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Candida albicans, C. glabrata, C. tropicalis, and C. parapsilosis 
account for approximately 95% of identifiable Candida infections. 
Other species, including C. krusei, C. lusitaniae, and C. guilliermondii, 
account for less than 5% of cases of invasive candidiasis. The most 
common causative agent is still C. albicans, but its incidence is 
declining and the frequencies of other species are increasing. Recently, 
Furlaneto et al.1 noted that non-albicans Candida was the predominant 
species in different clinical specimens, with the exception of urine 
samples, in a Brazilian tertiary-care hospital. Invasive candidiasis 
has a mortality rate that approaches 40%2,3. Although most people 
are colonized by Candida sp., the majority never develop invasive 
candidiasis. Alterations in host immunity, physiological features, or 
normal microflora, rather than the acquisition of novel or hypervirulent 
factors by Candida, are suggested to degenerate the commensal-host 
interaction and lead to an opportunistic infection4.

During the course of a systemic infection, Candida cells are 
engulfed by host phagocytes, where they are exposed to reactive 
oxygen species (ROS)5. ROS contribute to the killing of C. albicans 
in both cultured cells and entire organisms6-9. Upon incubation with 
macrophages, C. albicans deoxyribonucleic acid (DNA) repair genes are 
transcriptionally induced, suggesting that DNA damage indeed occurs 
in the phagosome and that genotoxic hypersensitivity stress would be 
disadvantageous to the pathogen10. Recently, it was demonstrated that 
a large proportion of C. albicans cell surface antigens related to acute 
candidemia are involved in oxidative stress4. In C. albicans, hyphal cells 
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are more resistant to oxidative stress10, and hyphal formation is higher 
in isolates resistant to azole drugs11. Taking into account these data, 
overcoming the oxidative phagocytic challenge seems to be critical 
for the establishment of candidemia.

Candida species have evolved an antioxidant defensive response 
in order to withstand ROS attack, which encompasses, among other 
components, glutathione (GSH, L-γ-glutamyl-L-cysteinyl-glycine) 
and GSH-related activities (i.e., glutathione reductase, glutathione 
peroxidase, and glucose-6P-dehydrogenase)12. GSH is the most 
abundant non-protein thiol in eukaryotic cells and its very low redox 
potential (E’o = -240mV) provides the cell with redox buffer properties. 
In budding yeasts, GSH and its oxidized disulfide form (GSSG) are 
involved in essential physiological functions, such as DNA and protein 
synthesis, transport, and cellular detoxification13. Yeast isolates lacking 
glutathione or that have altered glutathione redox states are sensitive 
to peroxide-induced oxidative stress, superoxide anions, and lipid 
peroxidation products13-16.

Numerous assays have been described to measure antioxidant 
status, but it seems that no ideal method is available17. Different 
antioxidants can be measured separately, but the measurements are 
time-consuming, labor-intensive, costly, and often require complicated 
techniques18,19. Hence, the concept of a single test that might reflect 
the total antioxidant capacity (TAC) of biological fluids has elicited 
interest. The most widely used colorimetric methods to measure TAC 
are 2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic) acid radical cation 
(ABTS*+)-based methods. Reduced ABTS, a colorless molecule, is oxidized 
to ABTS*+, which is characteristically blue-green. When this radical is 
mixed with any oxidizable substance, it is reduced to its colorless form18.

Different Candida sp. exhibit unequal oxidative stress resistances in 
vitro20-22, and different in vitro virulence potentials23, and we proposed 
that this may contribute to the capacity of each species to cause 
candidemia22. Taking into account these differences, total glutathione 
levels and the cellular TAC were assessed in 8 Candida species.
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RESULTS

In the present work, the levels of total intracellular GSH following 
mild oxidative stress in Candida sp. were determined. GSH levels ranged 
from 80 to 290nmol/mg of protein in untreated samples and from 21 to 
83nmol/mg of protein in treated samples (Figure 1). With exception of 
C. tropicalis, all species tested exhibited a significant reduction in total 
GSH levels following exposure to mild oxidative stress (0.5mM H2O2). C. 
albicans presented the most dramatic reduction. In untreated samples, 
C. albicans presented the highest GSH levels and these levels were 
significantly higher than those seen in C. dubliniensis, C. guilliermondii, 
C. krusei, C. parapsilosis, and C. tropicalis (p < 0.05) (Figure 1). 

The TAC results were quite varied in each species (Figure 2). One C. 
albicans isolate (51), 2 C. guilliermondii isolates (6260 and 73), and 1 C. 
krusei isolate (6258) presented the highest TAC levels. With exception 
to C. guilliermondii isolate 73 in comparison with C. tropicalis isolate 
55, the isolates cited above exhibited significant differences in TAC 
levels compared to all other isolates tested (p < 0.05).

Concerning Spearman rank correlation coefficient, TAC results 
did not correlate (rho = 0.051) with sensitivity of  Candida  sp. 
isolates to oxidative stress. TAC results also did not correlate with 
total intracellular GSH levels in untreated (rho = 0.042) and treated  
(rho = 0.058) samples.

METHODS

Abegg MA et al - Glutathione and total antioxidant capacity in Candida sp.

Yeast isolates and cultivation

The following yeast isolates were used: C. albicans type strain 
ATCC 18804, C. dubliniensis type strain from the Centraalbureau voor 
Schimmelcultures (CBS) 7987, C. famata ATCC 62894, C. glabrata 
type strain ATCC 2001, C. guilliermondii type strain ATCC 46036, 
C. guilliermondii ATCC 6260, C. krusei type strain ATCC 6258, C. 
parapsilosis type strain ATCC 22019, and C. tropicalis ATCC 13803. 
The clinical isolates used were as follows: C. albicans 1 (isolate from 
a patient with nosocomial infection); C. albicans 51 (isolate from the 
orotracheal tube of an acquired immunodeficiency syndrome (AIDS) 
patient); C. dubliniensis 23 and C. dubliniensis 25 (both from the 
oropharynx of AIDS patients); C. famata 1 and C. famata 24 (both 
clinical isolates from patients with nosocomial infection); C. glabrata 
1, C. glabrata 75, and C. glabrata 118 (all obtained from catheter tips); 
C. guilliermondii 73 (clinical isolate from a patient with nosocomial 
infection); C. krusei 1 and C. krusei 2 (both isolated from skin lesions 
of diabetic patients); C. parapsilosis 81 and C. parapsilosis 115 (both 
isolated from patients with onychomycosis); C. tropicalis 1 (isolated 
from an oral granuloma); and C. tropicalis 55 and C. tropicalis 56 (both 
clinical isolates from a patient with nosocomial infection).

The isolates were identified and maintained as previously 
described22. Viable cells were obtained by cultivation on solid yeast 
extract-peptone-dextrose (YPD) medium (1% yeast extract, 2% 
peptone, 2% glucose, 2% agar), and isolates were then grown in liquid 
YPD medium in an orbital shaker at 30°C/100 rpm to late exponential 
growth (OD600nm = 1.5–1.6). Cells were washed twice with sterile 
distilled water and diluted to OD600nm = 0.15 in fresh liquid YPD for use. 
Cells were grown at 30°C rather than at 37°C because C. dubliniensis 
and C. famata grow better at 30°C.

Cell-free extracts

Cell suspensions (1.5mL) were centrifuged for 5 min at 8,000g 
and lysed by adding 0.5mL of lysis buffer (50mM Tris-Cl, 150mM 
NaCl, 50mM ethylenediamine tetraacetic acid [EDTA], pH 7.2), 50mM 
phenyl methyl sulfonyl fluoride (PMSF; Sigma, St. Louis, MO) and 
approximately 0.5 g of glass beads (diameter, 425-600µm; Sigma). Lysis 
was performed by vortexing for 3 mixing cycles of 3 min with 1-min 
intervals for cooling on ice. Breakage was checked microscopically. 
The samples were then centrifuged for 10 min at 8,000g to remove 
cellular debris and beads.

Total glutathione assay

Total intracellular glutathione was determined by the 5,5'-dithiobis-
(2-nitrobenzoic acid (DTNB)-glutathione disulfide GSSG reductase 
recycling method24,25. Cell suspensions were left untreated or 
were treated with 0.5mM H2O2, incubated for 1h with agitation at 
100rpm/30°C, washed with sterile distilled water, and then 
resuspended to the same volume in 100mM potassium phosphate 
buffer (pH 7.0), lysed, and centrifuged. Then, 25µL aliquots of the 
supernatants were vortexed thoroughly with an equal volume of  
2M HClO4 and 4mM EDTA. After 15 min incubation at 0°C, the 
suspensions were centrifuged for 5 min at 8,000g and 45µL of the 
supernatant was pH-neutralized by adding 3µL of 2M KOH at 0°C. This 

was centrifuged for 1 min at 8,000g and 35µL of the supernatant was 
added to a mixture containing 174µL of 100mM phosphate buffer  
(pH 7.0), 17µL of 4mM NADPH, and 7µL of glutathione reductase 
solution (6U/mL). This was mixed and incubated for 5 min at 37°C. 
Then, 18µL of DTNB reagent (0.040g of DTNB [Sigma] dissolved in 
10ml of 50mM potassium phosphate buffer, pH 7.0) was added, and 
the absorbance was read at 412nm after a 2-min incubation at 37°C.

Total antioxidant capacity

A modified method based on ABTS*+ decolorization described 
by Erel18 was employed. Cell suspensions were treated with 0.5mM 
H2O2, washed, lysed, and centrifuged, as previously described22, and 
5µL of each supernatant was mixed with 200µL of 0.4 mol/L acetate 
buffer, pH 5.8. Then, 20µL of ABTS*+ in 30mM acetate buffer, pH 
3.6, was added, mixed, and the absorbance measured after 5 min. 
The absorbance of a solution without ABTS*+ was also measured 
as the blank. The vitamin E water-soluble analogue 6-hydroxy-
2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) was used 
as the standard, and data were expressed in terms of mmol Trolox 
equivalent per milligram of protein.

Total protein content

The total protein content in lysed cells was determined by the 
Bradford assay (Bio-Rad, Hercules, CA).

Statistics

Statistical analyses were performed using the PASW software, v. 
18.0 (SPSS, Chicago, IL). One-way ANOVA was performed, followed by 
the Tukey post hoc test to compare differences among groups. The 
Student’s t-test was used to compare treated and untreated samples. 
Correlations were determined based on Spearman rank correlation 
coefficient (rho). Some statistical data have been omitted from the 
figures to facilitate visualization.
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FIGURE 1 - Effect of 0.5 mM H2O2 on the total intracellular glutathione concentration (nmol (GSH + 2GSSG) mg-1 
protein) in Candida sp. Cells were treated (black bars) or not (white bars), as described in Methods. Asterisks (*) 
indicate significant differences (p < 0.01) between untreated and treated samples. The symbol (‡) indicates significant 
differences between untreated Candida albicans cells and the isolates labeled. The data are the mean ± SD values of 
3 independent experiments. C: Candida.

0

10

20

30

40

50

60

TA
C 

(m
m

ol
 T

ro
lo

x 
eq

ui
va

le
nt

/m
g 

pr
ot

ei
n)

 

†

†

#
#

FIGURE 2 - Total antioxidant capacity in Candida sp. cells after 0.5mM H2O2 treatment. Cells were treated as described 
in Materials and Methods. Each column corresponds to the Candida isolate identified below. The symbol (†) indicates 
significant differences (p < 0.05) between the labeled isolate and all the other isolates tested. The symbol (#) indicates 
that the isolate Candida guilliermondii was not significantly different from the isolate Candida tropicalis 55 (p > 0.05), 
but was significantly different from all other isolates tested. The data represent the mean ± SD values of 3 independent 
experiments. C: Candida; TAC: total antioxidant capacity.

DISCUSSION

The virulence of Candida albicans seems to be multifactorial26, but 
the ability of this fungus to mount stress responses is an important 
aspect, as this promotes survival in the host during systemic infections27. 
In a previous study by our group22, we analyzed the oxidative effects 
(degree of resistance and induction of oxidative damage) and 
antioxidative effects (capacity to adapt and induction of antioxidative 
enzymes). Here, we continued the characterization of the oxidative 
stress response (OSR) of 8 clinically relevant Candida sp.

Hydrogen peroxide was used to generate oxidative stress. H2O2 
itself is not very reactive, but can be further reduced to extremely 
damaging hydroxyl radicals. Therefore, all aerobic cells are equipped 

with H2O2-removing enzymes. Furthermore, evidence suggests that 
H2O2 is produced transiently in response to the activation of many cell 
surface receptors and serves as an intracellular messenger. The timely 
elimination of intracellular messengers after the completion of their 
mission is critical for receptor signaling. This would seem especially 
true for H2O2

28. According to Ng et al.29 the network of enzymes that 
detoxify H2O2 in biological systems has at least 3 nodes: catalase (which 
is the longest known enzyme for the removal of H2O2 and requires no 
cofactors), 6 members of the peroxiredoxin family of enzymes, and 
the glutathione peroxidases that rely on GSH as the electron donor 
and specific cofactor.

The GSH levels (90-152) observed by Fekete et al.30 in untreated 
C. albicans isolates were similar to the levels found in this study (Figure 1).



  623

Consistent with this, Lemar et al.31 showed that a 30-min C. albicans 
exposure to 0.5 mM diallyl disulfide (a garlic oxidative constituent) 
decreased intracellular GSH and elevated ROS intracellular levels. 
It was also demonstrated that H2O2 exposure causes a reduction in 
intracellular GSH levels, particularly for Saccharomyces cerevisiae, 
as well as a shift in the GSH redox balance towards the oxidized 
form, GSSG, as reviewed in Penninckx13. Thomas et al.32 reported a 
dramatic decline in the level of intracellular GSH, concomitant with 
the yeast-to-mycelial conversion, in C. albicans. Consistent with 
this, Michán and Pueyo33 reported that the GSH levels in C. albicans 
hyphae were approximately 50% of those in yeasts. Considering that 
oxidative stress diminishes GSH levels33,34, our treatment with H2O2 was 
expected to reduce GSH content. Pacheco et al.25 demonstrated that 
cadmium treatment increased ROS production, depleted intracellular 
GSH concentrations, and increased external GSH concentrations. 
Furthermore, González-Párraga et al.12 used the oxidant 1-chloro-2,4-
dinitrobenzene to reduce intracellular GSH levels in Candida. Madeo 
et al.35 also demonstrated that treatment with 3 mM H2O2 induced 
intracellular GSH depletion and apoptosis in S. cerevisiae.

In contrast, Fekete et al.36 found GSH levels of ~160nmol/mg 
of protein in untreated isolates of C. albicans and ~260nmol/mg 
of protein after treatment with 1mM tert-butil-hydroperoxide, an 
oxidant. Lee et al.37 found that a 6-h treatment with 0.1mM H2O2 
provoked a 3.14-fold elevation in GSH levels in Schizosaccharomyces 
pombe. Manfredini et al.38 reported an increase in GSH levels upon 
treatment with 0.5mM H2O2 in wild-type S. cerevisiae cells and a 
significant reduction in those levels with 5mM H2O2. These differences 
regarding our results may be related to the duration of treatment, the 
use of different oxidants or lower doses of hydrogen peroxide, or to 
differences in the metabolic activities of the species. In the case of S. 
cerevisiae, it could be related to the higher sensitivity of this species to 
0.5mM H

2O2 in comparison to that of Candida sp. This concentration 
may induce 40% lethality in S. cerevisiae and is normally sublethal 
(95-100% viability) in the case of Candida sp.22,39.

GSH can occur in yeasts in the reduced form (GSH), the oxidized form 
(GSSG), and as different mixed disulfides, for example GS-S-CoA and 
GS-S-Cys13. The H2O2 (0.5 mM/1h treatment) used to induce oxidative 
stress was probably detoxified in part through the action of the enzyme 
glutathione-peroxidase (GPx) and the concomitant conversion of GSH 
into GSSG29. Increasing GSSG levels can potentially inhibit protein 
synthesis in animal and plant cells40,41, and because of this, Candida cells 
are likely to export GSSG under conditions of oxidative stress, resulting 
in a decrease in total intracellular glutathione levels.

In yeasts, peroxide resistance has been associated with 
intracellular GSH levels42-44. Further, it has been previously proposed 
that the rate of removal of H2O2 is a direct function of GPx activity × 
GSH29. The highest levels of GSH observed and the intense diminution 
of intracellular GSH levels in C. albicans (Figure 1), together with 
the GPx activities previously observed for this species20 (Abegg et 
al. unpublished results), may indicate a more efficient detoxification 
system of H2O2 through GPx/GSH in C. albicans than in other Candida 
sp. However, the limitations of the GSH results should be noted, 
particularly because of the use of 1 isolate of each species, and further 
comparisons regarding GSH metabolism should be made.

Total antioxidant capacity assays may be broadly classified as 
electron transfer (ET)-based and hydrogen atom transfer (HAT)-based 

assays, although these 2 mechanisms may not be differentiated 
with distinct boundaries in some cases. In fact, most non-enzymatic 
antioxidant activity (e.g., scavenging of free radicals and inhibition of 
lipid peroxidation) is mediated by redox reactions. Electron transfer 
assays include the ABTS, Trolox equivalent antioxidant capacity 
(TEAC), cupric-reducing antioxidant capacity (CUPRAC),  di(phenyl)-
(2,4,6-trinitrophenyl)iminoazanium (DPPH), Folin-Ciocalteu, and 
ferric-reducing antioxidant power (FRAP) methods, each of which 
use different chromogenic redox reagents with different standard 
potentials (reviewed in Apak et al.45).

The ET mechanism of antioxidant action is based on the following 
reactions: (1) ROO. + AH/ArOH → ROO- + AH.+/ArOH.+, (2) AH.+/ArOH.+ 
+ H2O ↔ A./ArO. + H3O

+, and (3) ROO- + H3O
+ ↔ ROOH + H2O; these 

reactions are relatively slower than those of HAT-based assays and are 
solvent- and pH-dependent45. Re et al.46 and Erel18 developed improved 
ABTS radical cation decolorization assays using persulfate and hydrogen 
peroxide, respectively, as the oxidant, and thereby compensated for 
the weaknesses of the original ferryl myoglobulin/ABTS assay. The 3 
TEAC tests developed at different periods, namely the TEAC assay I 
(ABTS*+ generated enzymatically with metmyoglobin and hydrogen 
peroxide), TEAC II (radical generation with filtration over the MnO2 

oxidant), and TEAC III (with K2S2O8 oxidant), are entirely different 
from each other, are applicable to different solvent media, and their 
findings for a given antioxidant can vary significantly. The ‘pre-addition 
technique’ as in TEAC I, involving the addition of antioxidants before 
radical generation, could result in an overestimation of antioxidant 
capacity, because many substances interfere with the formation of 
the radical; therefore, TEAC I measures the ability to delay radical 
formation as well as the scavenging of the radical45. 

The advantages of ABTS/TEAC are reported to be operational 
simplicity, reproducibility, diversity, and most importantly, flexible 
usage in multiple media to determine both the hydrophilic and 
lipophilic antioxidant capacities of physiological fluids, since the 
reagent is soluble in both aqueous and organic solvent media. 
Aqueous- and lipid-soluble antioxidants are not separated in the TAC 
protocol employed; therefore, the combined antioxidant activities of 
all its constituents, including vitamins, proteins, lipids, glutathione, 
and uric acid, are assessed45.

The intra-specific TAC variation found here is in agreement with 
observed variations in the sensitivities of C. albicans isolates to 
oxidants47. However, the TAC results did not correlate (rho = 0.051) with 
the previously reported sensitivity of Candida sp. isolates to oxidative 
stress22. One C. albicans isolate (51), 2 C. guilliermondii isolates (6260 
and 73), and 1 C. krusei isolate (6258) showed the highest TAC levels. 
With the exception of the comparison of C. guilliermondii isolate 
73 with C. tropicalis isolate 55, the isolates cited above exhibited 
significant differences in TAC levels in comparison to all the other 
isolates tested (p < 0.05). 

Lapshina et al.48 compared differences in the ability to scavenge 
nitroxide (4-amino-2,2,6,6-tetramethylpiperidinoxy; TEMPO), stable 
free radicals, and alkoxyl free radicals generated by the decomposition 
of the free radical initiator 2,2'-azobis-2-methyl-propanimidamide 
dihydrochloride (AAPH) in S. cerevisiae strains defective in catalase and 
superoxide dismutase and with a decreased level of glutathione. Unlike 
the results obtained here for Candida isolates (Figure 2), S. cerevisiae 
cell homogenates did not show considerable strain-related differences. 

Abegg MA et al - Glutathione and total antioxidant capacity in Candida sp.



624

ACKNOWLEDGMENTS

The TAC based on the scavenging of ABTS free radicals showed a good 
correlation with the radiation resistance of the yeasts. According 
to the authors, the results point to the importance of factors other 
than antioxidative enzymes and glutathione, in the determination of 
cellular resistance to ionizing radiation and other types of free-radical 
stress in S. cerevisiae.

Balcerczyk et al.49 demonstrated that the TAC of cell extracts of 
S. cerevisiae showed a stronger dependence on the thiol content 
as evidenced by the effect of -SH blocking with n-ethylmaleimide 
(NEM). TAC measured after 10 s was decreased by 83-90% (in different 
strains) following thiol modification, while TAC measured after a 1-min 
reduction of ABTS*+ was decreased by 73-80%. According to the 
authors, the results indicate that thiol groups are a major contributor 
to the TAC of S. cerevisiae and perhaps of other yeast species. These 
results demonstrate that in cell extracts, in contrast to extracellular 
fluids, thiol groups constitute the dominant determinant of total 
antioxidant capacity, at least in S. cerevisiae. Depletion of thiols leads 
to a decrease in TAC. However, cellular adaptation to oxidative stress 
may involve the mobilization of mechanisms other than an increase 
in thiol concentrations. This is especially evident in yeast cells, where 
strains deficient in antioxidant enzymes show increased values of TAC 
due mainly to thiol-independent mechanisms. Similarly, the adaptation 
of yeast to conditions of stationary culture and reoxygenation after 
growth under anoxia predominantly involves antioxidants other than 
thiols, as demonstrated by Balcerczyk et al.49.

Considering the mode of action of the enzymes of the peroxiredoxin 
(Prx) family, which consists of thiol-dependent peroxidases involved 
in the removal of various types of hydroperoxides in cells, such as 
hydrogen peroxide, organic peroxides, and peroxynitrite50,51, and 
based on the results described above, these enzymes seem to be 
critical in determining the TAC of yeast cells. In addition to detoxifying 
peroxides, specific peroxiredoxins have been shown to act as molecular 
chaperones and to play roles in regulating hydrogen peroxide-mediated 
cell signaling events51. In S. cerevisiae, for example, the steady-state 
protein level of the peroxiredoxin Tsa1 is 45 times that of Gpx352,53. 
Tsa1 is also the key peroxidase suppressing genome instability and 
protecting against cell death in S. cerevisiae54,55. Furthermore, in 
S. cerevisiae, Demasi et al.56 demonstrated the importance of cytosolic 
thioredoxin peroxidase I (cTPxI) and its reductant sulfiredoxin in the 
protection of cells suffering mitochondrial dysfunction, against H2O2-
induced death. 

In S. cerevisiae, there are 5 isoforms of Prx, distributed in different 
cellular compartments57. The 2 most abundant peroxiredoxins in these 
species are Ahp1 and Tsa158. The TSA1 gene is present in C. albicans, 
C. glabrata, C. tropicalis, and C. dubliniensis and is similar to the TSA1 
and TSA2 of S. cerevisiae. AHP 11, AHP 12, and AHP 13 are genes from 
strain SC5314 of C. albicans and show similarity to the S. cerevisiae 
alkyl hydroperoxide reductase AHP1 (YLR109W) 59.

Urban et al.60 reported the identification of Tsa1p, a protein that is 
differentially localized to the cell wall of C. albicans in hyphal cells but 
remains in the cytosol and nucleus in yeast-form cells. According to 
the authors, this is different from S. cerevisiae, where the homologous 
protein solely has been found in the cytoplasm. These authors 
reported that TSA1 confers resistance towards oxidative stress in 
addition to being involved in the correct composition of hyphal cell 
walls. Shin et al.61 also observed that the protein Tsa1p codified by 

this gene was indispensable in the yeast-to-hyphal transition when 
C. albicans was cultured under oxidative stress. In C. albicans, the 
genes AHP1 and HSP12 are regulated by the response regulator 
gene SSK1, and those genes are associated with cell wall biosynthesis 
and adaptation to oxidative stress62. Therefore, it seems that the 
peroxiredoxin system is critical for the functioning of the antioxidant 
system of Candida and is one of the most important contributors to 
the TAC in Candida cell lysates.

As far as we are aware, this is the first attempt to use a single test of 
TAC in Candida. The use of a single marker of antioxidant capacity has 
drawbacks and these data must be interpreted with caution. According 
to Young17, these single markers measure predominantly low molecular 
weight and chain-breaking antioxidants, excluding the contributions 
of antioxidant enzymes and metal binding proteins. The fact that 
the TAC results did not correlate with the sensitivity of Candida sp. 
isolates to oxidative stress has been reported previously22 (Abegg et 
al. unpublished results); the fact that it also did not correlate with 
total intracellular GSH levels in untreated (rho = 0.042) and treated  
(rho = 0.058) samples may indicate that a single marker cannot provide 
a picture of the antioxidant capacity of a Candida sp.

Fekete et al.30 searched for C. albicans isolates that are naturally 
resistant to oxidative stress but did not find this phenotype. They argued 
that the selection of mutants that are tolerant to oxidative stress in 
vivo would be beneficial to the pathogen-phagocyte interaction, but 
would be unlikely because of the concomitant and disadvantageous 
changes in virulence attributes, like morphological transitions and 
phospholipase secretion. They also point out that an over-efficient 
antioxidative defense system may be disadvantageous for C. albicans 
by hindering the ROS-triggered activation of genomic ageing and cell 
death programs that promote adaptation to stresses in the human body. 
Besides the unlikely selection of C. albicans mutants that are naturally 
oxidant-resistant, certain species like C. dubliniensis, C. guilliermondii, 
and C. famata are probably not evolutionarily prepared to cope with the 
first line of immune defense and oxidative stress, even in moderately 
immunocompromised individuals. This would be reflected in the relative 
incidence of this species as a causal agent of invasive candidiasis.

Macrophages and neutrophils use ROS, reactive nitrogen species 
(RNS), and chlorine species for host protection6-9,63, but the idea that 
ROS exert direct in vivo effects in the fungal killing of Candida and other 
species is still controversial. Balish et al.64 studied the deficient production 
of ROS and RNS in mice using gastrointestinal Candida inoculation. 
Although these mice died, an exaggerated immune response rather than 
an overwhelming fungal infection appeared to cause death. Further, 
an in vitro study with phagocytes from normal and ROS/RNS-deficient 
mice revealed equal abilities of both to kill C. albicans. Wellington et al.65 
considered these data to be in agreement with their results of C. albicans 
suppression of ROS production in phagocytes. However, it seems to be 
clear that Candida species have distinct capacities to deal with oxidative 
stress, and the inhibition of specific antioxidant molecules may be 
therapeutically useful in the future.
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