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Chaos and coherence in the conservative three-mode decay interaction
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In this work we analyze the influence of chaos on the coherence of the mismatched three-wave interaction.
Chaos starts to play a decisive role in the problem when adiabatic approximations leading to an integrable
model for the system cease to be valid. In regular regimes where the field levels are sufficiently small, there is
a characteristic value for the frequency mismatch of the triplet below which coherence and phase locking are
dominant. In chaotic regimes, on the other hand, there is no such value and locking behaves in a more
complicated way.

PACS numbd(s): 05.45-a

[. INTRODUCTION mechanism to break down the integrability of the classical
version. The problem was partially investigated in a recent
The conservative three-wave decay interaction is typicallypaper[4] by de Oliveira, de Oliveira, and Rizzafwe refer
seen as a regular process where a higher intensity mode, &t this paper as OOR henceforind we briefly sketch their
us call it mode 1, delivers energy to other two modes 2 angrocedures and conclusions here. OOR investigated the
3 with smaller amplitude$l1]. If the time scale for energy three-mode interaction in the context of the Zakharov equa-
exchange among the three waves is much longer than th@ns. These equations are a direct generalization of the non-
time scale associated with the respective carrier frequencidsear Schrdinger equation and govern the coupled dynam-
w1, Wy, w3, Such that one can actually define quasimono-cs of high- and low-frequency modes in several situations,
chromatic carrier frequencies, and if these frequencies aras in fluid plasmas and optical systefds-7] or, with some
perfectly matched withw;=w,+ w3, then the process is adaptations, in the generation of relativistic plasma waves for
fully librational (the orbits are closed in the appropriate beat wave accelerator applicatiof®. Two high-frequency
phase spagd2] and energy exchange is maximal. Libration modes can be described by amplitude equations that are first
is equivalent to the fact that the relative phase of the threerder in time, but a low-frequency mode is also present for
modes remains restricted to very limited variations; one saywhich the governing equation is second order. It is the pres-
then that the triplet is phase locked. Two factors, howeverence of this second order temporal derivative that converts
inhibit the presence of libration and maximal exchange. Oné¢he system into a nonintegrable one. Now if the total wave
of them is the fact that matching is not always exact. It isenergy is sufficiently small, there is a big disparity between
well known that several wave systems operate under condihe time scales respectively associated with energy exchange
tions for which one has a mismatched resonance conditioand with the carrier frequency of the low-frequency mode.
w1— w,— w3=6#0, and that the presence of the mismatchUnder this condition adiabatic approximations are valid, the
S tends to diminish the effective mode interacti@]. The  second order equation can be approximated by a first order
number of librational orbits is diminished because states theamplitude equation like the other two, and chaos is absent. In
are originally phase locked fof=0 unlock when the mis- this particular situation what one really gets is the interaction
match grows. The relative phase then starts to display slipef three quasimonochromatic waves as discussed in the pre-
page as if the modes were noninteracting, at which point it ig¥/ious paragraph. But as energy increases adiabaticity and
said that the corresponding orbits open and become rotantegrability cease to be valid. It is at this point, for these
tional [2]. We show that, in regular cases, most of the initialhigh levels of energy, that coherence may be affected by
conditions compatible with the setting provided by decaychaos. Here we show that one of the waves develops a large
interaction are of the rotational type whei~AY?=5,,,,  frequency bandwidth that can no longer be approximated by
with A as a measure of the total wave energy. narrow spectral wave packets. The presences dfad not
The other factor affecting the character of the interactiorbeen considered in OOR and our purpose here is to investi-
is connected with nonintegrability and chaos. Chaos in wav@ate the combined action of mismatch and chaos. With the
systems occurs when field intensities are large enough, arftelp of the concept of limiting curves, we show that in the
generally creates or enhances incoherence by broadening theesence of intense chaotic activity phase slippage always
frequency spectrum of the interacting waves, therefore desccurs for all orbits and initial conditions whef>0, even
stroying the time periodicity of regular solutions. One thusfor arbitrarily small mismatches satisfying<Gd<<dy,,. In
has to find out under what conditions chaos is a relevanother words, the trajectories corresponding to all initial con-
feature in the system and, when present, how it acts upoditions become unlocked here. Now whér=0 we show
coherence. The issue is not trivial since in its classical verthat slippage is absent even in fully chaotic situations where
sion [1,3] the conservative three-wave coupling can becoherence can hardly be said to exist in the sense that peri-
shown to be integrable. In other words, if chaos is to beodicity is lost; in this case we would have a partial synchro-
present we need some additional and physically relevarism among the phases. If we understand coherent exchange
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as a periodic exchange of large amounts of energy between ida,(t)=da,+asa ®)
pump and daughter waves, we can summarize our findings R 1t
by saying that, when chaos is fully developed, slippage and

H — %
incoherence coexist fo6>0; slippage is absent fof<0 id@a(t)=azay, ©)
although incoherence is still there due to the aperiodic char- o~ ~ o~
acter of the dynamics. If chaos is absent, the processes are idag(t)=aya; , (10)
periodic and coherent, but slippage can be present for a frac-.th
tion of orbits if 6>0. At some points we refer to chaotic w
regimes with6>0 as strongly incoherent because they are 8= w1~ wy— wg= kf—kg—kg. (11)

aperiodic and display slippage simultaneously.

The paper is organized as follows: in Sec. Il we introducerhe above set is entirely first order and integrable. The cru-
our model and make use of adiabatic approximations to peiejg| point in obtaining this expression is the slow modulation
form an initial investigation; in Sec. Ill we analyze the full assumption applied on Eq7) which renders just an adia-
nonintegrable dynamics; and in Sec. IV we conclude theyatic approximation valid when nonlinearities are so weak

work. that one can tell apart high and low frequencies. In this case
we are saying that the low modulational frequency is much
Il. THE MODEL AND ITS ADIABATIC APPROXIMATION smaller than the “high frequency” given byws;=Kks;. An-

. - ._other interesting feature of s&8)—(10) is the mismatchs.
We start from the Zakharov equations describing the iN~rpis quantity is absent in OOR because there not only is

teraction of high-frequency electron plasma watgsnoted .
. . perfect wave-vector matching =k, + ks assumed, but also
by theE field below and low-frequency ion wavesienoted perfect matching of the carrier frequencies = w,+ ws,

by n): which demand, = (1+ks)/2, k= (1—kg)/2, andks>0 if
i E+dE=nE (1) one recalls that decay instabilities are subject to the addi-
t X=" I . . .
tional ordering constraintv;> w,. In the present paper, as
@) mentioned before, we kedp =k,+kj still, but now allow

20 020 2|2
den—d,n=G,[E|% for the mismatch according to E¢L1), which requires

Igx,n =01 3{x,t}. Equation(1) is an amplitude equation which 14k S
no longer displays high-frequency features, but yis full k= 3+ — (12)
and provides nonintegrable ingredients. 2 2ks
Then we restrict the analysis to a three-mode truncation,
writing K :1_k3+i (13)
272 2k’

E=a,(t)e**+a,(t)e'k, ©)
It is advisable to appreciate at this point the role of mis-
n=ag(t)e'**+ay(t)*e e (4)  matches in the theory. To do so we proceed to the integration
of our mismatched adiabatic sé)—(10). The usual tech-
where perfect wave-vector matchikg=k,+k; is assumed niques of nonlinear wave problems indicate that the dynam-
and ion waves are taken to be real. One obtains, after inseries can be entirely extracted from an adiabatic, one-degree-

ing expansiong3) and(4) into Egs.(1) and (2), of-freedom HamiltoniarH,, given by
id al(t) = w1a1+ a3a2, (5) -~ [A - B - ~
t Ha=2\/p1 5 ~P1|| 5 ~p1|COSY+ Ipy. (14
idtaz(t)=w2a2+ a§ al, (6)

5 5 o . Use is made of the notatior?‘fi= \f;—ei"’j, j=1,2,3, andys
dias(t) + w3az= —k3a.a; , () =¢,— ¢, ¢3, and of the Manley-Rowe conserved quanti-

. . ties py+ po,=Al2, p1+ pa=B/2. In the HamiltoniarH , the
where w; ;= kiz and wz=ks, with d;=d/dt. The first two pl_ p|2 bl P17 P3 d dth . al .
equations above, Eq&) and(6), are first order in time but canonical variables aje andy an f e respective evo u_t|on
Eq. (7) is second order. equations are to be derived fropy=—dJdH,/d¢ and ¢
Truncation up to three spatial modes yields accurate re=gH,/dp,. Given this, one can construct the phase space of
sults when one works with infinitely extended systems, andhe problem as the contour levels of functioH,
in any case the special content of the theory comes from Eq. H.(p1,1). For the sake of future convenience, in Fig. 1

) sssecordGrvatue my b s 22 VSRS 0 i e e g o of b
P y quency p1=(2/ks)py. We takeks=1 andA=B=0.1, with 5=0 in

coherence. . .
When |as|>|a,a,|, one can solve Eq(7) in the form  Panel(@. §=0.4 in (b), and 6=—0.4 in (c) (here,p;=A
o~ il )~ , ) represents the situation where all the energy is placed in
ag(t) =as(t)e <" with as(t) as a slowly varying function  n4e 1 which then plays the role of pump wavie addi-
of time, [dias|<|wzag|. If in additon we write @,  tion, analysis is restricted to the rankjg< SA/2 which will
= 2lwzae 2" and a;= \2lwza;e”'(“27 @3t a final ap- be shown to be the one of physical interest. The comparison
proximated set can be written in the form shows that in the matched cage=0, orbits cannot move
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FIG. 1. Contour levels of the
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Eq. (14), on the @,p,) phase
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over the entire space. The functigi= ¢(t) will be bounded wherepq,p,,p,, andp,, are the momenta canonically as-
to vary within the intervalR=[ #/2,3%/2], which in turn  sociated with coordinates, ,,,u, andv, respectively. The
implies a reasonable degree of coherence involving thgoverning Hamiltonian(16) is likely to be nonintegrable
phases. By a reasonable degree of coherence we mearsiace no assumption on the time scales of the dynamics is
situation where averages of harmonic functiongipfike €'¥ ~ made—i.e., we do not use any modulational approximations
to be used later, are not too small. In other words, to have to simplify the equations governing the dynamics of mode 3.
reasonable degree of coherence we Wéelt’)|<1 and not A first canonical transformation replaces— 8= ¢;— ¢,
|(e'¥)|<1, with () denoting an average over initial condi- and allows one to rewrite Hamiltonigi6), discarding con-
tions, yet to be better defined. On the other hand, when atant terms, as

positive mismatch is allowed a subset of orbits loses coher-

ence and starts to wander unbounded over the phase space; H=+2pi(A—p;)(ucosB—uv sinpB)

only orbits sufficiently close to the stable central fixed point 1

remain bounded. Locking is accentuated wh#a0, but +-[p2+ p2+K3(UP+vd)]+ (gt 8)pr, (A7)
then coherent exchange is smaller. In this integrable version 2

of the problem, we note that the size of the incoherent set L _
strongly depends on the magnitude &flf & is small the ~With Aas a new momentum satisfyipg+ p,=A and withé

incoherent set is also small and should not particularly affectill given by Eq.(11). One proceeds using polar coordinates

statistical aspects associated with the dynamics. Roughl{f-?) in the formu=rsin6 andv=r cosé to write H as

speaking, untrapped orbits become dominant only when the .

. . . ~ H=\2p(A— 0—

fixed point drops to a position much belgw= A/2 such that pr(A=pyrsinO—p)

the great majority of orbits become untrapped, displaying 1

slippage. The fixed point ay/== demands & dH,/dp, t5

from which one getg,/(A2)~AY%(26) if p;<A and A

=B with 'k3.:1. This result shows tha# must exceed a [oF and py are momenta Conjugate to variablesnd 0, re-

characteristic value spectively. Noticing that the angles appear in the combina-
5 —al2 15 tion 8— 6, one additional canonical transformation replaces

ing=" (15 B with B— y=pB— 0+ /2, allowing one to writep,+pq

which will be referred to as the threshold for untrapping. we =B With B as yet another new and conserved momentum.

finally note thats,,, can be large ifA is not too small and 1€ Hamiltonian therefore takes the final form

that A itself can be seen as a measure of the total energy of A

the system, or, to be more precise, a measure of the maximal H=2p1(A=py)r cosy

pump strengt_h. _ _ 1 5 o, (B—p;)?
The story is remarkably different when chaos is present, +§ py+Kare+ 7

however, as the coming analysis will show.

p2
2422, 0
pr+Ksro+ —

2 +(w3+5)p1. (18

+(w3zt+d)pr. (19

We set
IIl. FULL DYNAMICS
. . . ) H= + 0)A= +6)B 20
To investigate the full dynamics we use techniques devel- (03+9) (03+0) 20

oped in OOR. Let us first show that the dynamics can b represent decay instabilities. Under this condition the state
derived from a two-degrees-of-freedom Hamiltonian. p1(0)=A directly implies p,(0)=0 andr(0)=p,(0)=0,

We writea; ,=(\p; /ks)€'“22more or less as before, but \yhich are indeed the conditions characterizing the initial
now usea(t)=(1/V2)[u(t)+iv(t)], u,v real. This way stage of the decay instability where one has a pump and two
our governing equations Eq&)—(7) can be entirely derived  daughter waves with vanishing amplitudes. As mentioned
from the Hamiltonian earlier, the present work will focus on this particular setting.

H=2p1p,[ucos ¢s— ¢h2)—v sin(¢1— ¢,)]

A. Limiting curves and Poincaré plots

Before embarking on the simulations of the full dynamics

1
T2 20 L2202
TPt P Tk (UT o) [T 01y w2, (16) let us first note that conditione;=1 and Eq.(20) along
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with the adiabatic approximation=+A—p,; coming from the one where the curvg=g(r) is just tangent to they
the Manley-Rowe conserved quantities arising from Eqs=0 axis. The marginal value af and the associateg, are

(8)—(10) allow us to write precisely on the limiting curve. In other words, the curve can
be obtained in the formp,=p4(¢) if one solves the nonlin-
_ 1, ear set
2H,= 5A—§pr, (21
: : : . . dg
which explains why we were interested in the regidths g= a=0. (23

< S8A/2 to construct the phase plots of Fig. 1.

But restriction(21) is valid only as long as the dynamics . -
is adiabatic. We wish to see if some constraint of this sort is In Fig. 2 we represent .these curvemlid lineg super-
also present in the full nonintegrable problem. To investiga'[é:’ose_d on Pomt_:arplots which _are themselyes_ made by re-
the issue let us then discuss the existence of limiting curveserding the pair ¢,p,) each timep,=0 with p,>0. We
and their crucial role. Given the constants of motion of thehave integrated both the original s&—(7) and the equa-
System, ||m|t|ng curves can be seen as bounding the a”oweﬂf)ns obtained from the Ca.nor"ca”y transformed Hamiltonian

regions in phase space. Our constants given in relggon  (19); the simulations display exact agreement, as they
above yieldp? in the form should. Various values af andA are considered, along with

the usual condition®;=1 andB=A. When =0 the situ-

1 ation is represented as in pariel for a high value ofA, A
5PF=(w3+ 8)(A=p1)=2pi(A—py)r cosy =3, well above the threshold for chaos. The only allowed

region is the regiorR; phaseys simply cannot escape else-

where. This is an interesting result, since even for extremely
=g(r), (22 large fields the orbits are always constrained to move inside

a region of relatively limited phase variations. In other
which shapes the limiting curve as the one bounding thevords, phase slippage is absent and some sort of partial syn-
physical regiong=0, with g=0. Now for a givenp,, for  chronism of the relative phasg persists in the system even
instance, a marginally physical value #fcan be defined as for large values ofA. This partial synchronism remains ac-

1 (A—py)?
—2(k§r2+ 7
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tive for 6<0, but then energy exchange becomes smaller |, -
because the accessible phase space is reduced, much like tl
regular cases analyzed earlier. The dynamics plus limiting S
curves forA=3 andé=—0.4 are represented in pard);
there one clearly sees that the allowed region becomes eve o7 | P .

smaller than in the previoud=0 case. In all these deeply P

chaotic cases the phase space seems to be ergodically fille f I
by the orbits. The phase plots suggest that even orbits ini- N
tially placed in the innermost parts of the allowed regions 03 A20.55.5-0 X 7
end up by covering the entire space. One direct tool imported L S;sz'b i Y
from accelerator physics that can be used to measure ergoc A=.;8=05’—’_’_’;"‘~. .
icity is the bunching factoB defined in the form 0.0 i “tiaae
1 10 . 100 1000
time

: (249

N
> el
=1

. 1
b=[(e)|=§

20000 T

with the averaging summation taken over orbits issuing from

N initial conditions[9]. In ergodic cases the average does not
depend on the initial conditions and can be evaluated as any(rad)
integral over allowed regions in phase space,

f eiwdl//dpl
allowed

| duan,
allowed

10000

bergE (25)

When =0, b, can easily be evaluated ds, =2/ 0 10000 20000
~0.637, and, for a sufficiently high value éfso as to pro- tme

duce a good amount of chaos, simulations viti 100 ini-

tial conditions reveal that the ergodic approximation is good, 60 - e T

with b—0.64. The practical importance of ergodicity resides
in cases with6>0 as in Fig. Zc) where we takes=0.5.
Similarly to what happened in the integrable approximation,
a small channel is opened negy=0, and if ergodicity is
present orbits initially placed anywhere insieventually
reach the channel and leaf& Synchronism would be bro-
ken in view of the fact that the relative phagét) generated
by any initial condition would no longer be constrained to
limited variations; note that ergodicity is absent for smaller
values ofA as seen in Fig. @), where we still takes=0.5

40

y(rad)

20

but now with A=0.55. We finally emphasize that the phase 0

behavior in fully chaotic situations is drastically different 0 i time & 100
from the regular approximation. In regular cases incoher-

ence, or slippage, becomes appreciable only whénlarge FIG. 3. (a) Fractionf of particles remaining irkR after a time

enough that~ &;,, . For smaller values of one can always interval t; 5000 initial conditions are uniformly distributed along
find a large fraction of initial conditions placed outside that#=m. (b) (t) versust for three initial conditions of(a): p;
phase-space region where slippage occurs. But if chaos B§A/1-1A/3A/10 with A=3 and§=0.5. w3=1 always.(c) #(t)
present, slippage occurs for any positive, arbitrarily smallVersust for the inital conditionp, =A/3 of panel(b), on a much
value of 8, even if these values lie much below the thresholdner time scale showing the jumps of the relative phase.

with << 6y, . Now if & is very small,b is still close to 24 . I
since theth;ractional occupa)tlion of the channels is smallN=2000 aty=m z?md compute the fractiohof these initial
Therefore one needs a more detailed tool to signal stron§Pnditions remaining withirk at timet.

incoherence as defined in the Introduction. We investigate Figure 3a) indicates that in regimes of intense chaos with
the issue next. positive § as represented by the curves wik 3, no trajec-

tory remains trapped i® andf—0 asymptotically. Increas-
ingly large values of5 only accelerate leakage. For smaller
values ofA where ergodicity is not complete, as in the case
All the discussion of cases with>0 can be summarized of the curve withA=0.55, not all initial conditions abandon
and made clearer with the help of some additional figures. IrR; those initial conditions surrounded by KAM
what follows, we launch a large number of initial conditions (Kolmogorov-Arnol’d-Mosel{ 10]) curves remain there arfd

B. Phase slippage
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no longer vanishes asymptoticallyee pane{d) of Fig. 2. idea of the reach of. Using the values op, andr that

' Figure 3b), with ¢ represented not as a modula Zunc- minimize the energy of mode B, =0 andr2= JA— py/ws,
tion, as could perhaps be expected, promptly reveals that i}e nayveH =V, + wzA+ Spy. If 6=0, asp, decrease¥,
chaotic caseg unlocks completely. This pané) was made i be bounded byH — w3A= wsA— wzA=0, which im-
with the version of the integrator where we represent theplies ml2< y=<3m/2. Now, if 6>0, asp décreases)/-

fields directly in polar coordinates, as in Hamiltonids®). It must increase to keefl cc;nstant :;md thlus cgsmust t')né_
seems that unfolgiingf in this way make it easier to realize qme positive, opening the locking rectangle; on the other
when we have slippage. In all cases of paitglthe average pang 5<0 shrinks the allowed phase spadecan thus be
phase .behaV|or examined on long time SC&|GS. mimics theeen almost literally as an excess energy per phonon, relative
linear time dependence of regular mismatched situations, o the separatrices at=m/2 and 37/2. If 5>0 the trajec-
though the phase velocity has not yet been determined in tory clears the separatrix and one has open orbits bat if

terms of the parameters of the model. o <0 one cannot cross the separatrix and only bounded orbits
In Fig. 3(c) we run simulations on a much finer time scale gre allowed.

than in the previous panel to see that the dynamics is not so

smooth as s.uggestedf !ooks much more_erratic—it getg IV. FINAL REMARKS

trapped withinR, then it jumps away, then it gets trapped in

another well, and so on. An average over longer time scales In this paper we have analyzed the problem of phase co-

leads to the approximately constant phase velocity of pandierence in the conservative nonintegrable three-mode inter-

(b). action. Using the terminology defined in the Introduction,
In chaotic cases, if is positive but very small, our results our main finding is that, while in integrable approximations

are similar to the casé=0 in the sense that the orbit spends initial conditions leading to rotational orbiterbits display-

greater amounts of time withiR[ mod2s]. But the impor-  ing phase slippageare more numerous than those leading to

tant point is that, as one increase chaotic orbits start to librational orbits (orbits displaying locking as long as the

spend longer and longer time intervals outsidgmod2=], ~ Mismatchd is sufficiently large to satisfyp> 8y, =A"? in

evenwhend is notlarge enough to free the majority of orbits chaotic regimes phase slippage is always present even when
of the adiabatic approximation. 6 lies much below the threshold with<05<6;y,,. In this

One last point we wish to explore is about the effecsof latter case it does not matter how the initial conditions are
on the limiting curves in phase space. Consider HamiltoniaPrepared; the relative phase of the triplet always breaks loose
(16). The sumw, p;+ w,p, on the right-hand side represents and any phase synchronism can no longer be observed. In-
the adiabatic normal mode energy of modes 1 andr&@  coherence does occur as higher-order temporal derivatives
quency w times wave intensity|a|?>~p). The term are introduced in the governing equations broadening the

(1/2) p2+ p?+k3(u?+v?)] can therefore be seen as repre-SPectral width in frequency space.

senting the energy of mode 3, which is not adiabatic in our

problem, and the first termy2pp,[ U cos(p;— ¢,) —v Sin(dy ACKNOWLEDGMENTS
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