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Canonical derivation of the gluon propagator in the temporal gauge
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%e reexamine the problem of obtaining, within the operator approach, an unambiguous expression for
the longitudinal gluon propagator in the temporal gauge. A regularization procedure respecting Gauss's law

and the Hermiticity of the gauge fields is proposed. ~e thereby obtain a definite expression for the longi-
tudinal propagator which agrees with that proposed by Caracciolo, Curci, and Menotti.

In the past years there has been much controversy about
the structure of the longitudinal part of the gluon propaga-
tor [DP' (x,y)] in the temporal gauge. ' ' The difficulty in

obtaining an unambiguous expression for this propagator is
connected with the problem of implementing Gauss's law as
a subsidiary condition on the physical state vectors. The
propagator obtained by Frenkel, ' which corresponds to the
principal-value prescription, '

leads to inconsistencies in QCD.23 The removal of these
inconsistencies calls for additional terms, as was sho~n by
Caracciolo, Curci, and Menotti, who arrived at the follow-

I

ing expression:

iD"' (x,y ) = ——'8"[e(x' —y ) (x —y')
2

+a(x'+y')+y] " "gt3&(x—y),

(2)
~here y is a constant, and n was determined to be 0. = + 1,
based on the requirement of gauge invariance for the Wil-
son loop. This kind of argument does not serve to fix the
value of a in quantum electrodynamics (QED) where also
the S matrix appears to be insensitive to the presence of the
additional term proportional to (xo+yo). In Ref. 4 an at-
tempt was made to obtain (2) from first principles. By
~orking with a dressed vacuum, Dahmen, Scholz, and
Steiner~ were led to

(3)

together with the equal-time commutation relations

[A'(x', x),A'(yo, y)] o o= [II,(x', x), II, (y, y)] 0 0=0.

[A'(x', x), II, (y', y) ] o o
——i 8', gt3'(x —y)

(5a)

where X is a regularization parameter. The limit A. 1 is

understood to be taken at the end of the calculations. No-
tice that no term proportional to (xo+yo) is present in (3).

Within the functional approach, the situation appears to
have been clarified. In Ref. 8 the propagator (2), with

u = + l, appears as one among the possible choices for the
longitudinal gluon propagator, while in Ref. 9 the propaga-
tor proposed by Caracciolo, Curci, and Menotti was unam-
biguously obtained by working in a fully fixed temporal
gauge.

In this note we reexamine the problem of obtaining a
unique expression for the longitudinal propagator within the
operator approach. Since the essentials of the problem are
already present at the level of the free Maxwellian field, it
suffices to consider only this case.

The dynamics of the system is described by the Hamil-
tonian

I

the field potentials AJ and Fs=8'A~- &iA'. Since (5b) does
not allow for implementing &'II~ = 0 as a strong operator re-
lation, Gauss's law is incorporated by restricting the physical
states to satisfy

[x+(x),x+(y)]=[x (x), x (y)]=0,
[x~ (x).x (y) ] = ig"'(x —y)

(ga)

In terms of these fields, condition (6) becomes

From Eqs. (4) and (5) it is immediately seen that the
transversal (Ar, II,r) and longitudinal (AL, II,L) degrees of
freedom decouple and, in fact, the propagator is given as
the sum of a transversal [Dr(x,y )] and a longitudinal part
[DL(x,y)].' The solution for Dr is, of course, well known.
On the other hand, the integration of the Heisenberg equa-
tions of motion leads to the following solution for the longi-
tudinal part of the potential:~

AL(x', x) = B.'[( —&„') "'X+(x)

+x ( —'7 ') 'i'x (x)]
~here g+ and g are time-independent Hermitian fields
obeying the commutation relations

where the II&'s are the momenta canonically conjugate to x (x)~y), =0, (9)
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~here we have made explicit that the subsidiary condition
(6) only operates in the "longitudinal" space of state vec-
tors.

%e next pinpoint the basic difficulty encountered in com-
puting the longitudinal propagator

lim (~„IXPI~„}=&i
h(x) —0+

(17a)

Ice&} is annihilated by P in the limit 5 0+ (A, I ), one
finds that

(10)
lim (~g IPX l~a) =

a(z) - 0
(17b)

which according to (7) demands the evaluation of matrix
elements involving products of X+ and X such as

L (ylx+ (x)x+ (y) ly}L

The Hermiticity of AL requires ~+ and X to be Hermitian
fieMs. Now the Hilbert space supporting this Hermiticity
property consists only of normalizable states, while the
states annihilated by x are of infinite norm. Therefore,
the operator X (x) cannot be diagonalized in the space de-
fined by (9) and, hence, the matrix elements displayed in

(11) are undefined. '

Thus, a regularization procedure is needed to ensure the
compatibility of the Hermiticity of g+ and g with the sub-
sidiary condition (9). This is not the case in the work of
Ref. 4, where the longitudinal vacuum lg}L was replaced by

a normalizable dressed vacuum IO&}. For all values X ( 1

the state I 0 &} secures the implementation of the commuta-
tion rules (8) and preserves the Hermiticity of x+ and x
but violates Gauss's law (9). Although for X 1 the state
remains normalizable and is formally annihilated by X

Gauss's law is not implemented in this limit as can be seen
by computing with the regularization technique of Ref. 4,
the matrix element (11):

which shows that (13) has not even been implemented in
the limit b(A. ) 0+. In summary, the replacement of the
eigenstate Ip=0) by a normalized wave packet centered
around p = 0 is not an acceptable regularization method for
the problem under analysis.

%e shall next use the nonrelativistic quantum-mech-
anical formulation of the problem to propose an alternative
regularization procedure which secures the implementation
of (13) at all stages of the calculation, while keeping the
Hermiticity of X and P. To this effect we begin by restrict-
ing the eigenvalues of X to the finite domain —A~x
~ +A, the limit A ~ being taken at the end of the cal-
culations. Then, the requirement of P to be Hermitian im-

plies that the wave functions qh(x} satisfy periodic or quasi-
periodic boundary conditions, namely, Q (A )/$ ( —A)
-exp(i8), where 8 is an arbitrary constant phase. In order
for the discrete spectrum of P, labeled by the integer n, to
contain the eigenvalue p-0, as required by (13), we restrict
the wave functions to be strictly periodic. Thus our regular-
ization scheme amounts to compactifying the space. The
computation of the diagonal matrix elements of the opera-
tors XP and PX between zero-momentum (n=0) eigen-
states now yields

lim (0~Ix+(x)x+(y)IO„}= +~i8"'(x —y) . (12)
a-1 (n =OIXPln =0) =0 (18a)

It is the particular structure of the matrix elements (12)
which is responsible for the absence of a term proportional
to (xo+y') in (3).

To motivate the regularization scheme to be proposed in
this paper, it is instructive to study the regularization pro-
cedure of Ref. 4 within the context of one-dimensional non-
relativistic quantum mechanics. From the commutation re-
lations (8) it is clear that x+ and X play the role of the po-
sition (X) and linear momentum operator (P), respective-
ly. Hence, the subsidiary condition (9) translates into

Plp =0}=0

To construct the state analogous to lf1,},hereafter denoted
by Iso„}, we start from the equation satisfied by lfli}
field theory "

(14)

where h(X) = (I —X)/(I+ h. ). The corresponding equation
in the nonrelativistic case then reads

P I«)„}—ih(z)x lou„)

~,(x) = a(z) exp[ —~h (Z)x'] (16)

For h(k) ) 0(A. & 1), Eq. (16) describes a wave packet
with a momentum distribution exp[ —p2/2A(X)]. Although

whose normalized solution in the position representation
(co~(x) = (xlao~} ) is given by

( n = 0 I PX I n = 0}= —i (18b)

The striking difference between (17) and (18) should be
noticed. We remark that (18a) and (18b) are both con-
sistent with the subsidiary condition (13); indeed, since P is

not Hermitian with regard to the nonperiodic state
X I n = 0), there are surface terms contributing to (18b)
when P acts to the left. These surface terms precisely en-
sure the validity of the commutation rule [X,P]=i For a.
"subsidiary condition" like (13) one can avoid the explicit
computation of such surface terms by 1etting all operators
act only to the right.

At this point a digression is in order. %ithin the regular-
ization approach proposed in this paper it is immediately
seen that the erroneous conclusion arrived at in Ref. 12
amounts to neglecting the above-mentioned surface terms.
The fact that the Hermitian character of the Gauss-law

operator was not properly handled in Ref. 12 has been
pointed out by several authors. ' However, no prescription
was given in the storks of Ref. 13 for computing the longi-

tudinal gauge-field propagator within the operator approach.
To provide such a prescription has been the purpose of this

paper.
To exemplify how different regularization techniques lead

to different results we compute the expression analogous to
(10) for a free unit-mass particle moving in a one-dimen-

sional space. In this case the Heisenberg-picture operators
X(t) and P(t) are given in terms of the corresponding
Schrodinger-picture operators (X,P) by the relations P(t}
= P, X(t) = X+ tP. By using the regularization scheme in-
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troduced in this work one finds

(n =0{T(X(t)X(t')) {n =0)
= —Ti [e(i r—')(r —t') + (t+ r') ]+TA', 09)

which already exhibits the presence of a term proportional
to (t+t'). On the other hand, the nonrelativistic version
of the regularization procedure of Ref. 4 leads to

(o)), { T(X(t)X(t')) {co„)= —Tie(t t'—)(r t')—

+ rt'+, (20)
s(z)

Hence, as far as the longitudinal degrees of freedom are
concerned (which we recall decouple completely from the
transverse ones), the situation is quite analogous to that of
a free particie in nonrelativistic quantum mechanics. Furth-
ermore, our regularization scheme can be formally extended
to the field-theory case by working in a representation
where X+(x) is diagonal. To avoid the problem of evaluat-
ing "surface terms" in field space, we compute the longitu-
dinal propagator by letting all operators act to the right in
the corresponding maxtrix elements. In this way we find

where no term proportional to (t+ t') shows up. Further-
more, in the work of Frenkel' time-ordered products were
computed by using the identity

T(X(t)X(t')) = T'~(t t') [X(—t),X(t')]+ ~{X(t),X(r') ).
(21)

When the right-hand side of (21) is evaluated using our
regularization procedure one comes back to (19). Frenkel, '
ho~ever, ignored the contribution of the anticommutator in
(21), which amounts to neglecting the contribution of the
surface terms, and, hence, he is left with the principal-value
prescription

(p-0{T(X(t)X(t')){p=0)= —Tie(r t')(t—r') . —(22)

—~l[c(x —y )(x —p )+(x +p )] 5 (x —y)

(25)

where we have ignored a time-independent term which does
not contribute to gauge-invariant quantities. Except for a
trivial Kroenecker 8 function in the color indices, the same
expression holds for the longitudinal gluon propagator in
QCD. Expression (25) is in agreement with (2) for a = +1.
Nevertheless, and in contradistinction to Ref. 3, we have ar-
rived at a definite form for the longitudinal gluon propaga-
tor without invoking any consistency argument for the Wil-
son loop.

HL d XTHyr HgL
1 (24)

%e now come back to the field-theory case. The Hamil-
tonian (4) splits into a transverse (Hr) and a longitudinal
(Hz) part which are, respectively, given by

Hr- „d'x(TIItrIIrr+ ~FttFtr) (23)
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