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We show that facilitated spin mixtures with a tunable facilitation reproduce, on a Bethe lattice, the

simplest higher-order singularity scenario predicted by the mode-coupling theory (MCT) of liquid-glass

transition. Depending on the facilitation strength, they yield either a discontinuous glass transition or a

continuous one, with no underlying thermodynamic singularity. Similar results are obtained for facilitated

spin models on a diluted Bethe lattice. The mechanism of dynamical arrest in these systems can be

interpreted in terms of bootstrap and standard percolation and corresponds to a crossover from a compact

to a fractal structure of the incipient spanning cluster of frozen spins. Theoretical and numerical

simulation results are fully consistent with MCT predictions.
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Although the glassy state of matter has been a long-time
fascinating topic for physicists, it still presents several
mysterious aspects [1]. Perhaps, the most controversial
one is the very nature of the glass transition: that is the
question of whether vitrification is a purely dynamical
process or rather the (dynamical) manifestation of a genu-
ine thermodynamic amorphous phase. In spite of much
progress (for reviews, see [2–6]) the problem remains
widely open. On one hand, there are notorious experimen-
tal and computational difficulties related to the exceed-
ingly long equilibration times of macroscopic samples, and
to the possibility of detecting unambiguously the elusive
‘‘amorphous order.’’ On the other hand, theoretical model-
ing of glassy systems has made clear that slow relaxation
processes are ubiquitous and may result from very distinct
mechanisms.

In a situation in which it is unknown to what extent
thermodynamics and dynamics are intertwined, it would
be particularly advantageous from a methodological point
of view to identify those peculiar glassy features that can
be reproduced with no reference to specific energetic
interactions. In this respect, facilitated spin models first
introduced by Fredrickson and Andersen are particularly
useful [7], as they are constructed in such a way as to have
a manifestly uninteresting thermodynamics. Hence they
allow to clearly disentangle, albeit in an arguably artificial
way, dynamic aspects from static ones.

The first assumption of the dynamic facilitation ap-
proach is that, on a suitable coarse-grained length scale,
one can model the structure of a liquid by an assembly of
high (low) density mesoscopic cells which have no static
interaction. Binary spin variables, taking on value �1, can
be simply assigned to these cells. The next crucial step is
to postulate that there exists a time scale over which the
effective microscopic dynamics takes a deceptively simple

form: local changes in cells structure occur if and only if
there is a sufficiently large number, say f, of nearby low-
density cells (f is called facilitation parameter). The latter
assumption is actually difficult to derive by analytical
means. Nevertheless, it can be justified on physical
grounds: it mimics the cage effect and gives arise to a
variety of remarkable, and sometimes unexpected, glassy
features, even if the thermodynamics is completely trivial
[5]. Although this line of research has been pursued very
actively in recent years, little attention has been paid to the
possibility of reproducing, within this framework, more
complex types of glassy behavior (for some exceptions, see
[8,9]). In fact, even simple schematic mode-coupling the-
ory (MCT) models predict the occurrence of topologically
stable singularities of higher complexity [2]. Liquids con-
fined in a disordered porous matrix [10] and attractive
colloids [11,12] are some examples in which these scenar-
ios have been recently observed. Solvable microscopic
realizations of such systems would be highly valuable
both for a deeper understanding of complex glassy features
and for clarifying the limits of MCT. This is quite a delicate
issue, however, as mean-field disordered systems which
are supposed to be exactly described by MCT are spoiled
by finite-size effects and preasymptotic corrections so
strong as to prevent a direct observation of MCT predic-
tions [13,14]. For this reason, we follow here an alternative
route.
Motivated by recent findings on the annealed-quenched

mixtures [10], we have generalized the dynamic facilita-
tion approach by allowing for an inhomogeneous distribu-
tion of facilitation or, equivalently, as we shall see, of
lattice connectivity. While the latter may originate from a
geometrically disordered environment, e.g., a porous ma-
trix, the former can be thought of as resulting from the
coexistence of different length scales in the problem, e.g.,
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mixtures of more or less mobile molecules or polymers
with small and large size. By doing so, we show that
facilitated spin models on Bethe lattice provide a close
microscopic realization of the simplest higher-order bifur-
cation singularity scenario predicted by MCT, in which
two liquid-glass transition lines (of types A and B) join
smoothly at a common end point.

The model.—Facilitated spin models consist of N non-
interacting spins �i ¼ �1, i ¼ 1; . . . ; N with Hamiltonian
H ¼ � h

2

P
N
i¼1 �i, evolving with a Metropolis-like

dynamics: at each time step a randomly chosen spin

is flipped with transition probability: wð�i ! ��iÞ ¼
minf1; e�h�i=kBTg, if and only if at least f of its z neighbor-
ing spins are in the state �1 (hereafter h=kB ¼ 1). On a
Bethe lattice, the dynamics can be characterized by ex-
ploiting the relation with the bootstrap percolation [15,16].
Disregarding the less interesting noncooperative case,
f ¼ 1, in which there is no transition, one can distinguish
two cases. (i) For z� 1> f > 1, the system undergoes
a dynamical arrest: below a certain temperature Tc, the
fraction of frozen spins �, which plays the role of the
nonergodicity parameter in MCT, jumps from zero to a
finite value. This corresponds to the sudden emergence of a
giant cluster of frozen spins (i.e., spins that are surrounded
by more than f neighboring 1 spins) with compact struc-
ture. This dynamic transition has a very peculiar hybrid
nature: it is discontinuous and, at the same time, has
diverging fluctuations as in continuous phase transitions.
The geometric origin of this behavior has been understood
quite in detail as being related to the divergence of the size
of corona clusters near the transition [17,18]. Several re-
sults [16], including those related to large scale cooperative
rearrangements responsible for slow dynamics [19], have
suggested a strong analogy with MCT. (ii) For f ¼ z� 1, z
the transition is continuous as bootstrap percolation is
equivalent to conventional percolation [15], and for this
reason it has attracted less interest. The facilitated spin
dynamics of these systems has never been explored to our
knowledge.

To study the crossover between integer values of f
we introduce a new facilitated spin model in which
the facilitation strength can be continuously tuned. This
is obtained by making the facilitation parameter a lattice
site dependent quenched random variable, in close analogy
with the bootstrap percolation problem studied by Branco
[20]. For concreteness, we shall consider a Bethe lattice
with coordination number z ¼ 4, in which the facilitation
fi is chosen from the probability distribution:

PðfiÞ ¼ ð1� qÞ�fi;2 þ ðq� rÞ�fi;3 þ r�fi;4; (1)

with 1 � q � r � 0. By tuning q and r we can thus
explore the discontinuous-continuous glass transition
crossover.

Exact results.—The treelike structure of the Bethe lattice
allows for an exact calculation of the phase diagram.
Following Refs. [15,16,20] we get:

TcðqÞ ¼
� 1
logð8�12qÞ ; if 0 � q � 1=2;

� 1
logð3q�1Þ ; if 1=2< q< 2=3:

(2)

The phase diagram is depicted in Fig. 1, and comprises two
lines that smoothly join at q ¼ 1=2. As expected, the
introduction of less facilitated spins increases the glass
transition temperature, as compared to the pure case,
q ¼ 0 [16]. The precise nature of the two glass transitions
depends on the behavior of � near Tc. Denoting with

p ¼ 1=ð1þ e�1=TÞ the probability that a spin is 1 in ther-
mal equilibrium, we find

�¼ p½x3ð4� 3xÞ þ 6qx2ð1� xÞ2 þ 4rxð1� xÞ3�
þ ð1�pÞ½y3ð4� 3yÞ þ 6qy2ð1� yÞ2 þ 4ryð1� yÞ3�;

(3)

where y ¼ p½x3 þ 3ð1� qÞx2ð1� xÞ þ 3rxð1� xÞ2�, and
x ¼ ½3pð1� 2qÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9p2 � 8pþ 12qpð1� pÞp �=2pð2�
3qÞ. The behavior of � as a function of the temperature is
shown in the inset of Fig. 1, for several values of q and with
r ¼ 10�3. Notice that � generally depends on r while the
phase diagram does not. For 0 � q � 1=2, � jumps to a
finite value �c ¼ �ðTcÞ on the transition line, meaning
that the infinite cluster of frozen spins has a compact
structure. This structure turns out to be quite resilient
against random inhomogeneities in the facilitation
strength, in a rather large range of q. The critical exponent
� associated to the order parameter � is obtained by
expanding the above equations in the small parameter
� ¼ T � Tc. As expected, we find ���c � ��, with
� ¼ 1=2, that is the typical square-root dependence well
known in MCTand in other systems with hybrid transition.
For 1=2< q< 2=3 the glass transition changes nature as
� departs smoothly from zero with a power-law behavior
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FIG. 1 (color online). Phase diagram for z ¼ 4 and facilitation
as in (1). The dark region is the glassy phase. The dashed (solid)
line is the discontinuous (continuous) transition. Inset: Fraction
of frozen spins vs temperature for several values of q and r ¼
10�3. Below q ¼ 1=2, � jumps to a finite value at the transition
which is represented by the dotted line.
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�� ��, and the correspondence with standard percolation
suggests that the giant cluster of frozen spins has a fractal
structure. Interestingly, in this case � depends on r: for
r ¼ 0 one has � ¼ 2, while as soon as a negligibly small
amount of spins with fi ¼ 4 is introduced into the system,
r > 0, one has � ¼ 1. The robustness of the latter behavior
reflects the fact that the mass of the fractal cluster of frozen
spins is essentially dominated by the dangling ends, that is
those parts of the cluster which are connected to the back-
bone by a single site. Only when r ¼ 0, dangling ends are
completely removed from the infinite cluster and the ex-
ponent changes to � ¼ 2 [20]. Hence, the general scenario
emerging for an arbitrary ternary mixture is that of two
distinct glass transitions with � ¼ 1=2 (for the discontinu-
ous case), and � ¼ 1 (for the continuous one). These
critical exponents reproduce exactly the MCT results for
the F12 schematic model [2], in which the memory kernel
takes the form m12 ¼ v1�ðtÞ þ v2�

2ðtÞ.
Numerical simulations.—We now turn to numerical

simulation to explore those features of equilibrium relaxa-
tion which are relevant for a comparison with MCT.
Testing MCT in systems which are described by a some-
what ad hoc kinetic rule is particularly interesting because
it allows us to probe the degree of universality of MCT
results beyond the context (the actual Newtonian or
Brownian liquid dynamics) and the approximations in
which they were originally derived. The dynamics of
facilitated spin systems is conveniently characterized by
the persistence �ðtÞ, i.e., the probability that a spin has
never flipped between times 0 and t. The long-time limit of
�ðtÞ, which plays the role of the Edwards-Anderson pa-
rameter in spin glasses, is directly related to the fraction of
frozen spins � ¼ limt!1�ðtÞ, which is known to describe
broken ergodicity. Simulation results for the persistence
are shown in Fig. 2 for various q, above and below the glass
transition temperature TcðqÞ. To avoid dynamic reducibil-
ity problems the ternary mixture has a negligibly small
fraction of spins with f ¼ 4, typically r ¼ 10�3. We see
that inside the glassy phase, the persistence attains a finite
plateau which is in excellent agreement with the value of
� analytically computed in the previous section. On ap-
proaching TcðqÞ from above and for q < 1=2 we find
typical signatures of MCT: two-step decay of �ðtÞ, late
stage stretched exponential relaxation, and power-law form
of equilibration time. When q ! 1=2 (and so�c ! 0), the
range over which the time-temperature superposition prin-
ciple holds shrinks, and consequently no simple scaling
form of relaxation data at various temperature can be found
in this limit.

To make a more stringent test of MCTwe now examine
in detail the critical dynamics on the glass transition lines,
for which MCT predicts distinctive patterns of universal
critical behavior. When the system is relaxing exactly at
the critical temperature TcðqÞ, MCT predicts the power-

law decay, �ðtÞ ��ð1Þ � t�aðqÞ, irrespective of whether
the long-time limit of persistence is finite or zero. Figure 3

shows that indeed this power-law behavior is very well
obeyed. A further remarkable prediction of MCT is that the
exponent aðqÞ is intimately related, in a way that depends
on the nature of the glass transition, to the power-law
exponent describing the divergence of the characteristic
time � on approaching the plateau at �c (the so-called
�-relaxation regime): when temperature gets closer to

TcðqÞ one has �� ��1=2aðqÞ for the discontinuous transi-

tion, and �� ��1=aðqÞ for the continuous one. These two
distinct behaviors are tested in the inset of Fig. 3 by
assuming as a reasonable definition of the �-relaxation
time �, the integral of �ðtÞ from zero up to the time t�
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FIG. 2 (color online). Persistence vs time for several tempera-
tures, indicated in the key, and values of q. The transition is
discontinuous (continuous) for q smaller (larger) than 1=2. We
use r ¼ 10�3, except for q ¼ 0:52 where r ¼ 0. The horizontal
lines show the theoretical prediction for the plateau heights (the
dashed one is the critical plateau at T ¼ Tc). The simulations are
performed on lattices with N ¼ 105 to 5� 105 sites and aver-
aged over 2–20 samples.
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FIG. 3 (color online). Equilibrium relaxation at criticality for
discontinuous (q ¼ 0:4) and continuous (q ¼ 0:52) glass tran-
sition. Solid lines are power-law fits with exponent a ¼ 0:224
and a ¼ 0:315. Inset: �-relaxation time � vs temperature T.
Solid lines are power laws with exponent 1=2a and 1=a, re-
spectively.
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such that �ðt�Þ ¼ �c. The estimated � behaves as a power
law of � near Tc and, more importantly, the exponents
perfectly agree with MCT, for both the discontinuous
and continuous glass transition. The departure from the
plateau, the so-called �-relaxation regime, is also consis-
tent with the exponent b obtained from the universal MCT
relation �ð1� aÞ2=�ð1� 2aÞ ¼ �ð1þ bÞ2=�ð1þ 2bÞ,
though this regime is much more difficult to analyze due
the exceedingly long time scales of numerical simulations.

The excellent agreement we found with MCT could not
be obviously anticipated by looking at the ‘‘simple’’ facil-
itation rule and is all the more remarkable by considering
that (i) no exact mode-coupling equation holds for facili-
tated spin models [21], and (ii) the facilitation rule is
admittedly quite remote from the actual microscopic liquid
dynamics. Furthermore, our results imply that no thermo-
dynamic transition is actually needed to observe a complex
glassy scenario, and suggest that the difficulty to observe
MCT predictions in mean-field spin glasses, is generally
related to the fact that the dynamic and static transition
properties in these systems are tightly twisted.

Conclusions.—To summarize, we have extended the
dynamic facilitation approach to glassy systems by intro-
ducing facilitated spin mixtures which exhibit a crossover
from a discontinuous to a continuous glass transition, and
shown that they provide a close microscopic realization of
the simplest higher-order glass singularity predicted by
MCT. Although we focused on Bethe lattice with fixed
connectivity and random distribution of facilitation, it is
worth remarking that one can consider an equivalent vari-
ant, in which the Bethe lattice is diluted and the facilitation
is uniform. For example, results qualitatively similar to
those reported above can be obtained when the local lattice
connectivity zi is distributed according to PðziÞ ¼
ð1� qÞ�zi;4 þ ðq� rÞ�zi;3 þ r�zi;2, and fi ¼ 2 on every

site. In this case, less connected sites turn out to have a
smaller probability to flip, just as if they were less facili-
tated. We thus expect, and indeed find, that both variants
give essentially the same results. Thus, the crossover be-
tween the two glass transitions is obtained by varying
either the local connectivity or the facilitation strength,
and corresponds to a passage from bootstrap to standard
percolation transition. Consistently with MCT predictions,
the critical dynamics on both glass transition lines is
characterized by power-law decays with exponents closely
related to those describing the divergence of the
�-relaxation time. We also mention that when a fraction
of spins is overfacilitated as compared to the case fi ¼ 2,
i.e., when PðfiÞ ¼ ð1� qÞ�fi;2 þ ðq� rÞ�fi;1 þ r�fi;0,

there is only a discontinuous glass transition line.
Our work can be naturally developed in several direc-

tions. The most obvious one consists in considering kineti-
cally constrained particle mixtures, what would be a much
closer microscopic realization of a fluid confined in a
disordered porous matrix. The comparison with geometri-
cally constrained lattice glass mixtures [22] would then

allow for a better understanding of the distinguishing
features of glassy systems with and without an ideal
Kauzmann transition. We then expect that introducing a
suitable static attraction [8] can account for nonmonotonic
dependence of relaxation time on attraction strength and,
possibly, for phase reentrant behavior. Finally, the exis-
tence of kinetic models with a glass transition in d ¼ 2
[23], suggests that there is no a priori limitation to extend-
ing our approach to finite dimensions.
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