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Chaos and coherence in the conservative three-mode decay interaction

M. Frichembruder, R. Pakter, G. Gerhardt, and F. B. Rizzato
Instituto de Fı´sica, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre,

Rio Grande do Sul, Brazil
~Received 26 April 2000!

In this work we analyze the influence of chaos on the coherence of the mismatched three-wave interaction.
Chaos starts to play a decisive role in the problem when adiabatic approximations leading to an integrable
model for the system cease to be valid. In regular regimes where the field levels are sufficiently small, there is
a characteristic value for the frequency mismatch of the triplet below which coherence and phase locking are
dominant. In chaotic regimes, on the other hand, there is no such value and locking behaves in a more
complicated way.

PACS number~s!: 05.45.2a
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I. INTRODUCTION

The conservative three-wave decay interaction is typic
seen as a regular process where a higher intensity mode
us call it mode 1, delivers energy to other two modes 2 a
3 with smaller amplitudes@1#. If the time scale for energy
exchange among the three waves is much longer than
time scale associated with the respective carrier frequen
v1 , v2 , v3, such that one can actually define quasimon
chromatic carrier frequencies, and if these frequencies
perfectly matched withv15v21v3, then the process is
fully librational ~the orbits are closed in the appropria
phase space! @2# and energy exchange is maximal. Libratio
is equivalent to the fact that the relative phase of the th
modes remains restricted to very limited variations; one s
then that the triplet is phase locked. Two factors, howev
inhibit the presence of libration and maximal exchange. O
of them is the fact that matching is not always exact. It
well known that several wave systems operate under co
tions for which one has a mismatched resonance cond
v12v22v35dÞ0, and that the presence of the mismat
d tends to diminish the effective mode interaction@3#. The
number of librational orbits is diminished because states
are originally phase locked ford50 unlock when the mis-
match grows. The relative phase then starts to display s
page as if the modes were noninteracting, at which point
said that the corresponding orbits open and become r
tional @2#. We show that, in regular cases, most of the init
conditions compatible with the setting provided by dec
interaction are of the rotational type whend;A1/2[d thr ,
with A as a measure of the total wave energy.

The other factor affecting the character of the interact
is connected with nonintegrability and chaos. Chaos in w
systems occurs when field intensities are large enough,
generally creates or enhances incoherence by broadenin
frequency spectrum of the interacting waves, therefore
stroying the time periodicity of regular solutions. One th
has to find out under what conditions chaos is a relev
feature in the system and, when present, how it acts u
coherence. The issue is not trivial since in its classical v
sion @1,3# the conservative three-wave coupling can
shown to be integrable. In other words, if chaos is to
present we need some additional and physically relev
PRE 621063-651X/2000/62~6!/7861~6!/$15.00
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mechanism to break down the integrability of the classi
version. The problem was partially investigated in a rec
paper@4# by de Oliveira, de Oliveira, and Rizzato~we refer
to this paper as OOR henceforth! and we briefly sketch their
procedures and conclusions here. OOR investigated
three-mode interaction in the context of the Zakharov eq
tions. These equations are a direct generalization of the n
linear Schro¨dinger equation and govern the coupled dyna
ics of high- and low-frequency modes in several situatio
as in fluid plasmas and optical systems@5–7# or, with some
adaptations, in the generation of relativistic plasma waves
beat wave accelerator applications@8#. Two high-frequency
modes can be described by amplitude equations that are
order in time, but a low-frequency mode is also present
which the governing equation is second order. It is the pr
ence of this second order temporal derivative that conv
the system into a nonintegrable one. Now if the total wa
energy is sufficiently small, there is a big disparity betwe
the time scales respectively associated with energy excha
and with the carrier frequency of the low-frequency mod
Under this condition adiabatic approximations are valid,
second order equation can be approximated by a first o
amplitude equation like the other two, and chaos is absen
this particular situation what one really gets is the interact
of three quasimonochromatic waves as discussed in the
vious paragraph. But as energy increases adiabaticity
integrability cease to be valid. It is at this point, for the
high levels of energy, that coherence may be affected
chaos. Here we show that one of the waves develops a l
frequency bandwidth that can no longer be approximated
narrow spectral wave packets. The presence ofd had not
been considered in OOR and our purpose here is to inve
gate the combined action of mismatch and chaos. With
help of the concept of limiting curves, we show that in t
presence of intense chaotic activity phase slippage alw
occurs for all orbits and initial conditions whend.0, even
for arbitrarily small mismatches satisfying 0,d!d thr . In
other words, the trajectories corresponding to all initial co
ditions become unlocked here. Now whend<0 we show
that slippage is absent even in fully chaotic situations wh
coherence can hardly be said to exist in the sense that
odicity is lost; in this case we would have a partial synch
nism among the phases. If we understand coherent exch
7861 ©2000 The American Physical Society
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7862 PRE 62FRICHEMBRUDER, PAKTER, GERHARDT, AND RIZZATO
as a periodic exchange of large amounts of energy betw
pump and daughter waves, we can summarize our find
by saying that, when chaos is fully developed, slippage
incoherence coexist ford.0; slippage is absent ford<0
although incoherence is still there due to the aperiodic ch
acter of the dynamics. If chaos is absent, the processes
periodic and coherent, but slippage can be present for a f
tion of orbits if d.0. At some points we refer to chaoti
regimes withd.0 as strongly incoherent because they
aperiodic and display slippage simultaneously.

The paper is organized as follows: in Sec. II we introdu
our model and make use of adiabatic approximations to
form an initial investigation; in Sec. III we analyze the fu
nonintegrable dynamics; and in Sec. IV we conclude
work.

II. THE MODEL AND ITS ADIABATIC APPROXIMATION

We start from the Zakharov equations describing the
teraction of high-frequency electron plasma waves~denoted
by theE field below! and low-frequency ion waves~denoted
by n):

i ] tE1]x
2E5n E, ~1!

] t
2n2]x

2n5]x
2uEu2; ~2!

]$x,t%[]/]$x,t%. Equation~1! is an amplitude equation whic
no longer displays high-frequency features, but Eq.~2! is full
and provides nonintegrable ingredients.

Then we restrict the analysis to a three-mode truncat
writing

E5a1~ t !eik1x1a2~ t !eik2x, ~3!

n5a3~ t !eik3x1a3~ t !* e2 ik3x, ~4!

where perfect wave-vector matchingk15k21k3 is assumed
and ion waves are taken to be real. One obtains, after in
ing expansions~3! and ~4! into Eqs.~1! and ~2!,

idta1~ t !5v1a11a3a2 , ~5!

idta2~ t !5v2a21a3* a1 , ~6!

dt
2a3~ t !1v3

2a352k3
2a1a2* , ~7!

wherev1,2[k1,2
2 and v3[k3, with dt[d/dt. The first two

equations above, Eqs.~5! and ~6!, are first order in time but
Eq. ~7! is second order.

Truncation up to three spatial modes yields accurate
sults when one works with infinitely extended systems, a
in any case the special content of the theory comes from
~7! whose second derivative may be seen as introducing
possibility of a wide frequency bandwidth that can act
coherence.

When ua3u@ua1a2u, one can solve Eq.~7! in the form
a3(t)5ã3(t)e2 iv3t with ã3(t) as a slowly varying function
of time, udtã3u!uv3ã3u. If in addition we write a2

5A2/v3ã2e2 iv2t and a15A2/v3ã1e2 i (v21v3)t, a final ap-
proximated set can be written in the form
en
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idtã1~ t !5dã11ã3ã2 , ~8!

idtã2~ t !5ã3* ã1 , ~9!

idtã3~ t !5ã1ã2* , ~10!

with

d[v12v22v35k1
22k2

22k3 . ~11!

The above set is entirely first order and integrable. The c
cial point in obtaining this expression is the slow modulati
assumption applied on Eq.~7! which renders just an adia
batic approximation valid when nonlinearities are so we
that one can tell apart high and low frequencies. In this c
we are saying that the low modulational frequency is mu
smaller than the ‘‘high frequency’’ given byv35k3. An-
other interesting feature of set~8!–~10! is the mismatchd.
This quantity is absent in OOR because there not only
perfect wave-vector matchingk15k21k3 assumed, but also
perfect matching of the carrier frequenciesv15v21v3,
which demandsk15(11k3)/2, k25(12k3)/2, andk3.0 if
one recalls that decay instabilities are subject to the a
tional ordering constraintv1.v2. In the present paper, a
mentioned before, we keepk15k21k3 still, but now allow
for the mismatch according to Eq.~11!, which requires

k15
11k3

2
1

d

2k3
, ~12!

k25
12k3

2
1

d

2k3
. ~13!

It is advisable to appreciate at this point the role of m
matches in the theory. To do so we proceed to the integra
of our mismatched adiabatic set~8!–~10!. The usual tech-
niques of nonlinear wave problems indicate that the dyna
ics can be entirely extracted from an adiabatic, one-deg
of-freedom HamiltonianHa , given by

Ha52Ar̃1S A

2
2 r̃1D S B

2
2 r̃1D cosc1dr̃1 . ~14!

Use is made of the notationsã j5Ar̃ je
if j , j 51,2,3, andc

[f12f22f3, and of the Manley-Rowe conserved quan
ties r̃11 r̃25A/2, r̃11 r̃35B/2. In the HamiltonianHa the
canonical variables arer̃1 andc and the respective evolutio

equations are to be derived fromṙ̃152]Ha /]c and ċ

5]Ha /]r̃1. Given this, one can construct the phase spac
the problem as the contour levels of functionHa

5Ha( r̃1 ,c). For the sake of future convenience, in Fig.
we represent the phase space in terms of variablesc and
r15(2/k3) r̃1. We takek351 andA5B50.1, with d50 in
panel ~a!, d50.4 in ~b!, and d520.4 in ~c! ~here,r15A
represents the situation where all the energy is placed
mode 1, which then plays the role of pump wave!. In addi-
tion, analysis is restricted to the rangeHa,dA/2 which will
be shown to be the one of physical interest. The compari
shows that in the matched cased50, orbits cannot move
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FIG. 1. Contour levels of the
adiabatic HamiltonianHa given in
Eq. ~14!, on the (c,r1) phase
space;d50 in ~a!, d50.4 in ~b!,
and d520.4 in ~c!. In all cases,
k351 andA5B50.1.
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over the entire space. The functionc5c(t) will be bounded
to vary within the intervalR[@p/2,3p/2#, which in turn
implies a reasonable degree of coherence involving
phases. By a reasonable degree of coherence we me
situation where averages of harmonic functions ofc, like eic

to be used later, are not too small. In other words, to hav
reasonable degree of coherence we wantu^eic&u&1 and not
u^eic&u!1, with ^& denoting an average over initial cond
tions, yet to be better defined. On the other hand, whe
positive mismatch is allowed a subset of orbits loses coh
ence and starts to wander unbounded over the phase s
only orbits sufficiently close to the stable central fixed po
remain bounded. Locking is accentuated whend,0, but
then coherent exchange is smaller. In this integrable ver
of the problem, we note that the size of the incoherent
strongly depends on the magnitude ofd. If d is small the
incoherent set is also small and should not particularly af
statistical aspects associated with the dynamics. Rou
speaking, untrapped orbits become dominant only when
fixed point drops to a position much belowr̃15A/2 such that
the great majority of orbits become untrapped, display
slippage. The fixed point atc5p demands 05]Ha /]r̃1

from which one getsr̃1 /(A/2);A1/2/(2d) if r̃1!A and A
5B with k351. This result shows thatd must exceed a
characteristic value

d inc[A1/2, ~15!

which will be referred to as the threshold for untrapping. W
finally note thatd inc can be large ifA is not too small and
that A itself can be seen as a measure of the total energ
the system, or, to be more precise, a measure of the max
pump strength.

The story is remarkably different when chaos is prese
however, as the coming analysis will show.

III. FULL DYNAMICS

To investigate the full dynamics we use techniques de
oped in OOR. Let us first show that the dynamics can
derived from a two-degrees-of-freedom Hamiltonian.

We writea1,25(Ar1,2/k3)eif1,2 more or less as before, bu
now usea3(t)5(1/A2)@u(t)1 iv(t)#, u,v real. This way
our governing equations Eqs.~5!–~7! can be entirely derived
from the Hamiltonian

H5A2r1r2@u cos~f12f2!2v sin~f12f2!#

1
1

2
@pu

21pv
21k3

2~u21v2!#1v1r11v2r2 , ~16!
e
n a

a

a
r-
ce;

t

n
et

ct
ly
e

g
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t,

l-
e

wherer1 ,r2 ,pu , andpv , are the momenta canonically a
sociated with coordinatesc1 ,c2 ,u, andv, respectively. The
governing Hamiltonian~16! is likely to be nonintegrable
since no assumption on the time scales of the dynamic
made—i.e., we do not use any modulational approximati
to simplify the equations governing the dynamics of mode
A first canonical transformation replacesf1→b[f12f2
and allows one to rewrite Hamiltonian~16!, discarding con-
stant terms, as

H5A2r1~A2r1!~u cosb2v sinb!

1
1

2
@pu

21pv
21k3

2~u21v2!#1~v31d!r1 , ~17!

with A as a new momentum satisfyingr11r25A and withd
still given by Eq.~11!. One proceeds using polar coordinat
(r ,u) in the formu5r sinu andv5r cosu to write H as

H5A2r1~A2r1!r sin~u2b!

1
1

2 S pr
21k3

2r 21
pu

2

r 2 D 1~v31d!r1 . ~18!

pr and pu are momenta conjugate to variablesr and u, re-
spectively. Noticing that the angles appear in the combi
tion b2u, one additional canonical transformation replac
b with b→c[b2u1p/2, allowing one to writepu1r1
5B with B as yet another new and conserved momentu
The Hamiltonian therefore takes the final form

H5A2r1~A2r1!r cosc

1
1

2 S pr
21k3

2r 21
~B2r1!2

r 2 D1~v31d!r1 . ~19!

We set

H5~v31d!A5~v31d!B ~20!

to represent decay instabilities. Under this condition the s
r1(0)5A directly implies r2(0)50 and r (0)5pr(0)50,
which are indeed the conditions characterizing the ini
stage of the decay instability where one has a pump and
daughter waves with vanishing amplitudes. As mention
earlier, the present work will focus on this particular settin

A. Limiting curves and Poincaré plots

Before embarking on the simulations of the full dynami
let us first note that conditionsv351 and Eq.~20! along
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FIG. 2. Limiting curves and
Poincare´ plots generated by the
full Hamiltonian H given in Eq.
~19!, with v351 and B5A; d
50 andA53 in ~a!, d520.4 and
A53 in ~b!, d50.5 andA53 in
~c!, and d50.5 and A50.55 in
~d!.
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with the adiabatic approximationr 5AA2r1 coming from
the Manley-Rowe conserved quantities arising from E
~8!–~10! allow us to write

2Ha5dA2
1

2
pr

2 , ~21!

which explains why we were interested in the regionsHa
,dA/2 to construct the phase plots of Fig. 1.

But restriction~21! is valid only as long as the dynamic
is adiabatic. We wish to see if some constraint of this sor
also present in the full nonintegrable problem. To investig
the issue let us then discuss the existence of limiting cur
and their crucial role. Given the constants of motion of t
system, limiting curves can be seen as bounding the allo
regions in phase space. Our constants given in relation~20!
above yieldpr

2 in the form

1

2
pr

25~v31d!~A2r1!2A2r1~A2r1!r cosc

2
1

2 S k3
2r 21

~A2r1!2

r 2 D[g~r !, ~22!

which shapes the limiting curve as the one bounding
physical regiong>0, with g50. Now for a givenr1, for
instance, a marginally physical value ofc can be defined as
.

is
e
s

e
ed

e

the one where the curveg5g(r ) is just tangent to theg
50 axis. The marginal value ofc and the associatedr1 are
precisely on the limiting curve. In other words, the curve c
be obtained in the formr15r1(c) if one solves the nonlin-
ear set

g5
dg

dr
50. ~23!

In Fig. 2 we represent these curves~solid lines! super-
posed on Poincare´ plots which are themselves made by r
cording the pair (c,r1) each timepr50 with ṗr.0. We
have integrated both the original set~5!–~7! and the equa-
tions obtained from the canonically transformed Hamilton
~19!; the simulations display exact agreement, as th
should. Various values ofd andA are considered, along with
the usual conditionsv351 andB5A. Whend50 the situ-
ation is represented as in panel~a! for a high value ofA, A
53, well above the threshold for chaos. The only allow
region is the regionR; phasec simply cannot escape else
where. This is an interesting result, since even for extrem
large fields the orbits are always constrained to move ins
a region of relatively limited phase variations. In oth
words, phase slippage is absent and some sort of partial
chronism of the relative phasec persists in the system eve
for large values ofA. This partial synchronism remains ac
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tive for d,0, but then energy exchange becomes sma
because the accessible phase space is reduced, much lik
regular cases analyzed earlier. The dynamics plus limi
curves forA53 andd520.4 are represented in panel~b!;
there one clearly sees that the allowed region becomes
smaller than in the previousd50 case. In all these deepl
chaotic cases the phase space seems to be ergodically
by the orbits. The phase plots suggest that even orbits
tially placed in the innermost parts of the allowed regio
end up by covering the entire space. One direct tool impo
from accelerator physics that can be used to measure er
icity is the bunching factorB defined in the form

b[u^eic&u[
1

NU(j 51

N

eic jU, ~24!

with the averaging summation taken over orbits issuing fr
N initial conditions@9#. In ergodic cases the average does
depend on the initial conditions and can be evaluated a
integral over allowed regions in phase space,

berg[U Eallowed
eicdcdr1

E
allowed

dcdr1

U . ~25!

When d50, berg can easily be evaluated asberg52/p
'0.637, and, for a sufficiently high value ofA so as to pro-
duce a good amount of chaos, simulations withN5100 ini-
tial conditions reveal that the ergodic approximation is go
with b→0.64. The practical importance of ergodicity resid
in cases withd.0 as in Fig. 2~c! where we taked50.5.
Similarly to what happened in the integrable approximati
a small channel is opened nearr150, and if ergodicity is
present orbits initially placed anywhere insideR eventually
reach the channel and leaveR. Synchronism would be bro
ken in view of the fact that the relative phasec(t) generated
by any initial condition would no longer be constrained
limited variations; note that ergodicity is absent for smal
values ofA as seen in Fig. 2~d!, where we still taked50.5
but now withA50.55. We finally emphasize that the pha
behavior in fully chaotic situations is drastically differe
from the regular approximation. In regular cases incoh
ence, or slippage, becomes appreciable only whend is large
enough thatd;d thr . For smaller values ofd one can always
find a large fraction of initial conditions placed outside th
phase-space region where slippage occurs. But if chao
present, slippage occurs for any positive, arbitrarily sm
value ofd, even if these values lie much below the thresh
with d!d thr . Now if d is very small,b is still close to 2/p
since the fractional occupation of the channels is sm
Therefore one needs a more detailed tool to signal str
incoherence as defined in the Introduction. We investig
the issue next.

B. Phase slippage

All the discussion of cases withd.0 can be summarized
and made clearer with the help of some additional figures
what follows, we launch a large number of initial conditio
r
the
g
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t
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ll.
g

te

In

N55000 atc5p and compute the fractionf of these initial
conditions remaining withinR at time t.

Figure 3~a! indicates that in regimes of intense chaos w
positived as represented by the curves withA53, no trajec-
tory remains trapped inR and f→0 asymptotically. Increas-
ingly large values ofd only accelerate leakage. For small
values ofA where ergodicity is not complete, as in the ca
of the curve withA50.55, not all initial conditions abando
R; those initial conditions surrounded by KAM
~Kolmogorov-Arnol’d-Moser@10#! curves remain there andf

FIG. 3. ~a! Fraction f of particles remaining inR after a time
interval t; 5000 initial conditions are uniformly distributed alon
c5p. ~b! c(t) versus t for three initial conditions of~a!: r1

5A/1.1,A/3,A/10 with A53 andd50.5. v351 always.~c! c(t)
versust for the inital conditionr15A/3 of panel~b!, on a much
finer time scale showing the jumps of the relative phase.
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no longer vanishes asymptotically@see panel~d! of Fig. 2#.
Figure 3~b!, with c represented not as a modulo 2p func-

tion, as could perhaps be expected, promptly reveals tha
chaotic casesc unlocks completely. This panel~b! was made
with the version of the integrator where we represent
fields directly in polar coordinates, as in Hamiltonian~19!. It
seems that unfoldingc in this way make it easier to realiz
when we have slippage. In all cases of panel~b! the average
phase behavior examined on long time scales mimics
linear time dependence of regular mismatched situations
though the phase velocityċ has not yet been determined
terms of the parameters of the model.

In Fig. 3~c! we run simulations on a much finer time sca
than in the previous panel to see that the dynamics is no
smooth as suggested.c looks much more erratic—it get
trapped withinR, then it jumps away, then it gets trapped
another well, and so on. An average over longer time sc
leads to the approximately constant phase velocity of pa
~b!.

In chaotic cases, ifd is positive but very small, our result
are similar to the cased50 in the sense that the orbit spen
greater amounts of time withinR@mod2p#. But the impor-
tant point is that, as one increased, chaotic orbits start to
spend longer and longer time intervals outsideR@mod2p#,
evenwhend is not large enough to free the majority of orbi
of the adiabatic approximation.

One last point we wish to explore is about the effect od
on the limiting curves in phase space. Consider Hamilton
~16!. The sumv1r11v2r2 on the right-hand side represen
the adiabatic normal mode energy of modes 1 and 2~fre-
quency v times wave intensity uau2;r). The term
(1/2)@pu

21pv
21k3

2(u21v2)# can therefore be seen as repr
senting the energy of mode 3, which is not adiabatic in
problem, and the first termA2r1r2@u cos(f12f2)2v sin(f1
2f2)# as an interaction potential energy between mode
and 2, and 3, which we callVint for short in what follows.
Using Manley-Rowe and our initial conditions we can wr
a final form ~19! with B5A and H5(v31d)A; Vint , in
particular, takes the formVint5A2r1(A2r1)r cosc. For a
given r1, the lowest energy of mode 3 must correspond
the maximal potential energyVint and this can give us an
,

ca
in

e

e
l-

so

es
el

n

-
r

1

o

idea of the reach ofc. Using the values ofpr and r that
minimize the energy of mode 3,pr50 andr 25AA2r1/v3,
we haveH5Vint1v3A1dr1. If d50, asr1 decreasesVint
will be bounded byH2v3A5v3A2v3A50, which im-
plies p/2<c<3p/2. Now, if d.0, as r1 decreasesVint
must increase to keepH constant, and thus cosc must be-
come positive, opening the locking rectangle; on the ot
hand,d,0 shrinks the allowed phase space.d can thus be
seen almost literally as an excess energy per phonon, rela
to the separatrices atc5p/2 and 3p/2. If d.0 the trajec-
tory clears the separatrix and one has open orbits butd
,0 one cannot cross the separatrix and only bounded o
are allowed.

IV. FINAL REMARKS

In this paper we have analyzed the problem of phase
herence in the conservative nonintegrable three-mode in
action. Using the terminology defined in the Introductio
our main finding is that, while in integrable approximatio
initial conditions leading to rotational orbits~orbits display-
ing phase slippage! are more numerous than those leading
librational orbits~orbits displaying locking! as long as the
mismatchd is sufficiently large to satisfyd.d thr[A1/2, in
chaotic regimes phase slippage is always present even w
d lies much below the threshold with 0,d!d thr . In this
latter case it does not matter how the initial conditions
prepared; the relative phase of the triplet always breaks lo
and any phase synchronism can no longer be observed
coherence does occur as higher-order temporal derivat
are introduced in the governing equations broadening
spectral width in frequency space.
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