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The q-state Potts model in a random field with a discrete distribution of statistically independent 
fields ordered along any of the q states is studied in mean-field theory. Detailed phase diagrams are 
obtained in a two-component order-parameter theory for q = 3 and a one-component theory for 
general q. Lines of criticai and tricritical points are found in the first case and lines of criticai points 
in the second one, in the presence of a sufficiently large, constant uniform field. 

I. INTRODUCTION 

The order of the phase transition of the q-state Potts 
model1 has already been a subject of great interest for 
some time. 2 - 5 A Landau expansion of the free energy in 
mean-field theory, which is exact in the limit of dimen­
sion d---+ oo, yields a first-order phase transition for q > 2 
in ali d. In contrast, a strong d dependence of the order 
of the phase transition follows from exact work in two di­
mensions, 3 a 1 I q expansion in three dimensions, 4 and 
various renormalization-group calculations. 5 A continu­
ous transition, for short-range "ferromagnetic" interac­
tions, foliows if q :'S q~(d), while the transition is of first 
order otherwise. The criticai value q~(d) varies in the 
range 2 :'S q~(d) :'S oo between the upper criticai dimension 
du =4 and d---+ 1 +, in what seems to be a monotonic de­
creasing behavior with d. 

The q-state Potts model in a quenched random field 
that couples linearly to the order parameter has been 
studied in recent works. 6' 7 Explicit calculations on the 
mean-field free energy in terms of a one-component order 
parameter yield a first-order phase transition between a 
ferromagnetic and a paramagnetic phase for ali q. An at'­
tempt to obtain a changeover to a second-order phase 
transition at a tricritical point, in a Landau expansion for 
the free energy, failed so far, independently of the form of 
the distribution function for the random field. 7 

Thus the situation for the general q-state Potts model 
in a random field seems to be different from that in the Is­
ing model. 8,9 Indeed, depending on some general 
features of the distribution function for the random field, 
the second-order phase transition for the Ising model 
may become of first order at a tricritical point. 

It is not known whether or not a random field increases 
the tendency towards a first-order phase transition in the 
q ( > 2 )-state Potts model. The mean-field theory results 
referred to above, 6, 7 in the presence of a random field, 
may be mainly a manifestation of the first-order transi­
tion already present without a random field. · 

An argument based on dimensional reduction 10 has 
been used to suggest that fluctuations may turn the first-
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order phase transition for the three- and four-state Potts 
models in a random field into continuous transitions at a 
tricritical point. 7 However, a rigorous proof on the two­
dimensional Ising model 11 in a random field shows that 
dimensional reduction in the usual sense (with the same 
shift everywhere between the upper and lower criticai di­
mensions) does not hold for the Ising model. The same 
conclusion is expected to apply to other discrete symme­
try models as the Potts model. 

The purpose of the present paper is to investigate, 
within mean-field theory, the tendency towards ordering 
via a first-order or a continuous phase transition for the 
q-state Potts model in a random field. We do this by in­
troducing a constant uniform field and consider either a 
one-component order-parameter theory for general q or a 
two-component theory for q = 3. 

Mean-field theory with a two-component order param­
eter for the three-state Potts model is known to yield a 
changeover from a first-order to a continuous phase tran­
sition at a tricritical point, in the absence of a random 
field. 12 Ali that is needed is a sufficiently large uniform 
field, as shown schematicaliy in Fig. l(a). 

If a random field with an appropriate distribution 
favors a first-order transition in a system with discrete 
symmetry, as the available results on the Ising model in a 
random field seem to indicate, with the appearance of a 
tricritical point, then one may ask (a) what occurs with 
the tricritical point already present in the Potts model, 
and (b) can there be a second tricritical point at which 
the continuous phase transition changes back to a first­
order transition, for sufficiently large random field, as 
shown in Fig. l(b)? A phase diagram with two tricritical 
points, where a first-order transition becomes continuous 
and then returns to first order was discussed in the con­
text of fluctuation-induced transitions not long ago. 13 

The restriction to a single order-parameter mean-field 
theory for general q is only for simplicity. Although 
there is no tricritical point in this case, there is a criticai 
point in finite uniform field, as will be shown here. 

In Sec. 11 we present the model and in Sec. 111 we 
derive the two versions of mean-field theory: that with a 
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FIG. 1. Mean-field phase diagram, described in Seç. IV, for 
the three-state Potts model in a constant uniform field h 0 , with 
K =f3J and h 0=- h 0 !v'6J (Sec. 11). Heavy !ines indicate first­
order transitions and dashed !ines continuous transitions. Criti­
cai and tricritical points (CP and TCP) appear (a) and one may 
speculate on a second TCP2 (b) in a large random field. 

one-component order parameter for ali q and with a two­
component order parameter for q = 3. The phase dia­
grams that yield lines of criticai and tricritical points for 
the three-state model are established in Sec. IV, while 
further results for general q are studied in Sec. V, in par­
ticular the limit q---->- oo • W e end with concluding re­
marks in Sec. VI. 

11. THE MODEL IN A RANDOM FIELD 

The q-state Potts model in a uniform and a random 
field·, h0 and h;, respectively, on the sites 1 ::Si ::S N of a d­
dimensional lattice is defined here in the standard repre­
sentation by the Hamiltonian 

.71=-t ~JijS;·Sj-h0 • ~si- ~h;·S;, (2.1) 
i,j i i 

with the "spins'~ S; that can be in q states which are the 
vectors af={af(i)], 1<a<q and 1::Sk::Sq-1, to the 
vertices of a hypertetrahedron in q - 1 dimensions. Thus 
we write 

with both fields taken along the Potts vectors aa to 
preserve the permutational symmetry of the model. 
Specifically, we take 

ho=hoal' 

h~=h-r}, 1 ::SÀ::Sq' 
(2.3) 

where h 0 is assumed to remain constant, and -r} is 
quenched to one of the Potts vectors at each si te. 

Taking further 14 

O if a<k 

a f= 
(2.4) [ ]

1/2 

q-k ifa=k 
q-k+1 

q-k -=-!_ ifa>k 
[ ]

1/2 [ l 
q-k+1 q-k ' 

where the site dependence has been suppressed for simpli­
city, and which satisfy the relationships 

q 

~ afaf=ôkt, 
a= I 

q-l 

~ afaf=õa/3-1/q 
k=i 

q 

~ af=O, 
a= I 

we have for the three-state model 

a l = 21v6, a i= o , 
ai= -1/11'6, ai= 1/11'2, 

a1=-l!V6, ai=1/V2. 

(2.5) 

(2.6) 

Although the representation used here in Eq. (2.2) 
differs from the more usual one2•6• 7 in which 

.71= -+ ~Jij(qô'A..,'A.. -1 )-h 0 ~(qô'A.,l-1) 
• • I J . l 
l,J l 

(2.7) 

where À; is a spinlike variable taking q values, which may 
be chosen as the q roots of unity, the results that will be 
presented in the following sections turn out to be the 
same. Also, infinite range interactions Jij =J IN, for ali i 
and j, will be taken in this work so that mean-field theory 
becomes exact. 

We consider a statistically independent distribution of 
random fields on each site, neglecting correlations be­
tween different sites, so that P{h'A(i)j = fl;p{hÀ(i)j . 
Keeping the magnitude h of the random field fixed and 
assigning the same probability 1/ q to a field along each of 
the q vectors we have 

p{hÀ(i)j=_!_ f õ(hÀ(i)-hiL(i)). (2.8) 
q !L=i 

For the three-state model Eq. (2.6) yields 

P [h À 1 = ! [ õ [h l- v~ h ] õ< h i) 

+õ [hi+ )6 h lõ [h~- )2 h] 

+õ [h i+ )6 h ]õ [h i+ )2 h]] ' (2.9) 

where, for simplicity, the site dependence has been 
suppressed. 
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In contrast to the discrete distribution used here, 
which averages over orientations of the random field, a 
Gaussian distribution that averages over the magnitude 
has also been considered in previous works. 6• 7 Although 
more complicated to deal with, it reproduces basically 
the results of the discrete distribution. We comment 
more on this point below. 

The average free energy per spin /, 

(3f= lim ((3F IN) 
N~co 

in which (3= 1 !kB T, follows from 

-(3F=(lnZ)av 

= ~ P[h~JlnZ[h}J 
Ih~ I 

(2.10) 

(2.11) 

as the random-field average of the logarithm of the parti­
tion function 

Z[h~j=Tr exp(-(3Jf[a),h~j), 
I a)' I 

(2.12) 

in accordance with the standard procedure for quenched 

random fields. The trace is taken o ver the vectors all, 
keeping the ~in Eq. (2.3) fixed. 

In the next section we proceed with the calculation of 
F in mean-field theory. 

111. MEAN-FIELD THEORY 

The partition function, Eq. (2.12), for the Hamiltonian 
given by Eq. (2.2) may be written by means of a Gaussian 
integration as 

[ 
NKm2 

Xexp ---2-+K ~m·a) 

+H0 • ~a)+~ H~·a)] 
I I 

(3.1) 

in which m is a (q -1 )-dimensional vector of components 
m k, while K =(3J, H 0 =(3h0, and H~=(3h~. Recognizing 
that the last three terms in the exponential involve only 
single-site terms, we have 

dmk [ NKm 2 l Z[H~J= J TI V exp ----+NlnTr exp[(Km+H0 +HA)·all] . 
k 2TT/NK 2 {a~'j 

(3.2) 

For large N, the integral may be done by steepest des­
cent. Keeping only the contribution at the saddle point 
we obtain, up to a trivial additive constant, 

1 Km 2 
--lnZ[HAJ=---ln Tr exp[(Km+H0 +HA)·all]. 

N 2 {a~'j 

(3.3) 

The mean-field free energy that follows from Eqs. 
(2.1 0) and (2.11) is now given by 

Km2 
(3J=-2-- [In Tr exp[(Km+H0 +HA)·all] J , (3.4) 

Jai'J av 

where the arder parameter m is determined by the equa­
tions aj ;am k=O which yield 

m=((all))av. (3.5) 

The thermal average is given here by 

( all) = Tr [al'exp( -(3Jfetf)]/ Tr exp( -(3Jfetf) (3.6) 
Javj la"j 

in terms o f the effecti v e Hamiltonian 

(3.7) 

So far, m is a (q -1 )-dimensional arder parameter. 
The study of the phase diagram for general q can be con­
siderably simplified by the replacement with a one­
component order parameter, as done in recent work. 6•7 

Here we deal with both, a one-component theory for gen­
eral q and a two-component theory for q = 3. 

A. One-component theory 

We consider the order-parameter variable 

m=ma1 (3.8) 

along the externai field h 0 [cf. Eq. (2.3)]. This is a one­
component arder parameter, as can be seen from Eq. 
(2.4), with m determined by aj ;am =O. 

The random-field-averaged free energy, Eq. (3.4), be­
comes 

Km2 
(3J=-2--G(m,H0,H), 

where H 0 =(3h 0 , H =(3h, and 

(3.9) 

G(m,H0,H)= (1/q)ln[exp[(q-1)(A +B)]+(q-1)exp[-(A +B)]} 

+[(q -1)/q]ln[exp[(q -1)A -B]+exp[-A +(q -1)B]+(q -2)exp[-(A +B)]j, 

in which 

A =(Km +H0 )/q , 

B=Hiq. 

For the order parameter we find 

(3.11) 

(3.10) 

(3.12) 
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Equation (3.10) may be expanded in powers of m to ob­
tain the Landau expansion for the free energy. We do 
not pursue . this here since such a form in a one­
component theory has not proven to be very useful. In­
stead, the equations presented here are used below to ob­
tain analytical and numerical results for the phase dia­
grams with general q. 

B. Two-component theory for the three-state model 

For q =3, m=(m 1,m 2) has two components. Noting 
that H0·a~'=H0a~', with h 0 given by Eq. (2.3), it is con­
venient to replace m 1 in Eq. (3.3) by m 1 + H 0 I K. Calcu­
lating the trace, with the explicit representation for a~' 

given by Eq. (2.6), and performing the random-field aver­
age, Eq. (2.11), with the discrete distribution of Eq. (2.9) 
yields 

K 3 
PJ=-[(m 1 -H0/K)+m~J-+ln I1 TJL(m,H), 

2 JL=I 

(3.13) 

where 

T 1 = exp[2K(s 1 +h /3)]+exp[ -K(s 1 -s2 +h /3)] 

+exp[-K(s 1 +s2+h/3)], 

T 2 = exp[K(2s 1 -li /3)]+exp[ -K(s 1 -s2 -2li /3)] 

+exp[ -K(s1 +s2 +li /3)], (3.14) 

T3 = exp[K(2s 1 -li /3)]+exp[- K(s 1-s2 +h /3)] 

+exp[-K(s 1 +s2-2h/3)], 

in which 

St =mt(v'6, s2=m 2/V2, li=h/J. (3.15) 

The two components, m 1 and m]., are determined by the 
equations aj ;aml =aJ ;am2 =0. 

The Landau expansion for the free energy in the 
present, two-component theory, truncated at fourth or­
der, becomes 

Pf= F0 +fr(mt+m~)-w(mj-3m 1 m~) 

+u(mt+m~)2-H0m 1 , 

with the coefficients given by 

F 0 =-1n(e2H13 +2e-H13 )+(H0 )2!2K, 

r = K [ 1 - K (1--?) /3] , 

K3 
w = --( 1-r)2( 1 +2r) 

18v'6 ' 
K4 

u = 144 (1-r)(l +r-2-?-6r3 ) , 

in which 

r=(e2HI3_e -H13)/(e2H/3+ 2e -H/3) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

is a monotonically increasing function of H, so that 
O~ r~ 1 for O~ H ~ oo. 

As in Ref. 7, u is a decreasing function of T which be­
comes negative when r~r*=0.542. In that case at least 
the sixth-order terms in the free energy will be needed for 
stability. In order to avoid this problem, and mainly be­
cause the Landau expansion is rather inaccurate even for 
small random fields. As will be pointed out below, we 
keep in the following the exact mean-field theory given by 
Eqs. (3.13)-(3.15). 

IV. PHASE DIAGRAMS 
FOR THE THREE-STATE MODEL 

The most interesting features of the phase diagram for 
the three-state Potts model follow from the two­
component theory. As shown in Fig. l(a), in the absence 
of a random field, there is a disordered phase I in which 
m 1 =;t=O and m 2 =O but m 1 ---+0 as H 0 ---+0; an ordered 
phase 11 where m 1=;t=O and m 2 =0 but mp1+0 as H 0 ---+0, 
and an ordered phase Ill where m 1=;t=O and m 2=;t=O. The 
"order parameter" along the first-order line between 
phases I and 11 is the discontinuity of m 1 which vanishes 
at the Ising criticai point CP, with a nonzero magnetiza­
tion m te· The discontinuities in both m 1 and m 2 along 
the first-order I-III phase boundary vanish ata "normal" 
tricritical point TCP and along the second-order I-III 
phase boundary. 15 

The reason for the Ising criticai behavior on the first­
order I-11 phase boundary is that in a negative uniform 
field the q-state Potts model has the symmetry of the 
( q - 1 )-state Potts model. 

We consider first phases I and 11, where m 2 =O. 
Defining 

(4.1) 

and with li given in Eq. (3.15), we find the surface of 
first-order I-11 transitions. The projection on the plane 
li 0 =0, shown in Fig. 2, is also the surface of first-order 
11-III transitions, the two phases lying on opposite sides 
of the plane of the figure. The curve shown is the I-11 
phase boundary also found by Nishimori. 6 

Consider next the phase diagram for nonzero li 0 • 

Defining 
3Ks 1 x=e , a =eKii' (4.2) 

Fi 

I 

o 0.5 K-1 

FIG. 2. Projection on the plane h 0 =0 of the phase diagram 
for the three-state Potts model in a random field h, where 
ii =h I J, in mean-field theory. 
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0.5 

O L-------~~------~----~ 
0.5 1.0 h 

FIG. 3. Projection on the plane li 0 =0 of the line of criticai 
points for the three-state Potts model in a random field li= h I J, 
in mean-field theory. 

where s 1 is given in Eq. (3.15) and Kh =H, we find the 
line of criticai points shown in Figs. 3 and 4, ending the 
surface of first-order 1-II transitions, and given by the 
equations 

if>(x,a)=O, dif>(x,a)/dx =O, 

in which 

if>(x,a)= 1/Kx -(a+ 1 )/(a+ 1 +x)2-a/(ax +2)2 • 

(4.3) 

(4.4) 

These are to be combined with the order parameter deter­
mined by Eq. (3.12). 

Note that, except in the region of small fieids, a Iarger 
constant uniform fieid is needed to reach a criticai point 
the Iarger the size of the random field. This is what one 
would expect, if the role of the random field is to push the 
system deeper into the first-order transition region al­
ready present in the three-state Potts model. 

lt is also reasonable to expect that a small random field 
would first slightly smooth out the discontinuity in the 
magnetization at the boundary of first-order transitions, 
with a consequent decrease of the constant uniform fieid 
needed to reach a criticai point, as shown in the inset of 
Fig. 4. 

LO 

0.5 
-:~L ~ 
00329~ --v 

0 o':--------,o'-=. 2--~-~h 

O C===~~~----~~----~~ 
0.5 1.0 h 

FIG. 4. Projection on the plane K- 1=0 of the criticalline 
for the three-state Potts model in a random and constant uni­
forffi field, li and li 0 • 

Note also, incidentally, that the criticai point in zero 
random field, given here by Kc- 1 =f and 
h 0~ -3.3 X 10-3 in the full mean-fieid theory differs 
considerably from the result Kc- 1 = {s and 
h 0~ -6.2X 10-3 that follows from the Landau expan­
sion to fourth order. Even larger discrepancies start to 
appear when h ::50.5. 

Before presenting the results for the tricriticalline, it is 
interesting to discuss the zero-temperature behavior of ali 
three phase boundaries, shown in Fig. 5. In phase I the 
free energy f, Eq. (3.13), and the order parameter are 
given by 

f= --}(h0)2J-1-i-h 

m 1 =h 0 /J, m 2 =0. 

In phase li, 

f= -l.(ho)2J-1_ .2_ho-l.J 
2 v6 3 , 

2 
m 1 =h 0!J+ V6, m 2 =0, 

and the 1-II phase boundary is given by 

. fi=-h/3+t. 

(4.5) 

(4.6) 

(4.7) 

There are two soiutions in phase III involving the two 
components of the order parameter m 1 and m 2 • In re­
gion A, to the right of h= t• the stable free energy and 
the corresponding order parameter are given by 

f= -l.(h0)2J-I + _1_h0-J..h -l.J 
2 V6 3 9 ' 

o 1 1 
ml=h /J- v6' m2= 3"112 • 

(4.8) 

In region B, to the left of h= t• the mo.re stab1e free ener­
gy and the order parameter are, instead, 

f= -l.(ho)zJ-1 + ......L.ho-l.J 
2 "116 3 ' 

-hO 1 _ 1 
ml- /J- v6' m2- v2 ' 

(4.9) 

B A 

-0.5 

FIG. 5. Zero-temperature behavior of the phase boundaries 
of first-order transitions for the three-state Potts model in a ran­
dom anda constant uniform field, li and li 0 , discussed in Sec. 
IV. 
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with the same free energy on the 1ine li= t· As the tem­
perature increases we expect the discontinuity in m 2 

within phase 111 to disappear, 
According1y, the zero-temperature 1-111 phase bound­

ary has two parts. An upper one is given by 

li 0 =li /3-t (4.10) 

and a 1ower one by 

li 0 =2li/3-t. (4.11) 

This one ends on the phas.e boundary li 0 =0, li~ ·h be­
tween phases 11 and 111. 

We consider next the tricritica1line that ends the first­
order 1-111 phase boundary. If the break in the s1ope of 
the phase boundary has a persistence to higher tempera­
ture, one shou1d expect a crossover in the rate of growth 
of li 0 with li on the tricritica1 1ine, and that is precise1y 
what follows from our mean-fie1ci calcu1ations that we 
outline next, as shown in Fig. 6. 

Since s2 , Eq. (3.15), vanishes at the tricritica1 point and 
on the part of continuous transitions on the 1-111 phase 
boundary, a more transparent but still exact mean-fie1d 
free energy, asymptotically close to the continuous transi­
tion, may be obtained exp~nding in powers of S2 to yie1d 

1 2 1 - 0 1 
f= 3K 2 1n x+ 3K(l+6h )lnx+ 3Klna +B0 (a,x) 

+B2(a,x)si +B4(a,x)s~ , 

in terms of x and a defined in Eq. (4.2), and where 

1 
B 0 (a,x)=- 3K1n[(ax+2)(a+x+1)2], 

B (a,x)= 1- K [-1-.-+ (a +l)x +4a ] 
2 3 ax+2 (a+x+1)2 

0.1 

OL---------~---------L--~ 
0.5 1.0 fi 

(4.12) 

(4.13) 

(4.14) 

FIG. 6. Projection on the plane K- 1=0 ofthe tricriticalline 
for the three-state Potts model in a random, constant, uniform 
field, h and h 0• Note that small initial dip in the inset and the 
crossover to the high-temperature extension of the phase 
boundary I-A in Fig. 5, for larger h. 

K 3 [ ax -4 B 4(a,x)=--36 2 
(ax +2) 

A(a,x) ] 
(a +x + 1)4 ' 

(4.15) 

A (a,x)= ( 1 +a)x 3 -4(a -1 )2x 2 

+[ 1 +a 3 -13a( 1 +a)].X + 16a (a 2 -4a + 1) • 

The surface of continuous transitions on the 1-111 
phase boundary is given by 

B 2 (a,x)=O, (4.16) 

_i,Inx +1+6li 0 +3KxBó(a,x)=O, (4.17) 

where Bó==.dB0 /dx. The tricritical line follows from 
Eqs. (4.16) and (4.17) together with 

2 1 -
--2- 2 (1-lnx)---2 (1+6h 0 ) 
3K x 3Kx 

[Bí(a,x)]2 

+B~(a,x)- 2B 4(a,x) =O, (4.18) 

in which B~ ==.d 2B 0 /dx 2 and Bí ==.dB2 /dx. For the tri­
critical point in zero random field we find 

(4.19) 

which again differs considerably from the tricritica1 point 
K i 1 = *, li~= -if obtained in the Landau expimsion for 
the free energy, in both s 2 and s 1 • 

The small initial drop in the constant uniform field on 
the line of tricritical points and the further increase with 
a 1arger random fie1d again follows the expected behavior 
discussed above, as shown in Fig. 6. 

To explore next if there is a second tricritica1 point for 
sufficiently large li, at which the phase transition on the 
I-III boundary changes back from a continuous to a 
first-order transition, consider the li.mit li---+ oo. In this 
case there are two possibilities: (i) x remains finite, which 
means from Eqs. (4.16) and (4.17) that the 1-III boundary 
of continuous transitions, if present at ali, must shrink to 
a point at T =O. However, the zero-temperature analysis 
that yie1ds on1y first-order transitions eliminates this pos­
sibility. Otherwise, (ii) x ---+0 such that ax remains finite, 
and we consider this next. If so, K i 1 = -k is the 1imiting 
nonzero value of K i 1 with which the curve in Fig. 7 has 

o~------~o.=5------~1~D---=fi 

FIG. 7. Projection on the plane h 0 =0 ofthe Iine oftricriti­
cal points for the three-state Potts model in a random field 
h =h /J, in mean-field theory. 
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been plotted. One also finds that h~~h/3, as h-H~. 
Combined with the monotonic behavior of h~(h), at the 
larger values of h, shown in Fig. 6, together with the fact 
that both the uniform and the random field couple linear­
ly to the Potts vectors in the Hamiltonian of the mode_!, 
we infer that h~(h) is never a two-valued function of h, 
excluding therefore a second tricritical point. 

V. RESULTS FOR GENERAL q 

We extend here the work of Nishimori, 6 in a one­
component mean-field theory, to include the effects of a 
constant uniform field. 16 

The phase transitionin only a random field is known to 
be of first order for ali q > 2. The addition of a uniform 
field yields a line of criticai points for the three-state 
Potts model, if the uniform field is larger than a threshold 
value which depends on the random field as shown in Fig. 
4. Due to the small dip in the curve (which may be ex­
pected to become smaller for larger q) the value of I h~ I 
at h =Ois a good approximation to the minimum thresh­
old. This is used to find out if there is a criticai point for 
general q when there is a finite minimum threshold for 
the constant uniform field. 

Figure 8 shows that there is always a finite lh~l. for 
any finite q, but that for very large q the minimum 
threshold becomes asymptotically large. This is neces­
sary to invert the strong tendency towards a first-order 
transition for large q, already present in the model in the 
absence of a random field. 

We are interested next in the behavior of the infinite 
state model, also considered by Nishimori. 6 It is con­
venient to take 

f oo = lim f /Inq (5.1) 
q---> 00 

and to define 

K=K/Inq, h 0 =h 0 /J, (5.2) 

in which K ={3J, together with h =h /J introduced be­
fore. Equations (3.9) and (3.10) yield then 

- - -o --f oo =tKm2- lim In(qK(m+h '+qKh+q)/lnq (5.3) 
q---> 00 

l/3 0.4 q-

FIG. 8. Criticai constant uniform field for the q-state Potts 
model as a function of q, in mean-field theory. 

Depending on which of the terms in the first natural 
log argument dominates, one finds one of three phas~s. 
A "ferromagnetic" phase exists when m +h 0 

> sup(h,K - 1 ), where 

(5.4) 

A paramagnetic phase (para. I, in Nishimori's notation) 
exists when h> sup(m +ii 0,K - 1 ), with 

f oo =-K h, m =O, (5.5) 

and a second paramagnetic phase (para. li) for 
K - 1 >sup(m +íí 0,fi) with 

f oo = -1, m =O . (5.6) 

It follows from Eqs. (5.4)-(5.6) that, as in the absence 
of a nonrandom uniform field, there are three phase 
boundaries of first-order transitions, as shown in Fig. 9. 
For a given strength of the random field, the ferromag­
netic phase occurs only for a sufficiently large additional 
nonrandom field. 

Although there is no true spin-glass order in a random 
field, 6 the paramagnetic phases may be distinguished by a 
spin-glass order parameter defined as 

(5.7) 

Explicit calculation in the limit q- oo yields Q = 1 when 
K h> 1 (the para. I phase) while Q =O if K h< l (the 
para. II phase), regardless of the size of the uniform field 
ii 0 • We also found that Q = 1 in the ferromagnetic 
phase. These results agree with those of Nishimori6 when 
iio=o. 

VI. SUMMARY AND CONCLUDING REMARKS 

W e have obtained a number of new results about the 
phase diagrams for the q-state Potts model in a random 
field, within mean-field theory, with an additional non­
random uniform · field. Lines of criticai and tricritical 
points are obtained for the three-state model in a two­
component order-parameter theory, while only lines of 
criticai points follow for general q (other than two) in a 
one-component order-parameter theory. 

W e find that there is a clear increase in the tendency to 

para. I ( 1/2 l 

ferro. ( 1/2) 
para. I (0) 

1/21----~ 

ferro.(O) 

ferro. ( 1/2) 
para.ll(O) 

1/2 

para.ll(l/2) 

FIG. 9. Mean-field phase diagrams for the infinite-state Potts 
model in a random field for zero or finite norrnalized uniform 
field ii 0 , the values of ~hich are in parentheses and where 
K=K!lnq. 
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order via a first-order phase transition for the q ( > 2 )­
state Potts modei, due to the presence of the random field 
beyortd small vaiues, and that the first-order transition 
ends either at a Iine of criticai and tricritical points in the 
presence of a sufficiently large nonrandom field. It is also 
interesting to note, as we find here, that a small random 
fieid reduces the magnitude of the necessary criticai or 
tricritical nonrandom field. The initial effect of the ran­
dom field is thus to reduce the discontinuity in the mag­
netization at the boundary of first-order phase transi­
tions. 

There are two comments concerning the random-field 
distribution. The first one is that we only considered a 
statistically independent distribution of random fields, in 
which there is no correlation between the random fields 
at different sites. Although this is a limitation, it is a con-
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