (10).
charge, i.e., the isospin, is The energy of the rotating hedgehog, obtained by insert-
ing Eqg.(13) in Eq. (8), is

T= f d?X[ (1+29,®- &itb)d3x<13—2ci>~ 3, D3;DXD].

1
(10 E=M[f]+ szl[f], (18)
The mappingsS3— SZ are characterized by the topologi- with
cal charge
1 — - 124 v —2qi 12
B:J' dZXbOZESijJ’ dZX(I)'(&i(I)Xﬁj(I)). (11) M[f]—’ﬂfo drr[f'“+r S|n2f(1+2f )

209 _
We shall use as a measure of the soliton size the rms radius +2u%(1-cod)], (19)

R of the topological charge distribution, defined as a quantity that we shall refer to as the intrinsic mass of the

rotating soliton.
R?= J d?xr2h°. (12 Finally, for the hedgehol3), the rms topological charge
radius(12) is given by
On the basis of the arguments presented in the Introduc-
tion, the two-dimensional model, in contrast with the three- R2= — EJ’wdrrzsinff’ (20)
dimensional one, is expected to possess exact time dependent 2J)o '
classical solutions corresponding to the rigid rotation of a
hedgehog, i.e., For completeness and posterior use, we list below the
J_ expressions of the dimensional physical quantities in terms
> X >0 of the adimensional ones. In addition to already-defined
PixO=R;Le(O]Fsinf(r),  Po(x,0)=cod(r), quantities, we record the scaling of the action, denoted by
(13 S. The dimensional angular velocity @. In the case of
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guantities denoted by roman upper-case letters, the corref angular momentum in two dimensions, are givenniy
sponding script letter is used to represent the dimensionalith n integer. As already mentioned, the quantum of action
guantity: is = (ef ) '=a in our rescaled units.
5 5 The dynamics of the profile function may then be studied
S=ef,S, M=fIM, E=flE, within a sector of giverd. In keeping with the usual picture
5 of solitons as semiclassical objects, it is natural to replace, in
O=frole, J=efrd, I=€l, first approximation, the quantum fiefdr,t) by its expecta-
m,=f_ule, R=€eRIf_. (21  tion valuef(r), assumed to be time independent, so that the
corresponding mean-field momentup(r) vanishes. The
We remark that, since we started out with natural units suclkequation of motion fop(r,t) then reduces to the condition
that #=1, and rescaled the action by the factorthatthe mean-field energy,
(ef,) "'=a, the quantum of action in our new unitsds a

number which depends on the parameters of the original di- . _ 7
mensional model. Correspondingly, the mass of the pion is E=M[f]+ —, (27)
no longer equal to its inverse Compton wavelength. The adi- 21[f]
mensional inverse Compton wavelengthgsand the adi- _
mensional mass ia . be stationary with respect to variationsfofThis leads to the
differential equation(14) for f, with
Ill. ROTATING HEDGEHOG IN THE MEAN-FIELD e
APPROXIMATION w=J/[f]. (29

The relevance, for the quantum field theory, of the classifor a soliton of unit topological charge, the boundary condi-
cal solutions introduced in the previous section can be estallions (15) should be satisfied. We shall denotefy(or also
lished by performing a partial quantization of the hedgehogpy f ) the corresponding solution, indicating that it depends
in which the rotation angle and the profile function are parametrically onw (or equivalently onJ).

treated as dynamical variables. _ _ It is easily verified that, at large distance, the solution of
Introducing in Eq.(5) the ansatA13), with the rotation g (14) tends to a modified Bessel function:
angle ¢(t) and the profile functionf(r,t) considered as
functions of time, and integrating over space, we get the o c
Lagrangian fo(r) ~ CKy(Vu? = w?r)~ R Ju?=w?r),
) r oo r
f2 "2

_ | = L (29)
L—fo drp(f) 5 +1[f15 ~MIf], (22)

so that localized solutions exist only fas<<w. Thus, the
where pion-mass term is necessary to ensure the stability of the
s rotating soliton[13,14]. We note that, even though the non-
p(f)=2m(r+2r 1sir’f). (23 linear O3) o model, which corresponds to the first term of
Eq. (5) only, possesses static localized solutions #n12di-

The conjugate momenta are .
1ug mensions, the Skyrme term becomes necessary to prevent the

oL collapse of the soliton, once the pion-mass term is intro-
J=—=I[f]¢ (24  duced. Indeed, from Ed5) one sees easily that, under the
Je scale change?—ﬁ\)?, the contribution to the soliton mass
and from the first term is invariant, while the contribution from
the pion-mass term scales ®m$. Therefore, the soliton col-
SL ) lapses tan =0. This situation is remedied by the contribution
p=—=p(H)f. (25)  from the Skyrme term, which scales ®s?.
of The calculation of the properties of a rotating soliton of

angular momenturd=n# requires the solution of Eq14),

The corresponding Hamiltonian is, therefore, with w determined self-consistently using E&8). Once the

® . _ o p2 J2 profile functionf , is determined, the intrinsic mass;, the
H=J drpf+J<p—L=J dr2p(f)+2|[f]+M[f]' moment of inertid ;, the energyor total massE;, and the
0 0 (26) radiusR; can be computed from Eq§l9), (17), (27), and

(20), respectively(here and below, we use the notation
When we go over to quantum mechanics, ordering problemdI[f]=M, etc). In addition to the value of the angular-
appear in Eq(26), but it can be easily verified that they may momentum quantum number, two adimensional param-
be ignored at the levels of approximation used in this worketers are input to such calculations: the pion inverse Comp-
Since the angle variable does not appear in the Hamil- ton wavelengthu and the combinatiomr=(ef ;) ~* which
tonian (26), the angular momentur is conserved. The en- fixes the value ofi.
ergy eigenstates may therefore be classified according to the We shall present and discuss below resultsnferl and
eigenvalues of, which, following the standard quantization n=2, mapping a fairly wide domain of values pf and «.
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Our main motivation is to assess the validity of the standard 5,
treatment of rotational excitations, which udgs to calcu-
late M, |, andR.

Although we are dealing with a two-dimensional model,
our choice of parameter ranges will be guided by the require-
ment that the size and mass of the static soliton crudely
match the physics of nonstrange hadrons. We note first that,
according to Eq(21), m,R=uR. Itis, therefore, reasonable 30
to restrictu to values such that the prodyeR, be roughly
equal to the ratio of the nucleon size to the pion Compton ¢
wavelength, i.e.=0.5. In fact, somewhat smaller values for
nRy might be more adequate since the nucleon radius will
be larger tharR,, because of the swelling due to the rota-
tion. We find that the value gi R, varies slowly from 0.1 to
0.5 asu varies from 0.001 to 0.1. We, therefore, choose to 19
restrict our numerical study to this range of valuesof
Similarly, in order to limit the range of values of, we note
that from Eq.(21), we haveM/m_=f_eM/u. This sug-

40

20

gests choosingr such thata *My/u be roughly equal to 0.001 - 0.01 0.1
the ratio of the nucleon mass to the pion mass, #€, For i
p=0.1 this gives a=20. Somewhat smaller values of
-1
a “Mo/u, and therefore larger values af could be more FIG. 1. Contour plot of the relative contribution of the rotation

appropriate sincéM, is smaller than the physical nucleon to the soliton energy,E,—Mg)/M,, as a function of the model
mass, which includes a rotational contribution. Smaller valparameters, for the first two rotational states. Dashed curves for

ues of u also lead to larger values @f. We shall present n=1: solid curves fon=2.
results for values o running up to 50.

Since we are primarily interested in evaluating the relativefor the static profile function. Note, however, that the corre-
importance of inertial effects, we shall present our results irsponding effect on the rotational contribution to the energy is
the form of ratios. We begin by comparing the rotationalsignificant, because the mass is much larger than the rota-
energy to the static soliton mass. In order for the standartional kinetic energy. The moment of inertia is, on the con-
“large N arguments to hold, this should be smédif order ~ trary, quite strongly affected by the rotation, the inertial
Nc?). A contour plot of the quantity E;—Mg)/M, is modification already reaching over 100% fo+ 1.
shown in Fig. 1. It is seen that, over the parameter domain
under consideration, this ratio does not exceed 20% for the 50
first rotational excitation and 40% for the second one.

It is often argued that, since the rotational contribution to
the energy is small, the dynamics of the soliton is little af-
fected by the rotation and, in particular, the rotational energy
itself can be computed using the moment of inertia of the
static soliton. This is the standard “frozen hedgehog” pic-
ture, in which the total energy of the rotating soliton is taken 4,
as EJFZM(pL J?/(21,). The accuracy of this approximation
can be gauged by comparing the rotational energy derivedr
from it to that obtained from the exact solution of the field
equations. The relative difference between these rotational 20
energies is given by the quantitE§ — E;)/(E5—M,), for
which a contour plot is given in Fig. 2. One sees that the

“frozen” treatment is good to 40% or less for the first rota- .
: 10 T ]
tional state, but already can lead to an error of more than

0

60% for the second one.

In fact, inertial effects are even more drastic than these
results suggest. This is because, in the total en&rgythe
intrinsic mass partM; and the rotational kinetic part
J?/(21,) are affected in opposite directions, since bth
andl, are increased. This can be seen in Figs. 3 and 4, which FIG. 2. Contour plot of the relative error made in the “frozen
show contour plots of the quantitieM(—Mg)/Mg and  hedgehog”  approximation to the rotational  energy,
(I3=10)/1¢, respectively. The inertial effect oM is rather  (EF—E,)/(Ef—M,), as a function of the model parameters, for

small, no more than 5% fan=1 and up to 20% fon=2. the first two rotational states. Dashed curvesrferl; solid curves
This is not surprising since this quantity reaches a minimunior n=2.

0.001 0.01 Nt
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50 50

40 40

30 30
[0 (8%

20 20

10 10

0.001 Y - 0.1 0.001 — 0.01 01

p 7

FIG. 3. Contour plot of the relative difference between the in-  FIG. 5. Contour plot of the relative difference between the rms
trinsic masses of rotating and static solitonsl ;- Mg)/M,, as a  topological charge radii of rotating and static solitons,
function of the model parameters, for the first two rotational states(R;—Ro)/Rp, as a function of the model parameters, for the first
Dashed curves fon=1; solid curves fom=2. two rotational states. Dashed curves foe=1; solid curves for

n=2.

The severe increase in the moment of inertia caused by
the rotation is indicative of a significant swelling of the soli-

ton. This is confirmed by calculations of the rms radig). s ) Lo S
— S o lar velocity w of a stable rotating soliton is limited to values

The contour plot O.f. Fig. S, for the quantlt)Rg—Rp)/Ro, less than the pion inverse Compton wavelengththere is
shows that the radii of the first and second rotational states ™. . -
o limit to the angular momentum such a soliton can carry.

can be, respectively, up to 50% and 100% larger than that of,". . Lo S
the static ground state his is because the moment of inertia becqme; arb|_trarlly
' large asw tends tou. It has been showf®] that in this limit

the soliton energy approaches a linearly increasing function
~ T of the angular momentum.

To close this section, we remark that, although the angu-

50

IV. RADIAL FLUCTUATIONS OF THE PROFILE
FUNCTION

Meson-baryon scattering phase shifts in the Skyrme
model can be extracted from the quantum fluctuations about
the mean field. As has been emphasized recd#tlyl, the
rotation-modified mean field should, in principle, be used as
zeroth-order approximation, while all extensive studies so far
performed have relied on the “frozen” approximation.

Although we do not intend to perform a full calculation of
meson-soliton scattering in the two-dimensional model, we
shall investigate the effect of the rotation on the phase shifts
associated with the radial field modes. This can be done in
the framework of the Hamiltonia26), by quantizing the
small-amplitude oscillations of the profile function, within a
sector of given angular momentuin We let

0.001 — . ‘(.).01 0.1
7

f(r,t)="f(r)+ n(r,t) (30
FIG. 4. Contour plot of the relative difference between the mo-
ments of inertia of rotating and static soliton$;{1,)/14, as a
function of the model parameters, for the first two rotational statesand expand the Hamiltonia26) to second order in the fluc-

Dashed curves fon=1; solid curves fon=2. tuation . We get
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1 p2 1 M tion (36), one obtains the following integro-differential ei-
H=E+ —f dr—+ —f drf dr'| ——— envalue equation to be satisfied by the mo :
2 p 2 Sf(r)sf(r') J a Y ety
_ - d|— d —

J? 52l 2 s 4l —d—[U(r)d—wK(r) V() (r)
= +=3 _ — r r

212 5f(r)sf(r') 13 8f(r) 8f(r") L )
X p(r,t)p(r',t), (31) +W(r)fodr’W(r’)I/fK(r’)=?p(r)t//K(r)-

wherep= p(ﬁ. We note that this procedure differs from the (38

one used in available studies of radial fluctuations in the - o
three-dimensional mod¢l5,16] by the fact that we are ex- Since the boundary conditiortS) are satisfied by (r,t) as
panding about the profile functiohy of the rotating soliton, Well as byf(r), the functionsy,(r) must vanish at the ori-
instead of about the profile functidiy of the static soliton. 9in @nd at infinity. , _ _
Carrying out the functional derivatives, using the expressions—Civen the asymptotic behavi¢29) of the profile function

of M andl given by Eqs(19) and(17) with f=f, we obtain f, the functions appearing in E38) are easily seen from
Eqg. (23) and Egs.(33)—(35) to approach exponentially the

— 1= [p? — - 1] o 17 following forms asr increases:
H:E+§f dr :+U77’2+V7]2 +§ J' ern , L
0 0 I _
g 32 P0)~U(n)~2m1, V(r)~2m| =+ (4?0 |,
where —
W(r)~0. (39)
— 2
U=2m|r+ F(l—wzrz)sinzﬁ, (33)  Then Eq.(38) reduces to
d2 2
o 1 _ _ r2 =t 12— — Pt w? —1} =0.
V=27 ~(1- w?r?)(1- 21"?)cos ar <G o2 H v w0

!

+2(1+ wzrz)r—zsian The solutions of this equation are the Bessel functions of the

first kind J;(«r) andY,(«r), with the (adimensionalwave
number related to the enerdy, by

o
—2(1—w2r2)75|n2f+,u,2rcosf , (34 =
K= \/;g—,u,z-i-wz. (41

I I
WZZW_WP i sir’f+(2f'2—1)sin2f |. (35)  Therefore, at large distance/g?— w?r>1), the regular so-
lution of Eqg. (38) takes the form

We stress that these functionsroflepend parametrically on
o — or more properly on] — both through the explicit

appearance Ok in their expressions and through the para-\yhere 5(«) is the phase shift, which can be extracted in

¥ (r)~cosd(«)J (kr)+sind(«)Y («r), (42

metric dependence of the profile functibron w. standard fashion by integrating E(B8) numerically, with
The Hamiltonian(32) implies the following equation for  the boundary conditiony,(0)=0, out to a sufficiently large
the fluctuation fieldx(r,t): radius and matching the solution to the fof4®).

. The unusual dispersion relatigdl) might lead one to
S—U'n" —Un"+V7r +V7f dr'Ws»=0. (36  conclude that the pion mass is renormalized by the rotation
P 7 7 7 0 7 (39 [17], in such a way thatr\/u?— »? would be the physical
] ) ) ) . .pion mass in the presence of a soliton rotating with angular
The somewhat unusual |_ntegral term in this equation Origivelocity w. In order to settle this issue, we study the pion
nates from the last term in the brackets of E3f). _field at large distance in the fixed frame, for a mode of wave
The field (r,t) may be expanded in terms of creation nmper«. Since the mean profile function vanishes expo-
and annihilation operators, in the form nentially and the fluctuation is small by assumption, it fol-
lows from Eqgs.(13), (30), and(37) that

1 i A
n(r,t)zi \/E[I/,K(r)aKeflEKt/a_F w:(r)aIeIEKt/a],
K K (37)

where the denominators in the time-dependent phases appesere an irrelevant normalization factor has been dropped.
because, in our adimensional units, the Planck constant iBhe d’Alembertian of this expression is easily calculated; the
(ef,) "=a. Substituting this expansion in the field equa- piece involving time derivatives is

. X! .
@;(x,1)~Ry; (1) ye(rae Ederce, (43
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2
92D~ — 2q>-—EKq>-+ 44
(D~ — 0= — i+ (44

25

15
where only those terms that will contribute to the mass have 4

been displayed. The Laplacian of the field can be seen, with

the help of Eq(40), to take the form 05

E2

> -0.5
V2<I)i~(,u,2—w2— Ez)@l (45)

Collecting these results, one gets

2.0
8,0" D~ — D+ - - -. (46) 15
. . . 1.0
Thus, the correct pion-mass term appears in the Klein- 6
Gordon equation for the asymptotic field, without renormal- 0.5
ization. The above calculation shows that this result follows 4
from the cancellation of the? term in the dispersion rela-
tion (41), valid in the rotating frame, by the term arising
from the second derivative of the rotation matrix, so that the
pion energy in the fixed frami, ; is given by the dispersion

-0.5

relation 15
Er=aVu+ (47) 1.0

0.5

We note that the dimensional wave numkes related to the é 0.0
adimensional onex through «=e¢ek/f_, so that, since '
a=(ef )%, the above relation implie&, (=/m2+k? -0.5
f2=&.¢/f2, where & is the dimensional pion energy.  -1.0

Comparing this with Eq(21), one checks that meson and
soliton energies scale in the same way, as they should.

Before turning to the discussion of numerical results, a
brief comment about the term represented by the ellipse in FI_G. 6. Meson-soliton phase shifts from radir_sll quctue_ltions, as
Eq. (44) is in order. This term arises from applying one of functions of the meson momentum-to-mass ratio, for six sets of
the time derivatives to the rotation matrix and the other ongnodel parameters and three values of the angular momentum. Dot-
to the intrinsic field; it is oriented tangentially in the rotating t€d curves fom=0 (static soliton; dashed curves fon=1; solid
frame. The presence of this undesirable term indicates thafU"ves forn=2.
even in two dimensions, the rotating hedgehog ansatz no ) )
longer corresponds to a solution of the field equations onc&="50. The size of the effect also increases—though less
the profile function depends on time. In order to achieve fullSPectacularly—withu. By referring to the figures of Sec. I
consistency with the field equations, the restriction to radiafnd the accompanying discussion, one verifies that the rota-
fluctuations should be lifted when quantizing the mesortional effect on the phase shifts generally increases as one
field. moves in parameter space from regions in which the mean-

We present in Fig. 6 the results of phase-shift calculationdield results conform well to the “largélc™ approximation
for three values of the pion inverse Compton wavelength towards regions where they differ from it considerably.
and two values of the parameter which sets the value of It is also worth remarking that, fox/u=3, the phase
P|anck’s constant in resca'ed units_ These Va|ues were Ch§h|fts are almost unaffected by the rotation. This reflects the
sen so as to provide a fair sampling of the parameter spad@ng-range character of the rotational effect, which mostly
considered in Sec. lIl. For each set of parameters, the phasgé§etches the tail of the profile function. Finally, one may
associated with radial scattering of a meson off a soliton ifotice that, except for the largest valueiof the phase shifts
the first rotational statéanalogous to pion-nucleon scatter- 9o through=/2 in the region close ta/u~2. It is curious
ing) and in the second rotational sta@nalogous to piodx  that _the position of this resonance is little affected by the
scattering are compared to those produced by the static solifotation.
ton. The phase shifts are plotted as function i, which
is equal to the corresponding ratio of dimensional quantities
kim,_.

The influence of the rotation on the phase shifts is signifi- The Skyrme model in 21 dimensions has been used to
cant in all cases, and of course, considerably larger foinvestigate the influence of the collective rotation of a topo-
n=2 than that fom=1. The rotational effect depends quite logical soliton on its intrinsic structure.
strongly on the value of the parameter being small to mild The use of such a toy model was motivated by the fact
for =10, but reaching already dramatic proportions forthat, in 3+1 dimensions, a rotating soliton possesses cylin-

K/p K/p

V. CONCLUSIONS
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drical symmetry only and is, therefore, much more difficult  Translated into realistic hadron physics, these results sug-
to construct than the spherically symmetric static solitongest that the reliance upon “lardgé.” arguments in Skyrme
Studies that propose to describe the rotating threemodel calculations may lead to crude or even incorrect re-
dimensional Skyrmion as a spherically symmetric objectsults for physical quantities such as theA splitting, baryon
namely, a hedgehog, are flawed from the start and may leaddii, and meson-baryon scattering cross sections. They also
to misleading results. do not lend support to the hope that a “band cutoff”

On the other hand, in two-dimensional space, a solitormechanism—such as has been demonstrated in a hybrid
with circular symmetry can maintain that symmetry when sefguark-meson modglL8}— could make the unobserved high
in rotation, and more specifically, the hedgehog ansatz for apin baryon excitations unstable already at the semiclassical
rotating soliton is compatible with the field equations. Thus,level.
in that case, one may hope to draw some theoretically Of course, models defined in different numbers of spatial
sound—though not necessarily phenomenologicallydimensions may possess qualitatively different features. That
relevant—conclusions while avoiding excessive computathis is sometimes the case for Skyrme-type models is already
tional complexity. clear from the fact that the massless nonlineamodel ad-

The rotating hedgehog ansatz yields exact solutions of thenits static hedgehog solutions in two but not in three dimen-
classical field equations if the angular velocity is constansions. Thus, one should obviously refrain from abusively ex-
and the profile function describing the intrinsic structure oftrapolating from the toy model considered in this work to the
the soliton is independent of time. These solutions can beealistic model. In spite of this caveat, it is our opinion that
interpreted in the quantum field theory as describing angularthe results presented in this work strongly suggest that the
momentum eigenstates in the mean-field approximationinfluence of the collective rotation on the intrinsic structure
Even though the angular velocity of a stable rotating solitorof the Skyrmion deserves more thorough study.
cannot exceed the meson mass, there is no corresponding As has been demonstrated recenfy7], and as was as-
restriction on the angular-momentum quantum number.  sumed in the present work, the correct starting point for a

The physical properties of the first two rotational statesstudy of a quantum soliton of nonvanishing angular momen-
have been investigated over a fairly broad range of values atim is the intrinsic field configuration corresponding to a
the parameters of the model, chosen to crudely mock ugime dependent solution of the classical field equations de-
essential features of the realistic hadronic physics. The maigcribing a soliton rotating with constant angular velocity. In
purpose of this study has been to assess the validity of stamrder to construct such solutions in the three-dimensional
dard “large N¢” arguments, which are usually invoked to Skyrme model, it is necessary to generalize the hedgehog
treat the rotating soliton as an undeformable object whosansatz to a field oriented in anpriori arbitrary direction in
intrinsic structure is described by the static solution. It haghe meridian plane defined with respect to the rotation axis.
been found that, even though the rotational contribution torhe components of the field in this plane are then functions
the energy is generally rather small, the rotation mayof two variables(e.g., the distance to the rotation axis and
strongly affect the radius and the moment of inertia—andthe height above the equatorial plan&he solution of the
therefore, also the splitting between rotational levels—of thecorresponding field equations is a somewhat arduous but not
soliton. impossible computational task.

The influence of the rotation upon the soliton intrinsic ~ Only when such solutions are obtained will it be possible
mean field implies corresponding madifications of the phaseo assess by comparison the adequacy of the standard “large
shifts associated with quantum fluctuations about this meaN " approximation for the realistic Skyrme model.
field, which describe meson-baryon scattering. Although we
have not performed a complete consistent quantization, we ACKNOWLEDGMENTS
have presented an exploratory study limited to quantum fluc-
tuations of the radial profile function. Not surprisingly, we  This work was supported by the following Brazilian agen-
have found that, in those regions of parameter space whewes: Financiadora de Estudos e ProjgfeNEP), Fundaeo
the effect of the rotation on the mean field is significant, itsde Amparo aPesquisa do Estado do Rio Grande do Sul
effect on the phase shifts is also considerable, at least f{FAPERGS, and Conselho Nacional de Desenvolvimento
meson momenta less than a few times the meson mass. Cientfico e Tecnolgico (CNPQ.
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