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We investigate the role of the temperature in the onset of singularities and the consequent breakdown in
a macroscopic fluid model for long-range interacting systems. In particular, we consider an adiabatic fluid
description for the transport of intense inhomogeneous charged particle beams. We find that there exists a
critical temperature below which the fluid model always develops a singularity and breaks down as the
system evolves. As the critical temperature is approached, however, the time for the occurrence of the
singularity diverges. Therefore, the critical temperature separates two distinct dynamical phases: a
nonadiabatic transport at lower temperatures and a completely adiabatic evolution at higher temperatures.
These findings are verified with the aid of self-consistent N-particle simulations.
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For long-range self-interacting systems, it is generally
very difficult to obtain a fully kinetic description of the
dynamics. This is the case in plasmas, charged particle
beams, and self-gravitating systems among others, where
the collision duration time diverges in the thermodynamic
limit [1-5]. A largely used tool to overcome this difficulty
is the employment of macroscopic fluid models. In con-
trast to the kinetic description that requires the knowledge
of the evolution of the distribution function in the full
phase space, the fluid description is simpler because it is
based on local macroscopic variables obtained by averag-
ing over the momentum space. Moreover, because the
fluid variables consist of readily understood macroscopic
quantities, the physical interpretation of the phenomena
under investigation is generally more direct. Nevertheless,
except for very specific cases, the fluid description leads
to an infinite hierarchy of equations which, in practice,
have to be truncated to be analyzed. The truncation is
obtained by assuming a certain characteristic for the
system dynamics which is expressed by an equation of
state. Perhaps, the simplest used approximation is the cold
fluid, which completely neglects thermal effects by as-
suming a vanishing temperature [6—12]. Other examples
of largely used equations of state are isothermal [13-17]
and adiabatic [18,19]. At any rate, the validity of the fluid
description resides not only on the choice of equation of
state but also on the fact that the infinite hierarchy has to
be convergent; i.e., the macroscopic fluid variables may
not present singularities. In the case of cold fluids, a well-
known cause of singularities is the onset of the so-called
wave breaking where the fluid description looses its va-
lidity due to a divergence in the particles density at a
certain position and time. This phenomenon is associated
with a filamentation in the phase space and may have
relevant consequences such as temperature increase,
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energy redistribution, and particle acceleration, depending
on the system.

In this Letter, we investigate the role of the temperature
in the onset of singularities in the macroscopic quantities
and the consequent breakdown of the fluid description. In
particular, we consider the transport of intense inhomoge-
neous charged particle beams along a uniform focusing
magnetic field channel. The inhomogeneity is taken into
account because it is virtually impossible to launch a
perfectly homogeneous beam in real devices [20,21]. In
the cold beam limit, this system was shown to present wave
breaking which is responsible for particle ejection from the
beam core and has a very deleterious effect in the transport
[11,12]. Here, we develop a Lagrangian fluid model for the
beam evolution that incorporates thermal effects using an
adiabatic approximation. It is found that any finite tem-
perature is sufficient to prevent the occurrence of the
divergence in the beam density and the associated wave
breaking. Nevertheless, if the temperature is below a cer-
tain threshold we identify a different type of singularity
that is responsible for the breakdown of the fluid descrip-
tion, namely, the formation of colliding layers where beam
regions with significantly different densities bump into
each other leading to a singular growth of the pressure
gradient. As the threshold temperature is approached, how-
ever, the time for the occurrence of the singularity diverges
and is found to be absent above it. In other words, the fluid
model predicts the existence of a critical temperature that
separates two different dynamical phases: a nonadiabatic
transport at lower temperatures and a completely adiabatic
evolution at higher temperatures. These findings are veri-
fied with the aid of self-consistent N-particle simulations.

We consider a continuous, stationary, axisymmetric
beam that propagates along a z axis with a constant axial
velocity vy [22,23]. The beam is focused by a uniform
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magnetic field of magnitude B that is directed along z. For
a given beam distribution at z = 0, our aim is to determine
how the beam evolves as a function of the axial coordinate
Z = vyt, which plays the role of time in our system. Since
the number of constituent particles is very large, the beam
dynamics is dictated by collective effects and interparticle
collisions are negligible. Using Lagrangian coordinates
[24] and the paraxial approximation [22], the dynamics
of the transverse radial position r of a certain cylindrical
beam element that started at ry at z = 0 is governed by

d*r 0O(ry) 1 oP
= —kr+ -
p(r) or

iz . (M

The first term on the right-hand side of Eq. (1) corresponds
to the focusing force imposed by the external magnetic
field, where xk = (gB/2ymfBc?)? is the focusing parame-
ter, y = (1— B%)7Y/2 is the relativistic mass factor,
B =v_/c, cis the speed of light in vacuo, and g and m
denote the beam particle charge and mass, respectively.
The second term gives the space charge forces and is
readily obtained by taking advantage of the axisymmetry
of the beam and using Gauss law, where Q(r) = KN(r)/N,
is a measure of the charge contained up to the fluid element
position at r, N, is the total number of beam particles per
unit axial length, N(r) is the number of particles up to r,
and K = 2N,q*/vy>mpB*c? is the beam perveance. Note
that a necessary condition for the validity of the fluid
description is that different fluid elements do not overtake
each other. As a consequence, Q(r) is invariant and may be
evaluated as the initial value Q(ry). Likewise, imposing the
conservation of charge between two neighboring layers
located at r and r + dr, we can write
__To )
p(r,z) = T(r)p()(r())’ (2)
which determines the evolution of the beam particle den-
sity p(r, z) as a function of the initial density at py(ry),
where C(r) = dr/dr is the so-called fluid compressibility.
Finally, the third term on the right-hand side of Eq. (1)
introduces the thermal effects, where P is the transverse
fluid pressure. To determine a pressure profile, we assume
that the beam transport is adiabatic; i.e., the quantity P/p?
of a given fluid element is conserved along its trajectory
[19]. We also assume that the beam is injected at z = 0
with a uniform temperature T, such that Py(rg) =
po(ro)Ty at injection. Thus, using Eq. (2) the pressure
profile takes the form

Po(”o)r%To

P(r, ry) = 2020

3)

It is worth noting that in order to correctly evaluate the
pressure gradient in Eq. (1) one has to explicitly take into
account the variations of ry with respect to r by using
dro/dr = 1/C(r).

To numerically solve the fluid model, we consider N
fluid elements whose initial conditions ry are uniformly
distributed from zero to an initial maximum radius r,,. The
position r(rg, z) of each fluid element is then obtained by
simultaneously integrating the set of N, ordinary differen-
tial equations of motion (1) for each ry. The derivatives
with respect to r and r( are approximated by finite differ-
ences between neighboring elements. In the simulations,
we consider beams whose initial profiles are parabolic,

K 2r2
poi) =1 -1)] @
T bo "o

for ro <ryy, where —1 = y = +1 is a parameter that
measures the degree of inhomogeneity. We focus on
matched beams with r,, = (K/«)!/? which corresponds
to a vanishing small force acting upon the outermost
particle [11]. This condition prevents the onset of azimu-
thal instabilities that could break the axisymmetry of the
beam [25]. For y = 0 the beam is homogeneous, which
corresponds to a quasiequilibrium condition and a nearly
stationary evolution.

As mentioned before, a necessary condition for the
validity of the fluid model is that neighboring fluid ele-
ments do not overtake each other. In fact, if at a certain
instant two fluid elements that started at different locations
occupy the same position then the compressibility C van-
ishes at that point. According to Eq. (2), this leads to a
singular build up of the density and to a wave breaking.
This phenomenon was shown to always occurs in the
transport of initially inhomogeneous (y # 0) cold beams
and is responsible for particle ejection and consequent
degradation of the beam quality [6,11]. In the presence
of thermal effects, however, the pressure gradient term in
Eq. (1) is sufficient to inhibit such a process, and C is found
to never vanish. Nevertheless, we have identified that
another event that breaks down the fluid description may
occur, namely, the formation of colliding layers where
beam regions with significantly different densities bump
into each other. This phenomenon is characterized by the
onset of a discontinuity in the C(ry) profile, as shown by
the dots in Fig. 1 at ry = 0.5; to the left (smaller r() of the
discontinuity there is a higher density layer that is coming
across a lower density layer to the right. Because the
derivative of the compressibility diverges at this point, it
corresponds to a singular growth of the pressure gradient in
Eq. (1). Similar to the wave breaking, the occurrence of
colliding density layers may as well be responsible for
conversion of energy from macroscopic fluid modes into
microscopic kinetic activity and consequent degradation of
the beam. Therefore, it becomes relevant to identify when
this effect occurs.

In order to determine this, we ran the fluid simulation for
different system parameters and determined if and at which
time z* the fluid description lost validity. The runs were
performed for times much longer than the wave breaking
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FIG. 1 (color online). Compressibility C as a function of the
initial position r, showing the onset of a discontinuity close to
ro = 0.5. Because the density is inversely proportional to C [see
Eq. (2)], the discontinuity indicates the formation of colliding
layers where a higher density segment of the beam to the left of
the discontinuity is bumping into a lower density layer to the
right. This phenomena leads to a breakdown of the fluid descrip-
tion. The inset shows a zoom of C(ry) near the discontinuity.
This curve was obtained for 7, = 107°, x =0.6,and z = zj =
125, where z; is the time for the wave breaking in the cold
beam limit.

time for 7, = 0 that we shall denote as z;,. The results are
represented in color code in the y vs T, parameter space of
Fig. 2. The gray scale points refer to the parameter values
for which z* <z;, whereas the colored points refer to
z" > z;. For low temperatures, we see a large black area
that indicates that z* = zg. Therefore, despite the fact that
the phenomena that leads to the breakdown of the fluid
model is intrinsically different for vanishing and finite
temperatures, the time for their occurrences is very similar
at low temperatures. On the other hand, for the higher
temperatures in Fig. 2 there is a large yellow area that
corresponds to the complete absence of colliding density
layers along the runs. In between these areas there is a thin
transition region (in blue) where z* changes very rapidly.
This region defines a threshold temperature T;.(y) above
which the fluid description becomes valid throughout the
transport. L.e., a small variation in the temperature com-
pletely changes the system dynamics: while for a tempera-
ture slightly lower than T, the fluid breaks down on the
same time scales as of a cold beam, for a temperature
slightly higher than T,. the beam flow becomes mostly
adiabatic.

To further explore the significance of the break down of
the fluid description and how it affects beam quality, we
have performed fully kinetic self-consistent N-particle
simulations. Details of the simulation method can be found
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FIG. 2 (color online). Color coded map of the time for the
break up of the fluid description in the Ty vs y parameter space.
The large black area indicates that the break up time is of the
same order of the cold one (z* = z;) at low temperatures. The
thin blue (lighter) region defines a threshold temperature T.(x)
at which z* changes very rapidly and above which the fluid
description becomes valid throughout the simulation (light
yellow area). The red dots correspond to the threshold tempera-
ture 7. obtained from the N-particle self-consistent simulations
for different values of y (see Fig. 4). In this figures we concen-
trate on values of y that lead to a slow wave breaking in the cold
beam limit [12].

in Ref. [26]. In the simulations, we launch N = 20000
macroparticles according to the parabolic beam profile of
Eq. (4) with prescribed y and r,y, and with velocities
uniformly distributed up to a maximum speed v,,, such
that the initial temperature is T, = v2,/2. Generally, the
beam quality is quantified using the emittance given by
£%(z) = 4((r*}(v?) — (r-v)?), where r and v are the position
and velocity vectors of the beam particles, respectively,
and (- - ) stands for average over all particles. In the case of
inhomogeneous beams, the charge redistribution inside the
beam causes fast plasma oscillations which largely affect
the evolution of &(z) [11]. Therefore, it is convenient
to rewrite the emittance squared as the exact sum of
two terms, €2 = &3 + &3, where we explicitly separate
the contributions from the (macroscopic) plasma oscilla-
tions in a directed emittance &2 = 4[(r*}¥?) — (r - V)?]
and from the microscopic kinetic activity in a thermal
emittance

el = ANV = V)H)] (5)

where ¥(r) is the macroscopic fluid velocity obtained by
averaging over the particles in the vicinity of the position r.
Because the thermal emittance growth is the one associated
to the irreversible entropy increase as particles are ejected
from the core to form halos, we focus on its evolution to
determine beam quality. In Fig. 3, we present the evolution
of 4. (z) for y = 0.6 and two different temperatures which
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FIG. 3 (color online). Evolution of the thermal emittance
defined in Eq. (5) for temperatures below and above the critical
temperature T, =~ 10™* (see Fig. 2). For Ty = 107> < T, &pe
has virtually no growth up to z = z; = 122 where it starts to grow
very fast (dark curve). On the other hand, for Ty =10"3>T,, the
simulation is nearly adiabatic with just a slow increase in &g,
(light curve).

are respectively below and above the critical temperature
Ty = 107*. In the former case, &y has virtually no
growth up to z = z; = 122 where it starts to grow very
fast. This can be explained with the aid of the adiabatic
fluid model that predicts the occurrence of colliding den-
sity layers at z = z, for this set of parameters. On the other
hand, for T\, > T, the fluid theory predicts no singular-
ities, and correspondingly, the transport seen in the simu-
lation is nearly adiabatic with just a slow increase in &g,.
In Fig. 4, we show the thermal emittance variation obtained
as the difference between the final and the initial thermal
emittance over a certain fixed distance z for y = 0.6 and
various values of T,. In agreement with the predictions
from the fluid model, it is clear that there is a critical value
of the temperature T, above which the beam transport
becomes nearly adiabatic with just a minor increase in the
thermal emittance. Similar analyses have also been done
for different values of y, in order to determine the corre-
sponding T,.. The results are presented by the circles in
Fig. 2. Again, good agreement is found between the fluid
theory and the N-particle simulations.

In conclusion, we have investigated the role of the
temperature in the onset of singularities and the consequent
breakdown in a macroscopic fluid model. In particular,
we considered the transport of intense inhomogeneous
charged particle beams which are known to present a
wave breaking in the cold limit. Using an adiabatic fluid
model to describe the beam transport, we found that any
finite temperature is sufficient to prevent the occurrence of
the wave breaking. Nevertheless, if the temperature is
below a certain threshold we identified the occurrence of
a different type of singularity that is responsible for the
breakdown of the fluid description, namely, the formation
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FIG. 4 (color online). Thermal emittance variation Aggy, as a
function of the temperature T, for y = 0.6. Agy,. is computed as
the difference between the final and the initial thermal emittance
over a certain fixed distance of propagation. Points A and B
correspond to the values of T, used in Fig. 3. A critical tem-
perature Ty, =~ 10~* is found above which the beam transport
becomes nearly adiabatic with just a minor increase in the
thermal emittance. The inset shows a zoom in the vicinity of
Ty in a linear plot in Ty,

of colliding layers where beam regions with significantly
different densities bump into each other leading to a sin-
gular growth of the pressure gradient. As the threshold
temperature is approached, however, the time for the oc-
currence of the singularity diverges and is absent above it.
Therefore, depending on the parameters of the system, we
find the existence of a critical temperature that separates
two different dynamical phases: a nonadiabatic transport at
lower temperatures and a completely adiabatic evolution at
higher temperatures. These findings were verified with the
aid of self-consistent N-particle simulations.
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