
neiro,

PHYSICAL REVIEW D 1 JULY 1996VOLUME 54, NUMBER 1

05
Rotating Skyrmion in 211 dimensions
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The collective rotation of the Skyrmion in two-dimensional space is considered. In contradistinction to the
three-dimensional case, inertial effects do not spoil the hedgehog form and can, therefore, be investigated
consistently without great computational difficulty. The energy, the moment of inertia, and the mean radius of
the rotating soliton are calculated for a wide range of model parameters. It is found that the ‘‘frozen hedgehog’’
treatment—commonly assumed adequate in the Skyrme model on the basis of largeNC ~number of colors!
arguments—is invalid in a sizable portion of parameter space. The phase shifts associated with radial fluctua-
tions of the rotating soliton are also investigated and are found to be significantly affected by the rotation.
@S0556-2821~96!04613-9#

PACS number~s!: 12.39.Dc, 11.10.Kk, 11.15.Pg
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I. INTRODUCTION

The Skyrme model@1#, in its simplest version, is a non
linear theory of pion fields endowed with an SU~2!^ SU~2!
chiral symmetry, weakly broken by the pion mass. La
NC ~number of colors! arguments have revived it as a ca
didate for an effective theory of hadron physics at low a
intermediate energies@2#.

The description of baryon structure in this model is ba
on a static soliton solution of the field equations with u
topological charge, in which the pion-field triplet takes
the so-called hedgehog form, pointing out radially at e
point. The field strength is given by a radial profile functio
which is obtained by minimizing the energy of the sta
soliton. Baryon spin and isospin states are constructe
quantizing the collective rotations of the hedgehog. For
hedgehog, an isospin rotation is equivalent to a coordin
space rotation and consequently, the isospin is equal to
angular momentum.

In the simplest—and most usual—description, the pro
function of the rotating soliton is taken to be equal to tha
the static soliton. This approximation ignores the reaction
the soliton to the rotation and results in the quantum mec
ics of a spherical top with constant moment of inertia.
shall frequently use the phrase ‘‘frozen hedgehog’’ appr
mation to refer to this picture. The rationale for it is found
the assumption that the Skyrme model is a realization
large NC quantum chromodynamics~QCD!, which allows
the specification of theNC dependence of the model para
eters. On this basis, it is argued that the rotational contr
tion to the energy of the soliton is of orderNC

22 compared to
the static mass; therefore, rotational effects are small and
be treated to lowest order in 1/NC . One should, howeve
note thatNC does not appear explicitly in the Skyrme mod
Lagrangian. Once the parameters of the model are fixed
nomenologically, the validity of the ‘‘frozen hedgehog’’ a
proximation becomes a question to be settled within
5456-2821/96/54~1!/1010~10!/$10.00
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model itself, without relying upon its supposed relation to
QCD.

One way to take inertial effects into account is to mini-
mize the energy of the rotating hedgehog with respect t
variations of the profile function, for fixed angular momen-
tum @3,4#. However, this procedure is rather unsatisfactory
since the field equations do not admit rotating hedgehog s
lutions in 311 dimensions. This simple kinematical fact is
independent of the dynamics of the model and can be notice
by considering the application of the d’Alembertian operato
to the rotating hedgehog. One verifies easily that the resul
ing field vector will not in general be radial, although it will
be contained in the meridian plane defined with respect t
the rotation axis. Therefore, the reduction of the isovector
field equations to a single equation for the profile function
will not be possible. In physical terms, a rotating nonrigid
object is expected to acquire an oblate shape, losing th
spherical symmetry of the hedgehog. Thus, in 311 dimen-
sions, rotating solitons only possess cylindrical symmetr
and their construction requires the solution of coupled
partial-differential equations involving two field functions.
Attempts in this direction have been made in the context o
the nonlinears model@5#, but no complete solution has been
presented.

The relevance of rotating soliton solutions has recentl
been emphasized by an analysis of collective quantization
the framework of the phase-space path integral@6,7#. It has
been shown that the saddle-point condition on the effectiv
action for nonvanishing angular momentum~or isospin!
leads to a field configuration which minimizes, not the static
energy, but the energy augmented by a rotational contribu
tion. In fact, the resulting equation is identical to that satis
fied by the intrinsic field of a classical soliton rotating with
constant angular velocity. The distortion of the rotating soli-
ton away from the hedgehog shape in 311 dimensions has
also been stressed in@7#.

The present work is motivated by the elementary obse
vation that, in two-dimensional space, the meridian plan
1010 © 1996 The American Physical Society



fi
i
le

o
i
d
e
n

e
c
e
t
,
r

th
s
in
e
te
o

e
h
a
e
o
t
ie
e

fi
th
s
a

a
ti

n
.
e

c
th
a

th
t

t

y

li

l

-

-

54 1011ROTATING SKYRMION IN 211 DIMENSIONS
collapses to the radial direction and it can therefore be
pected that the rotating hedgehog ansatz reduces the
equations to a single differential equation for the pro
function, from which exact classical solutions correspond
to rotating solitons can be constructed. Thus, there is at
no a priori inconsistency in studying inertial effects in th
framework of the collective rotation of the hedgehog in tw
dimensional space. Preliminary results for rotating Skyrm
properties in 211 dimensions have already been presente
@8#. Similar calculations have also been performed by Pi
et al. @9#. The first part of the present work compleme
these analyses through a more complete mapping of the
rameter space of the model and a discussion of the lim
tions of the standard ‘‘frozen hedgehog’’ or ‘‘largeNC’’ ap-
proximation.

Inertial effects caused by the soliton rotation are also
pected to be present in the calculation of meson-soliton s
tering phase shifts. As demonstrated in@6,7#, these should b
extracted from the quantum field fluctuations about
rotation-distorted soliton instead of the static hedgehog
has been assumed in all extensive studies of meson-ba
scattering in the Skyrme model@10,11#. Although the com-
plete formulation of this problem is beyond the scope of
work, we shall perform an analysis of the phase shifts a
ciated with radial quantum fluctuations about the rotat
Skyrmion in 211 dimensions. Preliminary results have be
reported in@12#. A similar study has already been presen
in 311 dimensions@3# but, as mentioned above, the use
the hedgehog ansatz is questionable in that case.

Of course, by considering a two-dimensional toy mod
we give up the possibility of making direct contact with t
real world. In compensation, by working with a model th
admits rotating hedgehog solutions, we should be abl
draw some reliable conclusions, from which one may h
to gain at least qualitative insight on the importance of ro
tional inertial effects for the calculation of baryon propert
and meson-baryon interactions in the physical thr
dimensional Skyrme model.

This paper is organized as follows. In Sec. II, we summ
rize the relevant features of the Skyrme model in 211 di-
mensions. The differential equation satisfied by the pro
function of a classical rotating hedgehog is derived, toge
with the expressions of the associated physical quantitie

In Sec. III, we perform a partial quantization of the rot
ing hedgehog, treating the rotation angle and the pro
function as dynamical variables. The rotating mean-field
proximation then yields a quantum-mechanical interpreta
of the classical solutions introduced in Sec. II. We perform
detailed analysis of the properties of the first few rotatio
collective states, over a large range of model parameters
comparing our results to those obtained ignoring inertial
fects, we assess the limitations of standard ‘‘largeNC’’ ar-
guments, which are usually invoked to neglect such effe

In Sec. IV, we analyze the quantum fluctuations of
profile function of a rotating hedgehog, in a linearized
proximation. We extract the phase shifts associated to
scattering of a field quantum off a rotating soliton. Again,
results are compared to those obtained by taking the s
hedgehog as background field, in the usual fashion.

Section V contains our conclusions and final commen
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II. SKYRME MODEL IN 2 11 DIMENSIONS

The Skyrme model in 311 dimensions is a nonlinear re-
alization of SU~2!^ SU~2! chiral symmetry in terms of pion
fields. The chiral symmetry is weakly broken by the pion
mass. The Lagrangian density for this model is written in
terms of an SU~2! field matrixU as

L52
1

4
f p
2Tr~]mU]mU†!1

1

8
e2Tr@]mUU

†,]nUU
†#2

1
1

2
mp
2 f p

2 ~TrU22!, ~1!

wheref p is the pion decay constant,e is a phenomenological
coupling constant andmp is the pion mass. The constants
f p ande have dimensions@ f p#5L21 and @e#5L0, respec-
tively.

As SU~2! ^ SU~2! ;O~4!, the Lagrangian density can
also be written as an invariant function of a unitary four-
vector in field space,F[$F0 ,FW %, with

F•F51. ~2!

This is implemented by inserting in the Lagrangian densit
~1! the following parametrization ofU:

U5F01 i tW•FW , ~3!

where tW is a three-vector whose components are the Pau
matrices. This leads to

L5
1

2
f p
2 ]mF•]mF1

1

2
e2@]mF•]nF]mF•]nF

2~]mF•]mF!2#1mp
2 f p

2 ~F021!. ~4!

Since, for localized configurations, the field must tend to
its vacuum value at large distance,$F0 ,FW %→$1,0W %, solitons
correspond to mappings of the compactified geometrica
spaceSS

3 onto the field manifoldSF
3 .

An analogous model in 211 dimensions is obtained by
considering the Lagrangian density as an O~3!-invariant
function of a unitary three-vector in field space,
F[$F0 ,FW %, whereFW is now a two-component vector and
F again satisfies the constraint~2!. Solitons are now
SS
2→SF

2 mappings. In this two-dimensional model, the con-
stants fp and e are easily seen to have dimensions
@ f p#5L21/2, @e#5L1/2. Although we are now dealing with a
toy model, we shall continue to refer toF as the pion field
and tomp as the pion mass.

It is convenient to make the space-time variables adimen
sional by rescaling them byf p /e. Rescaling the pion Comp-
ton wavelength in the same way, we introduce the adimen
sional parameterm5emp / f p . The Lagrangian density is
correspondingly rescaled by a factore2/ f p

4 and then takes the
form

Ladim5
1

2
]mF•]mF1

1

2
@]mF•]nF]mF•]nF

2~]mF•]mF!2#1m2~F021!. ~5!
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From here on, we shall use adimensional variables and w
with the Lagrangian density~5!.

The field equations are

]m]mF12~]nF•]m]mF]nF1]nF•]mF]m]nF

2]nF•]nF]m]mF2]nF•]m]nF]mF!

1lF2m2e050, ~6!

wheree0 is a unit three-vector in field space:e0[$1,0W %. The
Lagrange multiplierl, introduced to enforce the constrain
~2!, is given by

l5]mF•]mF12@]nF•]mF]nF•]mF

2~]mF•]mF!2#1m2F0 . ~7!

The energy-momentum tensor is easily constructed. Fr
it, one derives the expressions for the energy,

E5
1

2E d2x@~Ḟ•Ḟ1] iF•] iF!~11] jF•] jF!

22Ḟ•] iFḞ•] iF2] iF•] jF] iF•] jF12m2~1-F0!#,

~8!

and the angular momentum,

J5Ei j E d2xxi@] jF•Ḟ~112]kF•]kF!

22] jF•]kFḞ•]kF#. ~9!

Since the vacuum configuration isFvac[$1,0W %, the origi-
nal O~3! symmetry of Eq.~5! is broken to the U~1! symmetry
corresponding to rotations of theFW field. The associated
charge, i.e., the isospin, is

T5E d2x@~112] iF•] iF!FẆ 3FW 22Ḟ•] iF] iFW 3FW #.

~10!

The mappingsSS
2→SF

2 are characterized by the topolog
cal charge

B5E d2xb05
1

8p
Ei j E d2xF•~] iF3] jF!. ~11!

We shall use as a measure of the soliton size the rms ra
R of the topological charge distribution, defined as

R25E d2xr2b0. ~12!

On the basis of the arguments presented in the Introd
tion, the two-dimensional model, in contrast with the thre
dimensional one, is expected to possess exact time depen
classical solutions corresponding to the rigid rotation o
hedgehog, i.e.,

F i~xW ,t !5Ri j @w~ t !#
xj

r
sinf ~r !, F0~xW ,t !5cosf ~r !,

~13!
ork

t
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-
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whereRi j @w(t)# denotes the 232 orthogonal matrix which
operates a rotation by the anglew(t). Indeed, the substitution
of this ansatz in the field equations~6! reduces these consis-
tently to a single differential equation for the profile function
f (r ), if the angular velocityv5ẇ is assumed to be constant.
This equation reads

r 2f 91r f 81~12v2r 2!@sin2f ~ f 822 1
2 !12sin2f f 9#22~1

1v2r 2!sin2f
f 8

r
2m2r 2sinf50 . ~14!

For a soliton of unit topological charge~11!, the boundary
conditions

f ~0!5p, f ~`!50 ~15!

must be satisfied.
The solutions of Eqs.~14! and ~15! have been obtained

for one value of the parameterm in @9#. A more complete
study will be presented in the next section.

The physical quantities associated with the classical rota
ing hedgehog can easily be obtained by substituting Eq.~13!
in the expressions~8!–~12!. For the angular momentum, one
gets, from Eqs.~13! and ~9!,

J5vI @ f #, ~16!

where the moment of inertiaI @ f # is

I @ f #52pE
0

`

drrsin2f ~112 f 82!. ~17!

As expected for the hedgehog, an identical expression is o
tained for the isospin, by substituting Eq.~13! into Eq. ~10!.

The energy of the rotating hedgehog, obtained by inser
ing Eq. ~13! in Eq. ~8!, is

E5M @ f #1
1

2
v2I @ f #, ~18!

with

M @ f #5pE
0

`

drr @ f 821r22sin2f ~112 f 82!

12m2~12cosf !#, ~19!

a quantity that we shall refer to as the intrinsic mass of th
rotating soliton.

Finally, for the hedgehog~13!, the rms topological charge
radius~12! is given by

R252
1

2E0
`

drr 2sinf f 8. ~20!

For completeness and posterior use, we list below th
expressions of the dimensional physical quantities in term
of the adimensional ones. In addition to already-define
quantities, we record the scaling of the action, denoted b
S. The dimensional angular velocity isV. In the case of
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54 1013ROTATING SKYRMION IN 211 DIMENSIONS
quantities denoted by roman upper-case letters, the c
sponding script letter is used to represent the dimensi
quantity:

S5e f pS, M5 f p
2M , E5 f p

2E,

V5 f pv/e, J5e f pJ, I5e2I ,

mp5 f pm/e, R5eR/ f p . ~21!

We remark that, since we started out with natural units s
that \51, and rescaled the action by the fac
(e f p)

21[a, the quantum of action in our new units isa, a
number which depends on the parameters of the origina
mensional model. Correspondingly, the mass of the pio
no longer equal to its inverse Compton wavelength. The
mensional inverse Compton wavelength ism and the adi-
mensional mass isam.

III. ROTATING HEDGEHOG IN THE MEAN-FIELD
APPROXIMATION

The relevance, for the quantum field theory, of the cla
cal solutions introduced in the previous section can be es
lished by performing a partial quantization of the hedgeh
in which the rotation angle and the profile function a
treated as dynamical variables.

Introducing in Eq.~5! the ansatz~13!, with the rotation
angle w(t) and the profile functionf (r ,t) considered as
functions of time, and integrating over space, we get
Lagrangian

L5E
0

`

drr~ f !
ḟ 2

2
1I @ f #

ẇ2

2
2M @ f #, ~22!

where

r~ f !52p~r12r21sin2f !. ~23!

The conjugate momenta are

J5
]L

]ẇ
5I @ f #ẇ ~24!

and

p5
dL

d ḟ
5r~ f ! ḟ . ~25!

The corresponding Hamiltonian is, therefore,

H5E
0

`

drp ḟ1Jẇ2L5E
0

`

dr
p2

2r~ f !
1

J2

2I @ f #
1M @ f #.

~26!

When we go over to quantum mechanics, ordering probl
appear in Eq.~26!, but it can be easily verified that they m
be ignored at the levels of approximation used in this wo

Since the angle variablew does not appear in the Ham
tonian ~26!, the angular momentumJ is conserved. The en
ergy eigenstates may therefore be classified according t
eigenvalues ofJ, which, following the standard quantizatio
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of angular momentum in two dimensions, are given byn\,
with n integer. As already mentioned, the quantum of act
is \5(e f p)

21[a in our rescaled units.
The dynamics of the profile function may then be stud

within a sector of givenJ. In keeping with the usual pictur
of solitons as semiclassical objects, it is natural to replace
first approximation, the quantum fieldf (r ,t) by its expecta-
tion value f̄ (r ), assumed to be time independent, so that
corresponding mean-field momentump̄(r ) vanishes. The
equation of motion forp(r ,t) then reduces to the conditio
that the mean-field energy,

Ē5M @ f̄ #1
J2

2I @ f̄ #
, ~27!

be stationary with respect to variations off̄ . This leads to the
differential equation~14! for f̄ , with

v5J/I @ f̄ #. ~28!

For a soliton of unit topological charge, the boundary con
tions ~15! should be satisfied. We shall denote byf̄v ~or also
by f̄ J) the corresponding solution, indicating that it depen
parametrically onv ~or equivalently onJ).

It is easily verified that, at large distance, the solution
Eq. ~14! tends to a modified Bessel function:

f̄v~r ! ;
r→`

CK1~Am22v2r !;
C8

Ar
exp~2Am22v2r !,

~29!

so that localized solutions exist only forv,m. Thus, the
pion-mass term is necessary to ensure the stability of
rotating soliton@13,14#. We note that, even though the no
linear O~3! s model, which corresponds to the first term
Eq. ~5! only, possesses static localized solutions in 211 di-
mensions, the Skyrme term becomes necessary to preve
collapse of the soliton, once the pion-mass term is in
duced. Indeed, from Eq.~5! one sees easily that, under t
scale changexW→lxW , the contribution to the soliton mas
from the first term is invariant, while the contribution fro
the pion-mass term scales asl2. Therefore, the soliton col
lapses tol50. This situation is remedied by the contributi
from the Skyrme term, which scales asl22.

The calculation of the properties of a rotating soliton
angular momentumJ5n\ requires the solution of Eq.~14!,
with v determined self-consistently using Eq.~28!. Once the
profile function f̄ J is determined, the intrinsic massM̄ J , the
moment of inertiaĪ J , the energy~or total mass! ĒJ , and the
radius R̄J can be computed from Eqs.~19!, ~17!, ~27!, and
~20!, respectively ~here and below, we use the notati
M @ f̄ #[M̄ , etc.!. In addition to the value of the angula
momentum quantum numbern, two adimensional param
eters are input to such calculations: the pion inverse Co
ton wavelengthm and the combinationa5(e f p)

21 which
fixes the value of\.

We shall present and discuss below results forn51 and
n52, mapping a fairly wide domain of values ofm anda.
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Our main motivation is to assess the validity of the stand
treatment of rotational excitations, which usesf̄ J50 to calcu-
late M̄ , Ī , andR̄.

Although we are dealing with a two-dimensional mode
our choice of parameter ranges will be guided by the requ
ment that the size and mass of the static soliton crud
match the physics of nonstrange hadrons. We note first t
according to Eq.~21!,mpR5mR. It is, therefore, reasonable
to restrictm to values such that the productmR̄0 be roughly
equal to the ratio of the nucleon size to the pion Comp
wavelength, i.e.,.0.5. In fact, somewhat smaller values fo
mR̄0 might be more adequate since the nucleon radius
be larger thanR̄0 , because of the swelling due to the rot
tion. We find that the value ofmR̄0 varies slowly from 0.1 to
0.5 asm varies from 0.001 to 0.1. We, therefore, choose
restrict our numerical study to this range of values ofm.
Similarly, in order to limit the range of values ofa, we note
that from Eq.~21!, we haveM/mp5 f peM /m. This sug-
gests choosinga such thata21M̄0 /m be roughly equal to
the ratio of the nucleon mass to the pion mass, i.e.,.7. For
m.0.1 this gives a.20. Somewhat smaller values o
a21M̄0 /m, and therefore larger values ofa, could be more
appropriate sinceM̄0 is smaller than the physical nucleo
mass, which includes a rotational contribution. Smaller v
ues ofm also lead to larger values ofa. We shall present
results for values ofa running up to 50.

Since we are primarily interested in evaluating the relat
importance of inertial effects, we shall present our results
the form of ratios. We begin by comparing the rotation
energy to the static soliton mass. In order for the stand
‘‘large NC’’ arguments to hold, this should be small~of order
NC

22). A contour plot of the quantity (ĒJ2M̄0)/M̄0 is
shown in Fig. 1. It is seen that, over the parameter dom
under consideration, this ratio does not exceed 20% for
first rotational excitation and 40% for the second one.

It is often argued that, since the rotational contribution
the energy is small, the dynamics of the soliton is little a
fected by the rotation and, in particular, the rotational ene
itself can be computed using the moment of inertia of t
static soliton. This is the standard ‘‘frozen hedgehog’’ p
ture, in which the total energy of the rotating soliton is tak
as ĒJ

F5M̄01J2/(2Ī 0). The accuracy of this approximatio
can be gauged by comparing the rotational energy deri
from it to that obtained from the exact solution of the fie
equations. The relative difference between these rotatio
energies is given by the quantity (ĒJ

F2ĒJ)/(ĒJ
F2M̄0), for

which a contour plot is given in Fig. 2. One sees that t
‘‘frozen’’ treatment is good to 40% or less for the first rota
tional state, but already can lead to an error of more th
60% for the second one.

In fact, inertial effects are even more drastic than the
results suggest. This is because, in the total energyĒJ , the
intrinsic mass partM̄J and the rotational kinetic par
J2/(2Ī J) are affected in opposite directions, since bothM̄ J

andĪ J are increased. This can be seen in Figs. 3 and 4, wh
show contour plots of the quantities (M̄ J2M̄0)/M̄0 and
( Ī J2 Ī 0)/ Ī 0 , respectively. The inertial effect onM̄ is rather
small, no more than 5% forn51 and up to 20% forn52.
This is not surprising since this quantity reaches a minim
rd
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for the static profile function. Note, however, that the corr
sponding effect on the rotational contribution to the energy
significant, because the mass is much larger than the ro
tional kinetic energy. The moment of inertia is, on the co
trary, quite strongly affected by the rotation, the inertia
modification already reaching over 100% forn51.

FIG. 1. Contour plot of the relative contribution of the rotatio
to the soliton energy, (ĒJ2M̄0)/M̄0 , as a function of the model
parameters, for the first two rotational states. Dashed curves
n51; solid curves forn52.

FIG. 2. Contour plot of the relative error made in the ‘‘froze
hedgehog’’ approximation to the rotational energy
(ĒJ

F2ĒJ)/(ĒJ
F2M̄0), as a function of the model parameters, fo

the first two rotational states. Dashed curves forn51; solid curves
for n52.
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54 1015ROTATING SKYRMION IN 211 DIMENSIONS
The severe increase in the moment of inertia caused
the rotation is indicative of a significant swelling of the so
ton. This is confirmed by calculations of the rms radius~20!.
The contour plot of Fig. 5, for the quantity (R̄J2R̄0)/R̄0 ,
shows that the radii of the first and second rotational sta
can be, respectively, up to 50% and 100% larger than tha
the static ground state.

FIG. 3. Contour plot of the relative difference between the
trinsic masses of rotating and static solitons, (M̄ J2M̄0)/M̄0 , as a
function of the model parameters, for the first two rotational sta
Dashed curves forn51; solid curves forn52.

FIG. 4. Contour plot of the relative difference between the m
ments of inertia of rotating and static solitons, (Ī J2 Ī 0)/ Ī 0 , as a
function of the model parameters, for the first two rotational sta
Dashed curves forn51; solid curves forn52.
by
i-

tes
t of

To close this section, we remark that, although the angu
lar velocityv of a stable rotating soliton is limited to values
less than the pion inverse Compton wavelengthm, there is
no limit to the angular momentum such a soliton can carry
This is because the moment of inertia becomes arbitraril
large asv tends tom. It has been shown@9# that in this limit
the soliton energy approaches a linearly increasing functio
of the angular momentum.

IV. RADIAL FLUCTUATIONS OF THE PROFILE
FUNCTION

Meson-baryon scattering phase shifts in the Skyrm
model can be extracted from the quantum fluctuations abo
the mean field. As has been emphasized recently@6,7#, the
rotation-modified mean field should, in principle, be used a
zeroth-order approximation, while all extensive studies so fa
performed have relied on the ‘‘frozen’’ approximation.

Although we do not intend to perform a full calculation of
meson-soliton scattering in the two-dimensional model, w
shall investigate the effect of the rotation on the phase shif
associated with the radial field modes. This can be done
the framework of the Hamiltonian~26!, by quantizing the
small-amplitude oscillations of the profile function, within a
sector of given angular momentumJ. We let

f ~r ,t !5 f̄ ~r !1h~r ,t ! ~30!

and expand the Hamiltonian~26! to second order in the fluc-
tuationh. We get

n-

es.

o-

es.

FIG. 5. Contour plot of the relative difference between the rms
topological charge radii of rotating and static solitons,
(R̄J2R̄0)/R̄0 , as a function of the model parameters, for the first
two rotational states. Dashed curves forn51; solid curves for
n52.
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H5Ē1
1

2E dr
p2

r̄
1
1

2E drE dr8F d2M̄

d f̄ ~r !d f̄ ~r 8!

2
J2

2Ī 2
d2Ī

d f̄ ~r !d f̄ ~r 8!
1
J2

Ī 3
d Ī

d f̄ ~r !

d Ī

d f̄ ~r 8!
G

3h~r ,t !h~r 8,t !, ~31!

wherer̄5r( f̄ ). We note that this procedure differs from th
one used in available studies of radial fluctuations in
three-dimensional model@15,16# by the fact that we are ex
panding about the profile functionf̄ J of the rotating soliton,
instead of about the profile functionf̄ 0 of the static soliton.
Carrying out the functional derivatives, using the expressi
of M̄ and Ī given by Eqs.~19! and~17! with f[ f̄ , we obtain

H5Ē1
1

2E0
`

drF p2
r̄

1Ūh821V̄h2G1
1

2 F E
0

`

drW̄hG 2,
~32!

where

Ū52pF r1
2

r
~12v2r 2!sin2 f̄ G , ~33!

V̄52pF1r ~12v2r 2!~122 f̄ 82!cos2f̄

12~11v2r 2!
f̄ 8

r 2
sin2f̄

22~12v2r 2!
f̄ 9

r
sin2f̄1m2rcosf̄ G , ~34!

W̄52p
vr

AĪ F4S f̄ 8r 1 f̄ 9D sin2 f̄1~2 f̄ 8221!sin2f̄ G . ~35!

We stress that these functions ofr depend parametrically on
v — or more properly onJ — both through the explicit
appearance ofv in their expressions and through the pa
metric dependence of the profile functionf̄ on v.

The Hamiltonian~32! implies the following equation for
the fluctuation fieldh(r ,t):

r̄ ḧ2Ū8h82Ūh91V̄h1W̄E
0

`

dr8W̄h50. ~36!

The somewhat unusual integral term in this equation or
nates from the last term in the brackets of Eq.~31!.

The field h(r ,t) may be expanded in terms of creatio
and annihilation operators, in the form

h~r ,t !5(
k

E 1

A2Ek

@ck~r !ake
2 iEkt/a1ck* ~r !ak

†eiEkt/a#,

~37!

where the denominators in the time-dependent phases ap
because, in our adimensional units, the Planck constan
(e f p)

21[a. Substituting this expansion in the field equ
e
he

ns

a-

gi-

n

pear
t is
-

tion ~36!, one obtains the following integro-differential ei-
genvalue equation to be satisfied by the modesck(r ):

2
d

dr F Ū~r !
d

dr
ck~r !G1V̄~r !ck~r !

1W̄~r !E
0

`

dr8W̄~r 8!ck~r 8!5
Ek
2

a2 r̄~r !ck~r !.

~38!

Since the boundary conditions~15! are satisfied byf (r ,t) as
well as by f̄ (r ), the functionsck(r ) must vanish at the ori-
gin and at infinity.

Given the asymptotic behavior~29! of the profile function
f̄ , the functions appearing in Eq.~38! are easily seen from
Eq. ~23! and Eqs.~33!–~35! to approach exponentially the
following forms asr increases:

r̄~r !;Ū~r !;2pr , V̄~r !;2pF1r 1~m22v2!r G ,
W̄~r !;0. ~39!

Then Eq.~38! reduces to

r 2
d2

dr2
ck1r

d

dr
ck1F r 2SEk

2

a2 2m21v2D 21Gck50.

~40!

The solutions of this equation are the Bessel functions of t
first kind J1(kr ) andY1(kr ), with the ~adimensional! wave
number related to the energyEk by

k5AEk
2

a2 2m21v2. ~41!

Therefore, at large distance (Am22v2r@1), the regular so-
lution of Eq. ~38! takes the form

ck~r !;cosd~k!J1~kr !1sind~k!Y1~kr !, ~42!

where d(k) is the phase shift, which can be extracted i
standard fashion by integrating Eq.~38! numerically, with
the boundary conditionck(0)50, out to a sufficiently large
radius and matching the solution to the form~42!.

The unusual dispersion relation~41! might lead one to
conclude that the pion mass is renormalized by the rotati
@17#, in such a way thataAm22v2 would be the physical
pion mass in the presence of a soliton rotating with angu
velocity v. In order to settle this issue, we study the pio
field at large distance in the fixed frame, for a mode of wav
numberk. Since the mean profile function vanishes expo
nentially and the fluctuation is small by assumption, it fo
lows from Eqs.~13!, ~30!, and~37! that

F i~xW ,t !;Ri j ~ t !
xj

r
ck~r !ake

2 iEkt/a1c.c., ~43!

where an irrelevant normalization factor has been droppe
The d’Alembertian of this expression is easily calculated; th
piece involving time derivatives is
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] t
2F i;2v2F i2

Ek
2

a2 F i1•••, ~44!

where only those terms that will contribute to the mass ha
been displayed. The Laplacian of the field can be seen, w
the help of Eq.~40!, to take the form

¹W 2F i;S m22v22
Ek
2

a2DF i . ~45!

Collecting these results, one gets

]n]nF i;2m2F i1•••. ~46!

Thus, the correct pion-mass term appears in the Kle
Gordon equation for the asymptotic field, without renorm
ization. The above calculation shows that this result follo
from the cancellation of thev2 term in the dispersion rela
tion ~41!, valid in the rotating frame, by the term arisin
from the second derivative of the rotation matrix, so that t
pion energy in the fixed frameEk, f is given by the dispersion
relation

Ek, f5aAm21k2. ~47!

We note that the dimensional wave numberk is related to the
adimensional onek through k5ek/ f p , so that, since
a5(e f p)

21, the above relation impliesEk, f5Amp
21k2/

f p
25Ek, f / f p

2 , where Ek, f is the dimensional pion energy
Comparing this with Eq.~21!, one checks that meson an
soliton energies scale in the same way, as they should.

Before turning to the discussion of numerical results
brief comment about the term represented by the ellipse
Eq. ~44! is in order. This term arises from applying one
the time derivatives to the rotation matrix and the other o
to the intrinsic field; it is oriented tangentially in the rotatin
frame. The presence of this undesirable term indicates t
even in two dimensions, the rotating hedgehog ansatz
longer corresponds to a solution of the field equations o
the profile function depends on time. In order to achieve f
consistency with the field equations, the restriction to rad
fluctuations should be lifted when quantizing the mes
field.

We present in Fig. 6 the results of phase-shift calculatio
for three values of the pion inverse Compton wavelengthm
and two values of the parametera, which sets the value of
Planck’s constant in rescaled units. These values were
sen so as to provide a fair sampling of the parameter sp
considered in Sec. III. For each set of parameters, the ph
associated with radial scattering of a meson off a soliton
the first rotational state~analogous to pion-nucleon scatte
ing! and in the second rotational state~analogous to pion-D
scattering! are compared to those produced by the static s
ton. The phase shifts are plotted as functions ofk/m, which
is equal to the corresponding ratio of dimensional quantit
k/mp .

The influence of the rotation on the phase shifts is sign
cant in all cases, and of course, considerably larger
n52 than that forn51. The rotational effect depends quit
strongly on the value of the parametera, being small to mild
for a510, but reaching already dramatic proportions f
ve
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a550. The size of the effect also increases—though les
spectacularly—withm. By referring to the figures of Sec. III
and the accompanying discussion, one verifies that the rot
tional effect on the phase shifts generally increases as o
moves in parameter space from regions in which the mea
field results conform well to the ‘‘largeNC’’ approximation
towards regions where they differ from it considerably.

It is also worth remarking that, fork/m*3, the phase
shifts are almost unaffected by the rotation. This reflects th
long-range character of the rotational effect, which mostl
stretches the tail of the profile function. Finally, one may
notice that, except for the largest value ofm, the phase shifts
go throughp/2 in the region close tok/m;2. It is curious
that the position of this resonance is little affected by the
rotation.

V. CONCLUSIONS

The Skyrme model in 211 dimensions has been used to
investigate the influence of the collective rotation of a topo
logical soliton on its intrinsic structure.

The use of such a toy model was motivated by the fac
that, in 311 dimensions, a rotating soliton possesses cylin

FIG. 6. Meson-soliton phase shifts from radial fluctuations, a
functions of the meson momentum-to-mass ratio, for six sets o
model parameters and three values of the angular momentum. D
ted curves forn50 ~static soliton!; dashed curves forn51; solid
curves forn52.
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drical symmetry only and is, therefore, much more difficu
to construct than the spherically symmetric static solito
Studies that propose to describe the rotating thr
dimensional Skyrmion as a spherically symmetric obje
namely, a hedgehog, are flawed from the start and may
to misleading results.

On the other hand, in two-dimensional space, a soli
with circular symmetry can maintain that symmetry when
in rotation, and more specifically, the hedgehog ansatz fo
rotating soliton is compatible with the field equations. Thu
in that case, one may hope to draw some theoretic
sound—though not necessarily phenomenologica
relevant—conclusions while avoiding excessive compu
tional complexity.

The rotating hedgehog ansatz yields exact solutions of
classical field equations if the angular velocity is consta
and the profile function describing the intrinsic structure
the soliton is independent of time. These solutions can
interpreted in the quantum field theory as describing angu
momentum eigenstates in the mean-field approximat
Even though the angular velocity of a stable rotating solit
cannot exceed the meson mass, there is no correspon
restriction on the angular-momentum quantum number.

The physical properties of the first two rotational stat
have been investigated over a fairly broad range of value
the parameters of the model, chosen to crudely mock
essential features of the realistic hadronic physics. The m
purpose of this study has been to assess the validity of s
dard ‘‘largeNC’’ arguments, which are usually invoked t
treat the rotating soliton as an undeformable object wh
intrinsic structure is described by the static solution. It h
been found that, even though the rotational contribution
the energy is generally rather small, the rotation m
strongly affect the radius and the moment of inertia—an
therefore, also the splitting between rotational levels—of
soliton.

The influence of the rotation upon the soliton intrins
mean field implies corresponding modifications of the pha
shifts associated with quantum fluctuations about this m
field, which describe meson-baryon scattering. Although
have not performed a complete consistent quantization,
have presented an exploratory study limited to quantum fl
tuations of the radial profile function. Not surprisingly, w
have found that, in those regions of parameter space w
the effect of the rotation on the mean field is significant,
effect on the phase shifts is also considerable, at least
meson momenta less than a few times the meson mass.
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Translated into realistic hadron physics, these results su
gest that the reliance upon ‘‘largeNC’’ arguments in Skyrme
model calculations may lead to crude or even incorrect r
sults for physical quantities such as theN-D splitting, baryon
radii, and meson-baryon scattering cross sections. They a
do not lend support to the hope that a ‘‘band cutoff’
mechanism—such as has been demonstrated in a hyb
quark-meson model@18#— could make the unobserved high
spin baryon excitations unstable already at the semiclassi
level.

Of course, models defined in different numbers of spati
dimensions may possess qualitatively different features. Th
this is sometimes the case for Skyrme-type models is alrea
clear from the fact that the massless nonlinears model ad-
mits static hedgehog solutions in two but not in three dimen
sions. Thus, one should obviously refrain from abusively ex
trapolating from the toy model considered in this work to th
realistic model. In spite of this caveat, it is our opinion tha
the results presented in this work strongly suggest that t
influence of the collective rotation on the intrinsic structur
of the Skyrmion deserves more thorough study.

As has been demonstrated recently@6,7#, and as was as-
sumed in the present work, the correct starting point for
study of a quantum soliton of nonvanishing angular mome
tum is the intrinsic field configuration corresponding to a
time dependent solution of the classical field equations d
scribing a soliton rotating with constant angular velocity. In
order to construct such solutions in the three-dimension
Skyrme model, it is necessary to generalize the hedgeh
ansatz to a field oriented in ana priori arbitrary direction in
the meridian plane defined with respect to the rotation axi
The components of the field in this plane are then function
of two variables~e.g., the distance to the rotation axis and
the height above the equatorial plane!. The solution of the
corresponding field equations is a somewhat arduous but n
impossible computational task.

Only when such solutions are obtained will it be possibl
to assess by comparison the adequacy of the standard ‘‘la
NC’’ approximation for the realistic Skyrme model.
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