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Anisotropic magnetoconductivity of a three-dimensional disordered electron gas 
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The magnetoconductivity of a three-dimensional disordered electron gas is calculated from first 
principies with use of the exact electron eigenstates in a magnetic field, thus avoiding the usual 
semiclassical approximation in this field. Our calculation gives anisotropic components for the con­
ductivity tensor, and the isotropic behavior predicted by other authors is recovered in the limit 
wcr << 1, where wc is the cyclotron frequency and r the elastic lifetime. 

I. INTRODUCTION 

The results for the magnetoconductivity of a very 
disordered electron gas in two 1 and three2 dimensions 
were reported shortly after Abrahams et al. 3 formulated 
the scaling theory of localization. The detailed calcula­
tions only appeared in more recent review articles,4 - 6 

giving as a result a perfectly isotropic conductivity tensor, 
while by general symmetry arguments we would expect 
that in the presence of a magnetic field B in the z direc­
tion the diagonal components of the tensor satisfy the in­
equality a xx =a yy=l=a zz. The approximations made in 
these papers can be summarized as follows: 5•6 first, they 
calculated the isotropic conductivity in the absence of an 
externai field; second, the magnetic field was switched on 
phenomenologically by replacing (1 /2m)( k 1 + ki )2 

~w~(n +t) in the diffusion propagator. Here 
w ~ =e * B I m is the . cyclotron frequency for one parti ele 
of charge e*= 2e, n is the Landau levei index, and k 1 in­
dicates the projection of the momentum k on the x-y 
plane. It followed from this that the calculated conduc­
tivity remained isotropic in the presence of the field, al­
though it is not obvious that it will be so in a calculation 
based from the start on the Landau leveis that are the ex­
act electron eigenfunctions. 

To investigate this point we present here an alternative 
calculation of the three-dimensional conductivity. based 
on the Landau eigenstates, thus avoiding the semiclassi­
cal approximation for the Green's function that is usually 
done in this problem. 5•6 This approach has been followed 
previously to study interaction effects in the two­
dimensional magnetoconductivity,7 although to our 
knowledge it has not yet been used to obtain the contri­
bution of the multiply crossed diagrams3 in the weakly lo­
calized regime. 

The sum of these diagrams in the presence of a field is 
not an obvious extension of the results when B =O, due 
to the presence of noncanceling phases that destroy the 
translational invariance of the propagators. To show the 
difficulties inherent in a calculation of the conductivity in 
a system that lacks translational invariance we go into 
some detail in Sec. 2 and the Appendix. 

We show in Sec. IH that the relevant vertex function 
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satisfies an integral equation that we solve to O (w~) and 
in the diffusion pole approximation that is usual in this 
problem.3 

These are the only approximations involved in our 
work and our results allow us also to discuss the 
relevance of the inelastic lifetimé-6 1'; in three dimen­
sions. While the expression for the conductivity in two 
dimensions has an infrared divergence that forces the 
phenomenological introduction of a cutoff interpreted as 
r j 1, the integrais in three dimensions are perfectly con­
vergent in the infrared and a cutoff is mathematically un­
necessary, thus we present in Sec. IH the results for 
1'jl=o. 

This leads to a discussion of time scales, as our results 
in Sec. IH for 1'j 1=0 predict an anisotropic behavior of 
the conductivity tensor for very high fields wc > 1' -I, 1' be­
ing the elastic lifetime, while the predicted isotropic be­
havior in (wc )112 prevails for ali fields that satisfy 
0<wc1'< I <DA13• The introduction of a finite 1'; would 
modify this asymptotic behavior, predicting a depen­
dence in w~ for very low fields, O< wc < 1!1';D, while the 
(wc) 112 behavior would be observed for 1/1';D0 <wc 
< 1 /1'D 0 , where D 0 >> 1 is the diffusion coefficient. 

We present in Sec. li the general expression for the di­
agonal components of the conductivity tensor and the 
calculation of the vertex function that sums the multiple 
crossed diagrams in the presence of the magnetic field, to 
lowest order in the field. Section III is dedicated to the 
detailed calculation of the conductivity and Sec. IV to 
discussions. 

11. GENERAL FORMULATION 

The system under study is a gas of electrons in the 
presence o f a magnetic field B =V X A0 in the z direction 
that are scattered by the random impurity potential V(r) 
with zero mean, and variance 

( V(r)V(r'))= U8(r_:r'). (1) 

The Hamiltonian is 

H= -t f dr t/Jt(r)D;t/J(r)+ f dr t/Jt(r)V(r)t/J(r) , (2) 
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where the field operators '1/J( r), f/} (r) satisfy the usual fer-. 
mion anticommutation rules. Spin índices can be neglect­
ed in the absence of spin orbit and paramagnetic interac­
tions. We work in units lí=m =c= 1, andeis the elec­
tron charge. We also have in Eq. (2) 

D,=V,-ie A 0(r), 

and in the Landau8 gauge 

A 0(r)=(-By,O,O) . 

(3) 

(4) 

The linear-response formalism9 gives, for the com­
ponents ofthe conductivity tensor, 

2 
a v<q,w)=-e-Jo dEJd(r-r')eiq·(r-r') 

f' 41TW -w 

Xr,...v(r-r',E,W), (5) 

where J.L, v indicate the space directions x, y or z and 

r f'V(r,r' ,E, CO) 

=[{D~-Df:'*)(D~,-D;* mE,.,(r,r'lp,p')).=p,r'=p' . 

(6) 
The polarization in Eq. (6) is given by 

TIE,.,(r,r'lp,p')= ( Gt+w(r,r')GE(p',p)) , (7) 

and the bracket in Eq. (7) indicates the average over ran­
dom impurities. The one-particle Green's function is the 
solution of the equation 

[w+Ep+-}D;- V(r)]G.,(r,r;)=.S(r-r'). (8) 

In the presence of a magnetic field, the polarization 
nE,«>(r,r'lp,p') in Eq. (7) is not explicitly translational in­
variant. Indeed, it is necessary the elaborate calculation 
in Sec. 111 to show that the function r,...v<r-r';E,w) in 
Eq. (6) depends only on the difference of the coordinates. 

The impurity-averaged quantities are obtained through 
standard diagrammatic methods.9 For TIE«>(r,r'lp,p') we 
only consider the multiply crossed diagrams in Fig. l(a) 
as being the relevant contribution to the conductivity in 
the weak localization regime. The averaged one-particle 
Green's function is given to lowest order by the diagram 
in Fig. 1 (b): 

GE(r,r')=G~(r,r')+ U J dr1 G~(r,r1 ) 

XG~(r1 ,r 1 )G.(r 1 ,r'), (9) 

where 

. G~(r,r')= ~'1/J!(r)'I/JJ...(r') 
{J...) 

(lO) 

and p .. } = ( n, kx, kz ) indicates the set o f Landau quantum 
numbers, while '1/JJ...(r) is the wave function for an electron 
in a magnetic field: 

ei(xkx+zk,) 
'1/JJ...(r)= 21T tPn(y+kxlwc), (11) 

tPn(y)= [:: rl4(2nn!)-ll2e-cocy212Hn«wc)l12y). 

(12) 

Here wc=eB is the cyclotron frequency and Hn(z) in­
dicates a Hermite polynomial. An alternative expression 
for the Green's function in Eq. (10) is obtained by per­
forming the integral over kx, with the result 

G~(r,r')= exp [i~c (y +y')(x -x') Jg~(r-r'). (13) 

An explicit expression for g~(r-r') is given below, but 
we find that G~(r,r) is indeed independent ofr, which al­
lows us to solve for G.(r,r') in Eq. (9): 

G .<r,r') = ~'1/J!(r)'I/JJ...(r' )G .< n,kz) 
(J...) 

= exp [i~c (y +y')(x -x') ]g.(r-r'), 

with 

(14) 

G (n P) - ['·' (n +.l)+.lp 2-E -E- _j__sgnE] -I E > - '""c 2 2 F 2T 

r ==:x:=r,;::1 ==:s::: r· 
.... p ( 

I 
I 
I 
I 
I r. ( p· 
1 

.... ) 

r 

(15) 

+ + 

+ o o o 

(a) 

) + = t 1· 

(b) 
FIO. 1. (a) Diagrams that contribute to n.+.,,.,(r,r'jp,p'). 

Double solid lines indicate the propagator of (b) and pointed 
lines indicate the averaged impurity potential. (b) One-particle 
propagator G.,(r;r'). 
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- 1-=Urrwc i, f"' dp ImG~(n,p)=U2rr(2Ep) 112 , 
2r n =O - oo 

(16) 

and 

( )- ~f .!!E_ -ipz -wc(x2+y2)/4 
g, r -wc~ 2 e e 

n 1T 

XLn<±wc(x 2 +y 2 ))G,(n,p). (17) 

In the Green's function of Eq. (14) the Landau leveis 

where 

K(r1;r2 )=ô(r1-r2 )+ UK(r1;r2), 

K(r1;r2 ) is the solution ofthe integral equation 

K (r1;r2 )=K0 (r1;r2 ) 

+U f dr3 K 0 (r1,r1-r3 )K(r1-r3,r2 ), 

and from Eq. (14), 

K 0 (r,r' )= G e+w(r,r' )G .(r,r') 

iwc(x-x')(y+y')A ( ') =e 0 r-r . 

The function 

A0( r -r')= g •+w< r- r' )g • (r- r') 

is related to the bare polarization loop of Fig. 2(a): 

110(r-r') = G •+w(r,r' )G ,(r',r) 

(19) 

(20) 

(21) 

(22a) 

=ge+w(r-t')g.(r'-r'). (22b) 

where 

(26) 

and A0(k) is the Fourier transform of A0(r) in Eq. (22). 
It is interesting to see that while K(r,r') sums the multi­
ply crossed diagrams of Fig. l(a), A( r-r') sums the 
ladder diagrams of Fig. 2(b), in the presence of a magnet­
ic field. In this last case the phases cancel between the 
propagators going in opposite directions from Eq. (14) 
and the integral equation for A(r) would be similar to 
that in Eq. (24) without the exponential in the integrand. 

Before solving for A(k) in Eq. (25) we must calculate, 
from Eqs. (22) and (17), 

are considered exactly and it should be compared with 
the semiclassical expression used currently in the litera­
ture,5 where g,(r) is replaced by the Green's function in 
the absence of a field, g,(r, H =O). We will show in the 
following that it is precisely the use of the exact expres­
sion in Eq. (14) that gives rise to the anisotropic conduc­
tivity tensor. 

The contribution to the polarization of the multiply 
crossed diagrams in Fig. l(a) is 

The translational invariance of 110(r-r') due to the 
phase cancellation in the Green's functions is not a trivial 
result and it was first obtained in two dimensions in Ref. 
7 through a much laborious method. 

The integral equation (20) cannot be solved trivially by 
a Fourier transformation due to the lack of translational 
invariance of K 0 (r,r') in Eq. (21), but we find that the 
solution can be written in a similar way: 

K( ')= iwc(x-x')(y+y')A( _ ') 
~r e r r , (23) 

where A(r) satisfies the equation 

A(r)=A0(r)+ U f dr1 A0(r1) 

iwc(xly-ylx)A( ) Xe r-r1 • (24) 

Again the equation (24) does not separate in Fourier 
space due to the exponential in the integrand, but we 
find, by first expanding in powers of wc and later taking 
the Fourier transforms to lowest arder in wc, 

(25) 

A0(k)=e"'ckii2 f dp Wc ~ G,+w(n,p +kz )G,(n',p) 
· n,n' 

X ( -l)n +n'L; -n' [ki /2wc l 
XL;;-n [kif2wc l , (27) 

where k I = k1 + kff is the momentum on the plane per­
pendicular to the field and L;'(z) are the Laguerre poly­
nomials. We find upon expanding Eq. (27) to lowest ar­
der in momentum, in the limit E+w=o+, E=O-, and to 
leading o r der in 1 I TE F << 1: 

(28) 
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FIG. 2. (a) Bare polarization loop. (b) Ladder diagram for 
the polarization. 

with 

=1Tr2V2 1 
1. wcl:Re [EF-wcn+-2i }-

112
, (29) 

-twr n 7' 
Cz =wc.l:f"" dp G.+.,(n,p){ -}[G.(n,p)]2 

-co 
n 

- [ ']1/2 =1f4Y2~wcl:Re Ep-wcn +il2r , 
n 

(30) 

C1 =Re [w~~~ dp G.+.,(n,p)[(n +-}>G.(n,p) 

-(n + l)G.(n + 1,p)]] 

[ l-1/2 
- 1T2V2~ 2 i 
- 2 2 wcl:nRe Ep-wcn +2 

1 +wcr n 7' 
In the limit wc /Ep, 1/rEp << 1, we have 

[EF-wcn + ;7' r :::::6(Ep/Wc -n )(Ep-wcn )a 

(31) 

+6(n -Eplwc )e +imz(wcn -Ep)a, 

(32) 

and the sums over n can be performed by using, 10 for 
N=Eplwc, 

ina=Na+1 [1+_!_a+1 +O(l/N2)]. (33) 
n= 1 a+1 2 N 

The leading term in Eq. (33) corresponds to replacing 
the sum by an integral and the first correction is 
O (wc /Ep ). We then have in Eq. (28) 

A0(k)= ~(l+iwr-D0rk]-Dnrkr>, (34) 

where we used Eq. (16) for r, and D 0 =2Epr/3 is the 
three-dimensional diffusion coefficient, while Dn = D 0 (1 
+w~r2)~ 1 . The two-dimensional result for II0(k) in Ref. 
(7) is obtained from Eq. (34) by eliminating k] and replac­
ing D 0 by its two-dimensional expression. 

Going back to Eq. (25), we solve it to O (w~) by ap­
proximating A(k):::::A(k) at the right-hand side. The 
linear term in wc will then vanish, and we obtain from 
Eq. (34) 

(35) 

From Eqs. (23) and (35) we have in Eq. (19): 

i((r,r' )=e iwc(x -x')(y +y') 

(36) 

If we compare Eq. (36) with the usual expression for 
the "diffusion propagator" in the presence of a field quot­
ed by other authors,4 - 6 that is, 

where w: is the cyclotron frequency for a particle with 
charge e* = 2e and t/11.. (r) are the eigenfunctions of Eq. 
(11) with wc replaced by w:, we see that both expressions 
do not agree. This is because Eqs. (36) and (37) involve 
different degrees of approximation: while Eqs. (23) and 
(24) are exact and the only approximation involved is the 
expansion of A(k) to O(k 2,w~) in Eq. (35), the derivation 
of Eq. (37) is of a more phenomenological kind. It is ob­
tained by considering the sum o f diagrams in Fig. 1 (a) 
without a magnetic field and in the diffusion pole approxi­
mation as a propagator of a single particle of double 
charge e* = 2e and momentum q; afterwards, the magnet­
ic field is switched on by making the replacement 
q--+[eigenvalue of( -iV-e* A 0 )]. 

On general symmetry arguments we can see that Eq. 
(35) has the correct dependence on w~, as the diagonal 
components of the conductivity tensor have to be invari­
ant under the transformation B--+-B. 

111. CALCULATION OF u"" =u yy AND u zz 

To obtain an explicit expression for the conductivity, 
we make in Eq. (36) the standard approximation5 

(38) 
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(39) 

because we consider that the main contribution to the in­
tegral will come from the diffusion pole at k 2 ~o. We ob­
tain from Eq. (18) 

II,,.,(r,r'lp,p' )= G,+.,(r,r')G,(p',p)+ II~,,.,(r,r'lp,p') , 

(40) 

where now a~ =a;Y =a~x• and 

G±(n,p)= [wc(n +fl+fp 2-JL± ;T ] -
1 

(45) 

From Eq. (44) and Eq. (45) we can also write 

e2 -
a~=- 2~ UK(O) 

XRe [f _00

00 
1;w~ n~O n [G +(n,p)G _ (n + l,p)f J 

(46) 

It is clear from Eq. (43) and Eq. (46) that the diagonal 
components of the conductivity tensor are anisotropic, as 
expected. What remains to be calculated is for which 
values of the applied field the anisotropic effect should be 
taken into account, in order to compare with the isotro­
pic predictions of other theories.1•2 

We obtain for K(O) from Eq. (39) 

00 4 

lo= Jo dp p4+f<wcDoT)2 

(47) 

=I* -7T2-3/4(wcDoT)112 ' 

where I* is a constant, independent of the applied field. 
That this constant, is in fact infinite is spurious result, 
due to the approximation in Eq. (39). The sums over n in 
Eqs. (43) and (46) are resolved in the approximations of 
Eqs. (32) and (33), with the result: 

rr~,.,(r,r'lp,p') 

= UK(O) f dr1f dr2 G,+.,(r,r1)G,(p',r1) 

(41) 

The first term on the ri~ht-hand side of Eq. (40) gives the 
Lorentz contribution a 1w- We then write the conductivi­
ty tensor: 

aJLv(q,w)=a~v(q,w)+a~)q,w), (42) 

where the anomalous contribution a~v< q, w) is calculated 
by introducing Eq. (41) in Eq. (6). 

The detailed calculations are shown in the Appendix, 
and we obtain for the de components of the tensor: 

(43) 

(44) 

f oo .!!P_ ~ 2 2 
_ 00 27T "'c nL;:/ [ G + (n,p )G-,- (n,p )] 

=4V3(D0T)312[ 1 +O(wc/GF, 1/GFT)] , (48) 

Re (f_00

00 
1;w~ i n[G+(n,p)G_(n +l,p)j2] 

n-O 

- -~ 3/2 [ 1-3w~~ l -4v 3(D0 T) 2 _2 3 +O(wc/GF,l/GFT) 
(1 +wcr) 

(49) 

We get, by introducing Eqs. (47), (48), and (49) into 
Eqs. (43) and (46), 

a~z<wc )- a~z(O)~e2U /7T4[ 7T2-3/4(wcDoT)1/2 

-I*(wcT)2]' 

a~(wc) -a~(O)~e2U /7T4[ 7T2-3/4(wcDoT)1/2 

+5I*(wcT)2]. 

(50) 

(51) 

It is interesting to see that the anisotropic contribution 
o f O ( ( w c T )2) goes in the direction of increasing the trans­
verse conductivity a~, thus decreasing the localization 
effect, as expected. However, in the component parallel 
to the field, a~z• this term goes in the opposite direction. 
It is also clear from Eqs. (50) and (51) that the anisotropy 
will not be seen in the "high-field" limit usually con­
sidered,1 that is, (D0T;)- 1<wc<(D0T)- 1<<1, where T; 

is the inelastic lifetime,5•6 thus explaining the agreement 
of the isotropic calculation with the experimental data. 

A word should -be said about the absence of the inelas­
tic ~ifetime in our results. While in the two-dimensional 
calculations at zero field the integral in Eq. (39) would 
diverge in the infrared, thus making it necessary to intro-
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duce phenomenologically a lower cutoff k f ,;:;:: 1' i 1, the 
same integral in three dimensions is infrared convergent, 
and we considered the introduction of 1'; to be artificial. 

Technically, the inelastic lifetime is introduced5 by re­
placing i(J) by 1'j 1 in Eq. (34), while in all other Green's 
functions the frequency is allowed to vanish. 

in previous calculations. 1•2•5•6 Our results predict aniso­
tropic diagonal components of the conductivity tensor, 
although the anisotropy terms only become relevant for 
very high fields (J)c1'> 1, while in the range (J)c1'<D 0 1 < 1 
usually considered in the literature1 we recover the iso­
tropic behavior in ((J)c )112 predicted by Kawabata.2 
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APPENDIX 

To calculate Eq. (41) it is more convenient to write from Eq. (14) 

n~,Ctl(r,r'lp,p')= UK(O) ~ [t/lt (r)t/Jt (p')t/JÀ (r')t/JÀ (p)J(Àt,À2,À3,À.4)G + <nt,klz )G- (n2,k2z )G + (n3,k3z )G _(n4,k4z )] ' 
(À;) I 2 3 4 

(A1) 

where 

G+(n,p)=G.+"'(n,p), G_(n,p)=G.(n,p), (A2) 

(' ' ' ' Jd Jd iCtJc(xl-x2)(yl +y2) * * I A.J,A.2,A.3,A.4)= r1 r2e tPJ..1<rt)t/IJ..2(rt)t/JJ..3(r2)t/IJ..4(r2) 

- 4 n, +n4 
-(21T) /(J)cÔ(klz +k2z )ô(k3z +k4z )ô(k lx +k2x -k3x -k4x )( -1) 

xfoo dYttPn (yt+ktxi(J)c)tPn (yt+k2xi(J)cltPn (yt+k4xi(J)cltPn (yt+k3xi(J)c) · 
-oo I 2 3 4 

(A3) 

Introducing then Eq. (A1) into Eq. (6), we obtain for the diagonal components: 

r' ( , )=UK(0)21T ~ fnkfd F ( 'k . . ) -i[<kl.+k,.)<r.-r;>+kx<rx-r;)J 
P.P. r,r ,E,(J) (J) ~ y 1 P.P. r,r, ,n, e 

c nl'n2 

n3,n4 

(A4) 

where 

and 

Fzz(r,r';k;, n; )=- (k tz- k3z l2tPn 1 (ry + k tx /(J)c lt/1n 2 (r; +(k3x- k tx )/(J)c lt/1n 3 (r;+ k3x /(J)c lt/1n 4 (ry + (k tx- kx )/(J)c) , 

(AS) 

Fyy(r,r';k;,n; )=(J)c[tP~ 1 (ry + ktx /(J)c lt/1n4 (ry +(k tx- kx )/(J)c )__.:. tPn 1 ( ry + k tx /(J)c )1/1~ 4 ( ry + (k tx- kx )/(J)c )] 

X [1/1~ 2 (r;+( k3x- kx )/(J)c )t/1n3 (r;+ k3x /(J)c) -<Pn/r; + (k3x- kx )/(J)c )1/1~ 3 (r;+ k 3x /(J)c )] • (A6) 

Fxx<r,r'; k;,n; )= (2k lx- kx +2(J)cry )(2k3x- kx +2(J)cr; )t/1n 1 (ry + k lx /(J)c )t/1n2 (r;+ (k3x- k lx) /(J)c) 

X tPn 3 (r;+ k3x j(J)c )t/1n4 ( ry + (k tx- kx )/(J)c) · 

The translational invariance of Eq. (A4) appears explicitly if we make the change of variables 

(A7) 
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klx =plx -twc(ry +r;), klz =plz ' 

- I ( ') k k3x-P3x-2Wc ry+ry, 3z=P3z, 
(A8) 

Y1 =y +t<ry +r;) 

to obtain from Eqs. (AS) and (A6), for R=(r-r')/2, 

Fzz(R,p;,n; )=(plz -p3z )2l/Jn 1 (Ry +plx lwc )l/Jn2 (-Ry +(P3x -px )fwc )) 

Xl/Jn 3(- Ry +P3x lwc )l/Jn4 <Ry +(P!x -px )lwc) ' (A9) 

Fyy(R,p;,n; )=wc[l/J~ 1 (Ry +P!x lwc )l/Jn4 (Ry +(P!x -px )fwc )-l/Jn 1 (Ry +P!x lwc )l/J~4 (Ry +(Pix -px )/wc >J 

X [l/J~ 2(-Ry +(P3x -px )fwc )l/Jn/- Ry +P3x lwc )-l/Jn2 (-Ry +(P3x -px )lwc )l/J~c (-Ry +P3x lwc )] ' 

Fxx(R,p;,n; )=(2p 1x -px +2wcRy )(2P3x -px -2wcRy )l/Jn 1 (Ry +P!x lwc )l/Jn2 (-Ry +(P3x -px )lwc) 

Xl/Jn 3 (-Ry +P3x lwc )l/Jn4 (Ry +(Pix -px )lwc) ' 

(AlO) 

(Ali) 

while the rest of the integrand in Eq. (A3) is left invariant. The calculation of r~~'(R,E,w) cannot proceed further be­
cause each integration variable appears simultaneously in four Herm~te polynomials and the integrais cannot be solved 
in closed forro. 

However, the calculation of the de conductivity from Eq. (5), 

2 

a~~'(O,O)= :71" f dR r~~'( R; O- ,o+) , 

simplifies if we perform another change of variables: 

VI =y +Pix lwc, V2 =y +P3x lwc ' 

v3=Ry+P1xlwc, v4=-Ry+P3xlwc, 

with Jacobian 

a(Pix•P3x•Y,Ry) _ 2 
-wc . 

a(vl,v2,v3,v4) 

We obtain 

X f_"'"' dvl l/Jnl (vi )l/Jn3(vl) 

(A12) 

(A13) 

X f_"'"' dv2l/Jn2 (v2 )l/Jn4 (v2) f -"'co dv3l/Jnl (v3 )l/Jn/VJ) f -coco dv4l/Jn2 (v4)l/Jn3 (v4) ' 

(Al4) 

(Al5) 
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and using the relations 

we get Eqs. (43)-(45). 
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