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For systems possessing only first-class constraints, we rigorously prove that the secondary con-
straints act as independent generators of gauge transformations (Dirac's conjecture). The proof
essentially consists in demonstrating that the total and the extended Hamiltonian generate the same
time evolution for the canonical realization, f (q,p), of the gauge-invariant quantities. We also dis-

.cuss the alternative realization of these quantities.

I. INTRODUCTION

P
H, =H+ gPP, ,

p=1
(1.2)

has been advocated by many authors as the correct time-
development generator for constrained systems. " In
fact, one can recover from the Hamiltonian equations of
motion generated by HT the corresponding Lagrangian
equations of motion.

In this paper we show that Dirac's conjecture holds true
for all gauge systems possessing only first-class con-
straints (FCC's). By this we mean that

(a) HE and HT may generate different equations of
motion for gauge-dependent variables;

(b) nevertheless, HE and HT generate the same equa-
tions of motion for the canonical realization, f(q,p), of
the gauge-invariant quantities of the system.

In his work on Hamiltonian dynamics of constrained
systems, Dirac' conjectured that all secondary first-class
constraints (SFCC's) are independent generators of gauge
transformations. If this conjecture holds true, then the
dynamics of a system possessing primary I P&

——0,
p=1,2, . . . , PI and secondary IX~=0, A, =P+I, . . . ,
P +S—:R I first-class constraints should be correctly

described by the equations of motion arising from the ex-
tended Hamiltonian Hz,

P R

H =H+ gPP+ g gX&,
p=1

where the g's are arbitrary Lagrange multipliers and the
Hamiltonian H is derived in the manner of Dirac from
the Lagrangian I. defining the system. '

From time to time there have been objections to Dirac's
conjecture. ' A11 these objections are based on the
straightforward observation that, in general, the equations
of motion deriving from HE are not strictly equivalent to
the corresponding Lagrange equations. For this reason,
the total Hamiltonian HT,

ments. We also discuss here the alternative realizations of
the gauge-invariant quantities. Electrodynamics and the
Christ-Lee model' ' are used in Sec. III to exemplify the
equivalence of the dynamical pictures generated by
HT and HE. Some final remarks and the conclusions are
contained in Sec. IV.

II. DYNAMICS
OF THE CxAUCiE-INVARIANT QUANTITIES

We shall be dealing with systems possessing only FCC's
and, therefore, verifying the involution algebra' '

[A, (q,p), Ab(q, p)]= g C,'b(q, p)Q, (q,p), (2.1)
c=l
R

[H(q,p), Q, (q,p)]= g B,(q p)Qb(q p) (2.2)
b=1

where a, b, and c, run from l to R and

0, —=$, =0, a =1,2, . . . , P,
+a =&a =0, a =P+1, . . . , R .

(2.3a)

(2.3b)

R

[f(q p»&. (q p)] = g D.'(q p) &b(q p») =0 . (2.4)

Clearly, (2.2) expresses that H is first class.
We designate by g (q,p, t) the generator of infinitesimal

gauge transformations leaving invariant the constraint
equations (2.3) and the equations of motion

q~=P, p=l, 2, . . . , P, (2.5a)

The sign of weak equality (=) is defined as in Ref. 1.
Furthermore, C,'b and B, are certain functions of the
canonical variables q = (q ', . . . , q ), p = (p ~, . . . , p~ ).
These variables span the phase space I" and [f,h] is the
usual Poisson bracket in I. By assumption the con-
straints are independent and irreducible' in the sense that
Eqs. (2.3) define a hypersurface X (XV I ) of the dimen-
sion 2% —R. Of course, R & K. A quantity f ( q,p) is
said to be first class if

In other words, we shall be proving here that Hz and HT
give rise to the same physics.

In Sec. II we give a general proof of the above state-
q =[q,HT], a=P+ I, . . . , iV, (2.5b)
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p r =[pr~Hr]~ r=1,2, . . . , X, (2.5c)

deriving from HT. Here the overdot denotes differentia-
tion with respect to time and the j 's are the "unsolved"
velocities. ' ' In (2.5a) use was made of the general
form of the primary constraints Pz

——pz —gz(q",p ). ' '
As in Ref. 17, the Lagrange multipliers are supposed to
remain untouched by the Poisson bracket operation. An
explicit expression for g(q, p, t) in terms of the constraints
can be obtained by demanding invariance of (2.3) and (2.5)
under the gauge transformation

d ~et'(t)
[f(q,p»b, (q,p)l

dt

P dll+( )+ g [f(q,p),X „(q,p)]=0 (2.10)
n=O

for all p, as seen from (2.7). The terms in (2.10), each one
of which contains a time derivative of et"(t) of different
order, cannot compensate among themselves since no time
derivatives of q and/or p appear in the argument of f.
Then, for (2.10) to hold we must have

(2.6a) [f(q,p), A, (q,p)]=0, a =1,2, . . . , R . (2.1 1)

&p, =[p, gl

&P=&q'= [q'—gl .=d
dt

After some calculations one arrives at

(2.6b)

(2.6c)

From (2.11) and (2.4) follows that f (q,p) is first class.
This is a necessary and sufficient condition for f (q,p) to
be gauge invariant. But (2.11) is also a necessary and suf-
ficient condition for f(q,p) to be invariant under the ex-
tended infinitesimal transformations

5q"=[q",G],
&p, = [p„G],

(2.12a)

(2.12b)

d I'et'(t)
g(qp t)= g, 0,(qp)

p=1 dt

d "6'(t)
+ g X~ „(q,p)dt"

generated by2.7
R

G(q,p, t)= g r'(t)Q, (q,p), (2.13)
in agreement with previous results. ' ' In Eq. (2.7)
[X& „-0, n =0, 1, . . . , Kz —1I is the subset of SFCC's
originating from the primary first-class constraints
(PFCC's) Pe-0 through Castellani's algorithm. 0 More-
over, the d'(t)'s are infinitesimal independent parameters
related to the 5P's as

a=1

where the r (t)'s are arbitrary independent parameters.
Hence, for any given gauge system, g and 6 define the
same set of canonical gauge-invariant functions f (q,p).

Now, by construction, G leaves invariant the equations
of motion

d ~ et"(t)
K +1

dt ~

q "=[q', HE]

p, =[p, HE]

(2.14a)

(2.14b)

d e(t)K

+ g ~ [q'», x. i]
dt

K —1 „~( )+ g „[q' [X..HT]dt"

R

HE H+ g PA, , ——
a=1

provided Eqs. (2.12) are supplemented with'

(2.15)

deriving from the extended Hamiltonian [see (1.1) and
(2.3)]

+X „)] (2.8)

R Rg'=r' —g Bt',r + g Cf„HP .
b, c =1

(2.16)

[f(q p) g(q,p, t)]=0.
Now (2.9) calls for

(2.9)

In this last expression one is to take 7 1—=0. We re-
mark that all FCC's are included in g(q,p, t), since we
are leaving out of consideration systems such as those
proposed by Allcock and Cawley, for which some of the
SFCC's arise as powers g with m ~ 1. For the just-
mentioned models the apparent failure of Dirac's conjec-
ture results from an improper linearization of the func-
tional forms of the SFCC's. '

The physically meaningful quantities in a gauge system
are those functions f (q,p) being invariant under the gauge
transformations (2.6), i.e.,

f=[f»T]=[f»E]. (2.17)

which explicitly shows that Hz- and HE generate the same
time evolution for the canonical gauge-invariant functions
f (q,p). To phrase it differently: HE and HT are physical-
ly equivalent and, as a consequence, Dirac's conjecture
holds true for the systems under analysis.

Although HE and HT are physically equivalent, as we

The sets of equations of motion (2.5) and (2.14) are dif
ferent, since HT and HE differ by a linear combination of
SFCC's. Furthermore, the Lagrangian equations of
motion can be recovered from (2.5) but not, in general,
from (2.14). This fact has led many authors ' to reject
the extended Hamiltonian as the generator of a reliable
dynamical picture. However, from (1.2), (2.15), and (2.11)
one finds
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just proved, they generate different equations of motion
for the gauge-dependent variables. We turn now to
analyzing some consequences of this difference. Notice
that one may use the equations of motion deriving from
HT to recast a gauge-invariant function f(q,p) into the
form fT(q",q",p„,p„,P). Analogously, one can obtain
fF(q",q ",p„,p „P) from f (q,p) by using the equations of
motion deriving from HE. By construction, fT is invari-
ant under (2.6); indeed, f(q,p) satisfies (2.9) and g was
built so as to leave invariant the equations of motion
deriving from HT. On the other hand, and also by con-
struction, f~ is invariant under (2.12) and (2.16). Howev-
er, fT is not invariant under the set of extended transfor-
mations (2.12) and (2.16) generated by G. We emphasize
that fT and fz depend upon different arguments. In fact,
the Lagrange multipliers P, a=P+1, . . . , 8, only ap-
pear in the argument of fF and, therefore, it makes no
sense whatsoever to compare fT with f~.

We, then, conclude that a given gauge-invariant func-
tion, with canonical form f(q,p), admits alternative reali-
zations, such as fT and fE, which are faithful only within
the formalism (HT or HE) where they originated. The
existence of these alternative "formalism-dependent" real-
izations for a gauge-invariant quantity has been a source
of confusion in the literature. ' We shall come back to
this point in the next section.

g =fd'x te(x)no(x)

—e(x)[ajnj(x) —ien&(x)g(x)] I,
5A~(x) =a~e(x),

5$(x) =ice(x)@(x),
5n.„(x)=0,
5n ~(x) = —iee(x)n ~(x),

(3.6)

(3.7a)

(3.7b)

(3.7c)

(3.7d)

g '(x) =aoa'e(x), (3.7e)

a'A'=g',
a'AJ=, +a A',
a f=y y"a"f (iey y—A "+imy ieA )p—,

a 7r~ =a'F'J+ien&y yjf, .

a'n
q a "~qy'y —"—+~q(icy'y "A "+im y' ieA ')—,

(3.8a)

(3.8b)

(3.8c)

(3.8d)

(3.8e)

(3.8f)

where we have omitted the time label in the fields argu-
ment. One can verify the invariance under (3.7) of the
equations of motion

III. EXAMPLES
deriving from the total Hamiltonian,

HT H+ fd x g'(x——)n.o(x) . (3 9)
A. Electrodynamics

From the Lagrangian density

, Fq„F"'+g—[iy"(a„ieAp ) m]—g, —(3.1)

mp
——0,

pj~j ——I' &,

n ~ igy-—p

and the Hamiltonian

H= fd'x[ —,njnJ —A (a nj ienpp)+ ,'F—'JF'~—
+

ien qy'y"qA ' —im ~qy'y] . —

The PFCC and the SFCC are, respectively,

Q) =—m.p-o,

(3.2a)

(3.2b)

(3.2c)

(3.3)

(3.4)

where F" =a"A a'A", one f—inds the canonical conju-
gate momenta

5A (x)=r'(x),
5»(x) = —ajar(x),

5$(x) = —ieH(x)g(x),

5no(x) =0,
5nj(x) =0,

5n~( x)=ieH(x)n ~(x),
g'(x) =aor (x),
g'(x) =a'H(x)+ ~'(x),

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

(3.10f)

(3.10g)

(3.10h)

The sign of strong equality in (3.7) and (3.8) indicates that
these equations have already been written on the con-
straint surface X.

We next recognize F'~, nj, n.~P, and n~y yjf as the
canonical forms of the basic gauge-invariant quantities of
electrodynamics. One can easily check that all these func-
tionals are indeed first class. Thus, F'J, n.j, n~f, and
n.~y yjf are also invariant under the extended infini-
tesimal transformations [see Eqs. (2.12) and (2.16)]

Q2—=a'nj ien.pg=0 .— (3.5)
generated by

Theses constraints and the Hamiltonian (3.3) obey the in-
volution algebra (2.1) and (2.2) with

Cab
——0, a, b, c, = 1,2;

6=fd xI~'(x)no(x)

+r (x)[ajn. (x)—ieng(x)g(x)]I, (3.11)

B)——B2 ——Bp ——0, B]———1 .

Then, for electrodynamics (2.7), (2.6), and (2.8) reduce,
respectively, to

where ~' and r are arbitrary infinitesimal parameters. As
we asserted in Sec. II, the transformation (3.10) leaves in-
variant the equations of motion
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a'A'=g',

a A'=, +a'AO —ajar',

(3.12a)

(3.12b)

a f=y y a g (i—ey y"A "+imy ie—A +ieg )p,
(3.12c)

(3.12d)

which yields the momenta

Pe ——«'(0 —z),
p, =O,

and the Hamiltonian

(3.20a)

(3.20b)

(3.20c)

a n.
~

=a'F'J+iengy yjg, (3.12e)

a'n~ a "rr~—y'y" +n~(icy'y "A "+im y' ieA '—.+icy'),

(3.12f)

arising from the extended Hamiltonian

HF H+ f——d x Ig'( x) no( x)

+g (x)[ajnj(x) —ieger~(x)P(x)]] . (3.13)

Here g' and g are arbitrary Lagrange multipliers.
As a matter of fact, the sets of equations of motion

(3.8) and (3.12) are different. However, irrespective of
whether one starts from (3.8) or (3.12) one arrives at the
Maxwell equations

~'F'~=a'~, —aj~, ,

a' n; =a'F'&+i en ~y'y&q,

and the local conservation law

a (~&q)=aj(n&y y~q) .

(3.14)

(3.15)

(3.16)

Therefore, IIT and HE generate the same time evolution
for the gauge-invariant quantities, as required by (2.17).

We discuss now the alternative formalism-dependent
realizations of the electric field ( —nj). From (3.8b) one
obtains

H= —,'i,'+ S e+zi e+V(r) .
2r

(3.21)

A)=p, =O,
one finds the secondary constraint

2=—pe=0.

(3.22)

(3.23)

It is easy to check that there are no further constraints in
the theory. The constraints and the Hamiltonian (3.21)
are first-class quantities since they obey the involution
algebra (2.1) and (2.2) with C~b

——0, a, b, e =1,2; BI B2-—
=B2——0, Bi ——1.

For the Christ-Lee model (2.6), (2.8), and (2.7) reduce,
respectively, to

5r=O,
5B=e(t),
5z =e(t),
&p, =po=&p. =0
g'(t) =e(t),

(3.24a)

(3.24b)

(3.24c)

(3.24d)

(3.24e)

Here, r and 0 are plane polar coordinates, z is another
generalized coordinate, and V(r) is a potential bounded
from below. By demanding persistence in time of the pri-
mary constraint

m) ——F'J . (3 17) and

Hence, F ~ is a faithful realization of ~J within the for-
malism of the total Hamiltonian. We can check that F
is invariant under g but not under G. On the other hand,
the formalism of the extended Hamiltonian provides the
equally faithful realization for n~ [see Eq. (3.12b)]

n, =F '+ a g', (3.18)

which is invariant under (3.10). One should not be puz-
zled by the fact that (3.18) does not coincide with (3.17)
or, what amounts to the same thing, with the Lagrangian
definition of vrz in (3.2b). Actually, in the Hamiltonian
formulation the momenta are connected with the coordi-
nates and the time "only through the medium of the equa-
tions of motion themselves and not by any a priori defin-
ing relationship" (see Ref. 24). Moreover, trying to force
(3.17) into the formalism of the extended Hamiltonian
may lead, for some gauges, to bizarre results. '

B. The Christ-Lee model

I.= —,
' [i +r (0 z) ]—V(r), — (3.19)

The Christ-Lee model' ' is described by the singular
Lagrangian

g =e(t ~p. +e(t ~pe

The equations of motion

r =p„,
o=z,
z

pr=—

p 6=0

p, =O,
arising from the total Hamiltonian

HT H+ g'p, , ——

(3.25)

(3.26a)

(3.26b)

(3.26c)

(3.26(1)

(3.26e)

(3.26f)

(3.27)

are invariant under (3.24). Equations (3.26) have the same
content as the Lagrange equations deriving from (3.19).
The transformations (3.24a), (3.24b), and (3.24c) also leave
invariant the Lagrangian (3.19).

The basic canonical gauge-invariant functions f (q,p)
for this model are r, p„, p„and po. They are all first
class and, therefore, invariant under the transformations
generated by
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G=~ (t)p, +r (t)pe, (3.28)

8=z+g',
~ ]

Z —
7

dV
p dI"

pe=0

deriving from the extended Hamiltonian

(3.29a)

(3.29b)

(3.29c)

(3.29d)

(3.29e)

(3.29f)

where, again, r and r are arbitrary infinitesimal parame-
ters. Furthermore, the equations of motion

Hence, r (8 z)—is a faithful realization of the gauge-
invariant quantity pe within the formalism of the total
Hamiltonian. One can readily check that r (8—z) is in-
variant under (3.24) but not under (3.31). On the other
hand, from (3.23) and (3.29b) one finds

pe ——O=r (8—z —g2) . (3.34)
I

Therefore, the quantity r (8 z ——g ), which is invariant
under (3.31), is a faithful realization of p& within the for-
malism of the extended Hamiltonian. We emphasize
again that it makes no sense whatsoever to use the La-
grangian definition of pe (3.20b) in connection with the
equations of motion generated by the extended Hamiltoni-
an.

HF =H+ g'(&)p, +g'(t)pe, (3.30) IV. FINAL REMARKS

are also invariant under the transformations generated by
6, 1.e.,

6r =0,
58=r'(t),
5z =r'(t),
~p. =&pe =&p.=0

(3.31a)

(3.31b)

(3.31c)

(3.31d)

provided the Lagrange multipliers g' and g transform,
correspondingly, as [see (2.16)]

5g'(t) =r '(t),
5g'(t) =i'(t) —r'(t) .

(3.31e)

(3.31f)

(3.32a)

The dissimilarities between the sets of equations of
motion (3.26) and (3.29) should be noticed. For instance,
according to (3.26) we can take either z or 8, but not both,
arbitrary, while from (3.29) one concludes that 8 and z are
arbitrary functions of time. In other words, all solutions
of (3.26) are also solutions of (3.29) but the converse is not
true. Nevertheless, both sets of equations yield the same
time evolution for the gauge-invariant functions f ( q,p) as
seen from

The main feature of a gauge system whose dynamics is
described by HT is that the set of equations of motion
(2.5) do not possess a unique solution, not even after im-
posing the initial conditions. " ' For each set of
Lagrange multipliers P one has a different trajectory on
the constraint surface X. At any time t &to, where to is
the initial time, the physical state of the system is speci-
fied by any point on X belonging to a certain equivalence
class CT(t) The po. ints within each class are connected
by the transformations generated by g in (2.7).

When one uses HE instead of HT the gauge freedom is
augmented. Actually, the trajectories on X are now
parametrized by the larger set of Lagrange multipliers P.
The constraint surface divides out again into equivalence
classes CE(t); the points within each class now being con-
nected by the transformations generated by G in (2.13)."

Thus, irrespective of whether one works with HT or
HE, the phase-space image of a physical state of a gauge
system is an equivalence class ( CT or CE) and not an indi-
vidual point on X; the dynamics being represented by the
motion in time of this equivalence class. As a corrobora-
tion of the physical equivalence of Hz- and HE, we shall
next demonstrate that Cz(t) =Cr(t). For this purpose, we
start by recasting (2.13) into the form

dVPr=—
K —1

P

(3.32b) G(q,p, t)= g r (&)p (q p)+ g H(t)X „(qp)
n=0

p, =0,
pe=0.

(3.32c)

(3.32d)

pe O=r (8 z) . —— — (3.33)

As it happens in electrodynamics, one can build alterna-
tive formalism-dependent realizations for the gauge-
invariant functions f(q,p) of the Christ-Lee model. In
particular, from (3.23) and (3.26b) one obtains

(4.1)

where the H(t)'s and the r„(t)'s are all independent pa-
rameters. That CT(t) C CE(t) follows trivially from (2.7)
and (4.1): given the d'(t)'s, one can always choose
+(t)=&(r), H(t)=d"6'(t)Idt". The converse, CF(t)
(:Cr(t), is also true because, for any instant of time t, one
can always find a function d'(t) such that &(()=+(r) and
d"0'(t)ldt"=H(t} Thus, CT(t)=CF(t). One can check
that the models in Sec. III verify this property.
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