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The one-loop contributions to the meson propagator and to the meson-soliton scattering amplitude in the
one-soliton sector are analyzed using ordinary Feynman rules. It is found that, at the level of the

propagator, the most severe infrared divergences cancel out while others remain. The structure of the
remaining divergences is studied. We conclude that, among other things, the coefficient function of the
leading divergence only depends upon the classical soliton solution. An extended Lehmann-Symanzik-

Ziminerman reduction technique, to work in the one-soliton sector, is proposed. Then, it is shown thht,

under certain mathematical assumptions, the above-mentioned S-matrix element turns out to be free of zero-
mode singularities.

I. INTRODUCTION

As is well known, the computation of quantum
corrections to properties of exterided objects using
the covariant functional approach faces a difficulty
called the "zero-mode problem. " One can avoid
this difficulty by introducing collective coordi-
nates, ' which of course implies a modification of
the ordinary Feynman rules.

However, Faddeev and Korepin' have explicitly
computed the one- and two-loop contributions to
the soliton self-energy using ordinary'(manifestly
covariant) Feynman rules, and they have found

that, in this particular S-matrix element, all zero-
mode singularities cancel out. An extension of this
result to all orders of the loop expansion has been
carried out by Matveev. '

Nevertheless, the proposal of Faddeev and
Korepin' for dealing with the troublesome infrared-
divergent part of the propagator has been criticized
by Jevicki on the basis that it is ambiguous.
Jevicki has carried out a consistent elimiriation of
the zero-(node problem from the outset. The price
to be paid for this advantage is that, besides the
ordinary vertices coming from the action, there
appears an additional set of vertices. This of
course gives rise to a more complicated set of
Feynman rules. The remarkable fact is that for
the. one- and two-loop contributions to the soliton
self-energy, Z, and Z„respectively, one obtains
the same result using either the Feynman rules de-
rived by Jevicki' or those proposed by Faddeev and
Korepin. ' In the first case one. talks about n inde-
pendence (n is a parameter related to the "amount"
of translational symmetry breaking that is put into,

' the theory in Jevicki's approach') of Z, and Z„
while in the second case one states that all zero-
mode singularities cancel out in Zy and Z2. No
proof has yet been presented concerning the equiva-
lence'of both covariant approaches as far as the

contributions containing more than two closed
loops are concerned. '

All computations we have mentioned so far refer
to S-matrix elements, but no investigation has been
carried out in order to see if a cancellation of zero-
mode singularities (or of n-dependent terms) can
also occur at the level of the Green's functions of
the theory. This is precisely the first purpose of
the present paper.

In Sec. II we compute the' meson propagator in the
one-soliton sector for a theory involving a real
scalar field in a two-dimensional space-time. We
shall always use the Feynman rules proposed by
Faddeev and Korepin, ' but, since our calculations
only involve one-loop corrections, it is easy to go
from our results to the analogous ones which are
obtained by using the approach of Jevicki. It is
shown in this section that the most severe zero-
mode divergences cancel out while others remain.
The remaining singular terms are properly iso-
lated from the regular ones, and their structure
is studied. Our results are analyzed in the light
of the conclusions of Ref. 3.

According to the proof supplied by Matveev in
Ref. 3, which holds on general grounds, the S-ma-
trix element associated with the Green's function
that we found in Sec. II must be free of zero-mode
singularities. One could of course use the proced-
ure of Matveev' in order to check that, in particu-
lar, the meson-soliton scattering amplitude is free
of infrared divergences. However, we have found

it interesting to exhibit explicitly the mechanism
through which the zero-mode divergences, which
remain at the level of the connected two-point me-
son Green's function, vanish when the correspond-
ing S-matrix element is computed.

To our knowledge, a, formalism relating con-
-nected Green's functions and their corresponding
S-matrix elements has not yet been developed for
the one-soliton sector. In Sec. III we propose an
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extension, to the one-soliton sector, of the usual
(vacuum sector) Lehmann-Symanzik- Zimmerman
(LSZ)' reduction technique, which does the job.
Then the process of elimination of infrared diver-
gences arising when going from the Green's func-
tion to its corresponding S-matrix element can be
properly studied.

Exhibiting the above-mentioned process, pro-
posing a workable reduction formula for the one
soliton-sector, and stating, with some precision,
the mathematical assumptions under which an S-
matrix element free of zero-mode singularities
arises are the remaining purposes of the present
work.

The relevant points are discussed throughout the
paper.

II. THE MESON PROPAGATOR

IN THE ONE-SOI. ITON SECTOR

Our physical system is a two-dimensional scalar
field theory described by the Lagrangia'n density

(2.1)

Here P is a real scalar field and 'tt(P) is a, .Hermi-
tian potential bounded from below. As usual, re-
peated Greek indices sum from 0 to 1 and our
metric tensor g„, is diagonal:

= cq, (r)q, (r')+ a, (~, r; ~', r'), (2.2)

where c is a divergent constant and 6o is given by

goo= gxx =+ 1, gjlv=0 1f P. W V

Let P, (x, a) be a confined (solitonlike) solution to
the classical equations of motion which follow from
(2.1). We denote by a the coordinate of the center
of mass of the soliton. For simplicity we shall as-
sume that the field configuration P, is static. In
fact, it is trivial to repeat the entire derivation
which we shall present in this section for a time-
dependent solution.

When the theory is quantized around the classical
solution P„one arrives, aside from numerical
coefficients, at the following set of Feynman rules
governing the loop expansion of the generating
functional of connected Green's functions:

(a) A factor h(x, x') for each line joining the ver-
tices x and x'.

(b) A factor &~"'(x) = s"'lt(p)/sp" ~& & for each n-
line vertex at x.

(c) One is to integrate over all vertex coordi-
nates.

The proposal of Faddeev and Korepin' for dealing
with the troublesome infrared divergence appear-
ing in a is [x=—(7, r)] i

n(x, x') = ~(~, r; ~', r ')

a, (~, r; r ', r') = =,'
~
7 7'~ q.(r)—q, (r')—

C

,),&, exp[-i(K'+ p')"'I ~ —~'
I 1y,(r) )E*(r')' (2.3)

82
Ii(r) = —,+%.~'(r), (2.4)

must necessarily have a bound-state eigenfunc-
tion with zero eigenvalue. This eigenfunction is
g, (r) = Bp,(x; a)/sa Therefo. re,

I

h(r)g, (r) =0 . (2.5)

The operator h could well have other bound
states, sometimes known as excited states of the
soliton, ' but we assume, as Faddeev and Korepin'
do, that rio other bound states are present. This
is of course the case of the sine-Gordon model.
Furthermore, h has a coritinuum spectrum with
eigenfunctions gx(r), i.e. ,

5(r)q (r) =(Z'+u')0 (r) (2.6)

where p, is the mesori mass, K runs from -~ to
+ ~, and the solutions gx(r) are interpreted as me-

From the fact that the Lagrangian density (2.1)
is translationally invariant (the potential %t does
not depend explicitly on x) while the classical solu-
tion p, (x; a) is not, it follows that the operator
F (r),

son-soliton scattering states. '
All quantities appearing in Eqs. (2.2) and (2.3)

have already been defined. We note that from Eqs.
(2.2) and (2.3) it follows that h(x, x') is a sym-
metric, although not a translationally invariant,
function of its arguments.

As a final comment concerning the Feynman
rules proposed in Ref. 2, we would like to remark
that &„given in (2.3), is a Green's function of the
operator

e(x, x') = [- „-&&'&(x)]d'&(x- x')

8 , —h(r) 5(r —7') 6(r r') . (2.7)-
87

Obviously, b, is the resolvent (H+ie) ' whichbe-
comes singular as e -0.

We turn next to the computation of the meson
propagator G(x, x') in the one-soliton sector re-
taining only up to one-loop corrections. By defi-
nition /

5'Z[@]
G(x, x') =-s

( ) ( )
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I

where Z[Z] is the generating functional of connected Green's functions of the quantum theory
and J'is an external source for the field (f). The zero- and one-loop contributions to G(x, x') are,
respectively,

G,(x, x') =i~(x, x'),

G(x, x')=-l d'y d'y'd(xy)yd"(y)d'(y, y')ydy(y')X(y', x') f d yd'(xy) y"l(
y) d(y, y) X(y, x)

)

(2.8)

+ dy dy'axy &~ ~
y ay, y'W& ~ y'ay', y'ay, x'. (2.9)

The idea now is to study the c dependence of G, and G„which is obtained by substituting (2.2) into (2.8)
and (2.9). After some algebraic rearrangements we get

G,(x, x') = fey. (x)q.(x')+ i~, (x, x'),
-2G, (x, x') =A, (x, x')c'+A, (x, x')c'+A, (x, x')c'+A, (x, x')c —2G,"(x,x') .

(2.10)

(2.11)

d'y &"(y)({,'(y) =o, {2.12)

d'y'll '
(y)d, (y)+Sf d'y 'll' (y)d (y) d„(y)=D,

(2.13)

derived by Faddeev and Korepin, ' one easily finds
that

A, (x, x') =0,
A, (x, x') =O.

(2.14)

(2.15)

Here we have used ({)„(y)as an abbreviated nota-
tion for Bg,(y)/&a.

Thus, all terms in G, proportional to c' and c'
drop'out. Then the leading singularity of G„ in-
duced by the infrared divergence of 6, is a simple
pole (1/e).

We analyze next the terms proportional to c',
i.e. , A.,(x, x'). Some terms contributing to A, (x,x')
vanish partly because of (2.12) and partly because
the eigenvalues of II do not depend on a. In fact,
since the eigenvalues of H do not depend on a we
can write that

gn
„(trlnP) =0, n=1, 2, .. . .

y

(2.16)

The expressions giving the coefficient functions
A, (x, x'), i = 1,2, 3, 4, are algebraically cumber-
some, and we shall not pause to write them here.
Clearly, the two-point function G,"(x,x') is free of
zero-mode divergences and it can be obtained from
(2.9) by replacing A by A,.

Let us focus our attention on the divergent terms
of G, (x, x'). First of all, we mention that from the
identities

O(x) = d'y b,,(x,y)'u'" (y)({),'(y)

+ 3 (f 'y d'y 'b, ,(x,y) q, (y)e"' (y)
y

x ao(y, y ')(, '(y ')u '
(y '),

(2.18)

A(x, x') = d'y d'y'a, (x,y)q, '(y)e'(3)(y)

xg, '(y')'ll ' (y')g(&(y', x') .
(2.19)

Our next step will be to show that the coefficient
function A, (x, x') is fully controlled by the classical
soliton solution (t),(x).

Since the function (I),(x) fulfills the homogeneous
differential equation [see Eqs. (2.4) and (2.5)]

(2.20)

we conclude that

(2.21)

which when solved for ({)„yields

0,.(x) = d'y &o(x,y)&'"(y)y, '(y) .
Then

(2.22)

In particular, for n =1 and n=2 we obtain from
(2.16) two identities which allow us to write the
nonvanishing contributions to A, (x, x') as

A, (x, x') = q, (x)n(x') + n(x)q, (x') + A(x, x'),
(2.17)

where

82

0„,(x) = ' = d'y &o(x,y)u'"(y)y, '(y)

+ d'y ' 'y e('& y, '
y +2 d'y d'y'a, x,y &~'~ y, y a, y, y'&~'~ y' .' y'&a,(x,y)

y
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To compute sa, /sa we recall that A, is a Green's function of H and we obtain

s~,(x, x')
(2.23)

in view of which („,(x) can also be written
I

(...(x)= &'xx„(xx)x("(x)(.'(y)+& & yf'&'x'x„(x,x)x"(y)('.(x)&.(y, x')x'"(x')(. '(x'). (2.24)

After comparing (2.18) with (2.24) we conclude
that

n(x) = q...(x),
while from (2.19) and (2.22) it arises that

(2.25)

A(x, x') = g,.(x)g,.(x') . (2.26)

A, (x, x') = q, (x)y„,(x') + (l)„,(x)y, (x')

+ g.,(x)0„(x') ~ (2.27)

This result tells us that the coefficient function

By substituting (2.25) and (2.26) into (2.17) we
arrive at the following final expression for A, (x,x'):

of the leading divergence is entirely determined
by the eigenstate (I),(x) of the operator P or, what
amounts to the same thing, that A, (x, x') only de-
pends upon the classical soliton solution P„since
g, = sp, (x; g)/sa. We would like to remark also
that each individual contribution to A, (x, x') is
separable, i.e., it is of the form f(x)g(x'). This
highly peculiar structure of A, (x, x') will play 'an

important role in the cancellation of zero-~ode
divergences at the level of the S ~qtrix.

The next step of the present analysis consists in
studying the coefficient function A, (x, x ) which in-
cludes all terms multiplying the first power of c.
After some algebra we have arrived at the follow-
ing result:

(2.28)

s'n, (x, x')
d'y d'y '&.(x,y)&"(y) g.(y) &.(y, y ') &'"(y ') 0, (y ')&.(y ', x')

A, (x, x') =(,(x)—,(trina, ') + —

(trinal,

') p, (x')+a i&x' g-p ~g " X J=0 ~Q

In the derivation of this last expression, the details of which are omitted for reasons of brevity, we have
explicitly used the identity

+ d'y &.(»y)'""(y)4. '(y)&0(y x')+ d'y &o(x y)&"(y)e..(y)&.(y x') (2.29)

which can be obtained by taking 8/Ba on both sides of (2.29).
As one can see from (2.23), the entire spectrum. of H enters in the determination of A, (x, x'). Further-

more, not all individual contributions to A, (x, x') are of a separable type.
The study of the coefficient functions of singular terms appearing in G, (x, x ) is thus completed. We can

now write down an expression for the meson propagator in the one-soliton sector, including up to one-loop
corrections, in which all zero-mode divergences have been singled out. From Eqs. (2.10), (2.11), (2.14),
(2.15), (2.27), and (2.28) one can easily see that

G(x, x') = G,(x, x') + h G, (x, x')

=
~

ic(t).(x)(t),(x') --', @ c g, (x)—,(tr in~, -')t', , s
+ — (tr inn, ') q, (x') +

s'n, (x, x')
p Bg

i

X j p Bg

+x*[('.(x)('...(x')+(t (x)P (x')+('..(x)('..(x.')..lI).
+ iZ, (x, x')+@G,'(x, x') . (2.30)

From a simple inspection of Eq. (2.30) it follows
that, as we have already remarked, the most se-
vere infrared divergences (i.e., terms proportion-
al to c' arid to c') cancel out in the expression for
G(x, x'). Nevertheless, there still remain, in

I

G(x, x'), zero-mode singularities which cannot be
absorbed by renormalizing c.

Thus, our conclusion is that there are closed-
loop contributions to G(x, x') containing zero-mode
singularities. This statement by no means implies
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We turn now to the analysis of the zero-.mode
singularity structure of the S-matrix element

S 8=.„,(l meson~i meson), „ (3.I)

in the one-soliton sector. We shall refer to S 8
as the meson-soliton scattering amplitude.

We could well follow Matveev' and show that 8 8
is free of infrared singularities. However, with
this kind of technique it would not be possible to
exhibit explicitly the process of elimination of in-
frared divergences which seems to occur when one
goes from the Green's function to its correspond-
ing S-matrix element. Since the purpose of this
section is to study, at least in a particular case,
the above-mentioned process, we must find a way
to connect Green's functions and S-matrix ele-
ments in the one-soliton sector.

In the vacuum sector this problem is solved by
the LSZ' reduction technique, which allows one to
conclude that the S-matrix element describing the
process

that the above-mentioned divergences should be
'present in the meson-soliton scattering amplitude.
In fact, we shall- show in the next section that, un-
der given mathematical assumptions, the S-matrix
element associated with the Green's function
G(x, x') is ind'ependent of c.

This cancellation of zero-mode divergences at
the S-matrix level has been interpreted by
Matveev' as an indication that an underlying sym-
metry, originally broken by a specific classical
solution P„ is being restored; Since the conclu-
sion of Matveev' seems to hold on quite general
grounds (to each order in the loop expansion of the
S matrix), we are forced to recognize that there
exists a significant difference between this re-
stored symmetry and any internal symmetry that
the theory might eventually possess. For example,

. there are no closed-loop contributions to the
gauge-dependent part of the photon propagator in
quantum electrodynamics, and me know that this
property is intimately related to the gauge-in-
variant character of the corresponding S matrix.

We close this section by mentioning that using
the approach of Jevicki' one obtains for G(x, x'),
in the one-loop approximation, exactly the expres-
sion (2.30) with c replaced by o, , where o. is an
arbitrary parameter whose inverse somehow mea-
sures the "amount" of translational symmetry
breaking that is fed into the theory. As is obvious,
for n = ~ one recovers, for G(x, x'), the result that
is obtained by using the Feynman rules proposed
by Faddeev and Korepin. '

I

III. THE MESON-SOLITON SCATTERING AMPLITUDE

t

n particles in the incoming channel

-m particles in the outgoing channel

is just the Green's function for the h=n+m par-
ticles with the external legs removed and with the
external momenta put onto the mass- shell. ' We
conjecture that this result can be generalized to
the one-soliton sector, and we therefore write for
the transition (T) matrix

d'x d'xy$(x)[- „—%,"(x)]
x G(x, x)[-5„,—~~'&(x)]f.(x') .

(3.2)

Here the operators [-,—'lt ' (x)] and
[- „,-'%~'&(x')] remove the two external meson
legs, respectively, from the Green's function.
G(x, x'), while the f„(x)'s form a complete ortho-
gonal set of normalizable positive-energy solutions
of the homogeneous equation

j

[- -e"&(x)]f„(x)=0 . (3.3)

We want to stress that by "normalizable solution"
we mean a square-integrable function over space-
time. As is obvious, the physical meaning of f„(x)
is that it represents an on-mass-shell state of a
meson scattering from the soliton.

In connection with Eq. (3.2) we must say that we
have found no difficulties in extending formally, to
the one-soliton sector, the usual steps through
which in the vacuum sector one is led to the reduc-
tion formula. The function f 's are required to sat-
isfy the orthogonality conditions

dh
G(

X o 8 X 6(yg p

i ch x8, sx=0,
in complete analogy with the conditions which must
be obeyed, in the vacuum sector, by the wave-
packet solutions of the free-fieM equation.

Let us concentrate our attention on those con-
tributions to T ~ bearing zero-mode divergences.
After (2.30) is replaced in (3.2) and account is
taken of (2.20) we arrive at the conclusion that the
only potentially dangerous (c-dependent) terms re-
mai. ning in the 7 matrix are

d'x d'x' + x -O„-&'~ x

0( & )[ Q +(2)( l)]f ( I)aa' a

(3.4a)
l2

a~'~=--'ee' d'x *x -n -+~'~ x

(3.4b)

Thus, not all c-dependent terms appearing in
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(2.30) are automatically eliminated by the action of
the operators removing the external legs from the
Green's function. The terms quoted in Eqs. (3.4)
remain. Our following task will be. to show that

D 8~ and D '8~ are pure surface contributions to the
$ matrix.

We start analyzing D~„'&&. From Eq. (2.29) we

find that

D~'~& =-—'ll'c 2 d'x d'x'f *(x)& '
(x)g, (x)&,(x, x')& ' (x')g, (x')f (x')

+ d'x f ~~(x)%L~'~ (x)g, '(x)f (x) + d xf ~z(x)%t&'&(x)g„(x)f„(x) (3.5)

On the other hand, from (3.3) we obtain

sf. (x)

d'x'b, (x, x')&"(x') g, (x')f„(x'),

in view of which we can rewrite (3.5) as

(3.6)

the sense already indicated, then (3.9) and (3.10)
are vanishing integrals and, as a consequence,
S 8 turns out to be free of zero-mode divergences.
On the other hand, one should note that the cancel-
lation of zero-mode singularities becomes ambigu-
ous in. the limit

f (x) - exp[i(Is'+ p.')'~'vJ yx(x),
~N(~)

D(i) i~ n8
~an8

where N"& is defined as

(3. I)

N '~~=— d'xf ~8(x)& ' (x)g, (x)f (x) . (3.8)

It is now a trivial matter to show that N '&~ is a
pure surface term. In fact,

ds" „,xe„+x — ~6 x&„,x

(3 9)

as proposed.
A similar line of reasoning leads us to

where the functions f 's become non-normalizable.
Therefore, we conclude that the absence of zero-

mode divergences in S„Bcan only be strictly
proved, at least in the present case, if one as-
sumes that the incoming and outgoing meson states
are represented by square-integrable functions
over space-time.

To conclude, we find it interesting to remark
that Faddeev and Korepin' have attributed the non-
uniqueness of the propagator 6, characteristic of
their approach, to the non-normalizable character
of the function sp, (x:a)/sa, in spite of the fact that
it converges rapidly as ~r~ -~. In a different but
related context we have met with the same dif-
ficulty.

ds" „xe„8x —
~ x a„,.x, 3.10

I

which of course guarantees that D '8~ is also a pure
surface contribution to the $-matrix element under
analysis.

It is clear that whether zero-mode singularities
are present at the 8-matrix level only depends up-
on whether the integrals quoted in (3.9) and (3.10)
vanish. If all f 's are normalizable functions, in
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