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In evolutionary dynamics, the probability that a mutation spreads through the whole population, having
arisen from a single individual, is known as the fixation probability. In general, it is not possible to find the
fixation probability analytically given the mutant’s fitness and the topological constraints that govern the spread
of the mutation, so one resorts to simulations instead. Depending on the topology in use, a great number of
evolutionary steps may be needed in each of the simulation events, particularly in those that end with the
population containing mutants only. We introduce two techniques to accelerate the determination of the fixation
probability. The first one skips all evolutionary steps in which the number of mutants does not change and
thereby reduces the number of steps per simulation event considerably. This technique is computationally
advantageous for some of the so-called layered networks. The second technique, which is not restricted to
layered networks, consists of aborting any simulation event in which the number of mutants has grown beyond
a certain threshold value and counting that event as having led to a total spread of the mutation. For advan-
tageous mutations in large populations and regardless of the network’s topology, we demonstrate, both ana-
lytically and by means of simulations, that using a threshold of about [N/(r—1)]"* mutants, where N is the
number of simulation events and r is the ratio of the mutants’ fitness to that of the remainder of the population,
leads to an estimate of the fixation probability that deviates in no significant way from that obtained from the
full-fledged simulations. We have observed speedups of two orders of magnitude for layered networks with

10 000 nodes.
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I. INTRODUCTION

We consider directed networks in which each node is in-
habited by a single individual of a population and whose
edges represent the possibilities for an individual’s offspring
to replace some other individual. Such networks provide the
substrate on which the evolution of the population can be
studied given the constraints imposed by their structures. In
this modality of evolutionary dynamics, known as evolution-
ary graph dynamics since its introduction in [1], the popula-
tion evolves in discrete-time steps, each of which involves
the fitness-based selection of an individual for reproduction
and the use of its offspring to replace one of its out-
neighbors in the network. The chief quantity one targets in
such studies is the probability that a mutation arising at a
randomly chosen individual, henceforth called a mutant, of
the otherwise homogeneous population eventually spreads
through all the population. This probability is known as the
fixation probability.

In the past decade, the study of several other phenomena
has been approached from a similar perspective of interact-
ing agents. Such phenomena have included differently con-
strained forms of the dynamics of evolution [2,3], the spread
of epidemics through populations [4], the emergence of co-
operation in biological and social systems [5-8], and various
others [9-11]. In most cases, what the interacting agents do,
driven by either competition or the goal of promoting coop-
eration, is spread information through the network in order to
attempt to influence the states of other agents. In general,
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network structure is a major player in affecting the global
outcome of such interactions, and this holds to the extent that
subtle structural changes can have relevant consequences
[1,12-17]. The importance of network structure, in fact, is
also central in several other areas, as for example those dis-
cussed in [18-20].

The fixation probability is very heavily influenced by the
structure of the underlying network as well. In rare cases it is
possible to calculate it analytically from both structure and
the relative fitnesses of the individuals [1,21-24], but in gen-
eral one has to resort to simulations of the evolutionary steps.
Given the network and the mutant’s fitness, the simulation is
conducted as a number of independent events, each of which
starts by placing the mutant at a randomly chosen node and
then carries out the evolutionary steps until either fixation
(all nodes contain mutants) or extinction (no node contains a
mutant) occurs. The fraction of events ending in fixation is
an estimate of the fixation probability. This simulation-based
approach to obtaining the fixation probability can be very
time consuming not only because many independent events
are needed but also because each event can require a signifi-
cantly large number of steps to converge. This is illustrated
in Fig. 1, which suggests two properties of the simulation
process. The first is that events ending in extinction usually
require substantially fewer steps to conclude than those end-
ing in fixation. The second is that the number of steps re-
quired for fixation varies widely with network topology.

The various network topologies used in Fig. 1 recur
throughout the paper, so we pause momentarily to introduce
them. We emphasize, though, that our purpose in the present
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FIG. 1. (Color online) Probability densities associated with the
number of steps required for extinction and fixation of a mutant
10% fitter than the remainder of the population. Data are log-binned
to the base 1.5 and represent averages over 10° events for each
K-funnel, 107 events for each of the two random networks (10*
events for each of 103 graphs in each case; in the case of the ran-
dom network with a Poisson-distributed number of out-neighbors,
each of these graphs has at least 95% of the nodes in the GSCC).
Arrows indicate the means. All the networks have 1555 nodes.

work is not to dwell on the properties of these topologies but
rather on how to accelerate the determination of the fixation
probability for any given network. The topologies in ques-
tion are the K-funnel [1], a random generalization thereof
[25], and the directed variant of the Erdds-Rényi random
graphs [26] discussed in [27,28]:

(a) For b,K>1 integers, the K-funnel of base b
(a branching parameter) has node set partitioned into K
subsets, called layers and numbered k=0,1,...,K—1, such
that there are b* nodes in layer k. The K-funnel, therefore,
has (b¥=1)/(b—1) nodes. For k=1,2,...,K—1, an edge ex-
ists directed from each node in layer k to each node in layer
k—1. Additionally, an edge exists directed from the single
node in layer O to each of the nodes in layer K—1. An illus-
tration is given in Fig. 2 for K=b=3.

(b) The K-funnel is generalized by any network in which
nodes occupy layers and edges exist only from all nodes in a
layer to all nodes in the next according to some cyclic ar-
rangement of the layers. The generalization we use [25], la-
beled random layered in Fig. 1, is constructed randomly by
first placing one node at each layer and then adding one extra
node at a time to a layer that is chosen with probability
proportional to (K—d)“. Here, d is the distance to the layer in
question from the layer whose number of nodes is the first
peak one finds while moving upstream from it, and the
strength parameter a=1 regulates the probabilistic bias.

(c) The other random networks we use [27,28], labeled
random Poisson in Fig. 1, depart from the layered structure
altogether and are built as follows. Given n nodes and the
desired expected number of out-neighbors, denoted by z, ev-
ery ordered pair of distinct nodes is connected by an edge
directed from the first node to the second in the pair with
probability z/(n—1). It follows that a randomly chosen node
has a number of out-neighbors given by the Poisson distri-
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FIG. 2. The 3-funnel for branching parameter b=3. Each rect-
angular box corresponds to a layer. Edges connect back to the nodes
in layer 2 from the single node in layer 0.

bution of mean z and that, if z>1, a giant strongly connected
component (GSCC) exists with high probability. The simu-
lation of the evolutionary dynamics on such a network is
confined to its GSCC.

We also remark, before proceeding, that some of our own
recent work related to the fixation probability has been
strongly influenced by the computational difficulties associ-
ated with estimating it. For example, in [25] we set out to
create a randomized growing mechanism for layered net-
works that would result in fitness amplifiers in the sense in
[1]. The mechanism we created gives rise to the K-layer
random networks introduced above and, indeed, we were
able to demonstrate the desired amplification effect for 1000
nodes. However, we fell short of demonstrating to full
completion that the same holds for significantly larger net-
works, due mainly to the very large times required to com-
pute the fixation probabilities of the thousands of candidate
networks.

Our central concern in this paper is the devising of simu-
lation strategies that can make the calculation of the fixation
probability substantially faster while maintaining accuracy or
reducing it only imperceptibly. We proceed along two tracks.
The first is targeted at eliminating the evolutionary steps at
which no change is effected to the number of mutants in the
network. This occurs whenever the simulation prescribes that
a mutant’s offspring is to replace another mutant or that a
nonmutant’s offspring is to replace another nonmutant. Our
results in this track are better suited to the layered networks
introduced above; we demonstrate them for the K-funnel.
The second track we pursue builds on the realization that, if
in general it takes a lot more steps for fixation to occur than
for extinction, then detecting early in the course of a simu-
lation event that fixation is highly likely to occur can be used
as a surrogate to the eventual detection of fixation and
thereby reduce the number of necessary steps. We have
found out that, nearly regardless of the network for a large
number of nodes, there exists a threshold number of mutants
beyond which fixation is practically guaranteed to take place.
We give results for a wide variety of networks.

We organize the remainder of the paper in the following
manner. In Sec. II we briefly review the key notions related
to the fixation probability. Then, in Secs. III and IV we pur-
sue the two tracks outlined above for computing the fixation
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probability more efficiently for layered networks and for un-
restricted networks, respectively. We conclude in Sec. V.

II. FIXATION PROBABILITY

Let V be a population of n individuals and, for i € V, let
0;C V\{i} be the set of individuals that an offspring of i can
replace during the evolution of V. Let also I; be the set of
individuals whose offspring can replace i. These give rise to
a directed graph, called D, whose set of nodes is V and
whose set of edges, denoted by E, contains the edge (i,)) if
and only if j € O, (equivalently, i € I;). Each individual i has
a fitness f;>0 associated with it, and similarly to each
edge (i,j) there corresponds a probability w;; such that
> jeowi=1for all i € V. The dynamics of evolution that we
consider occurs in a sequence of steps. At each step, an in-
dividual i is chosen with probability proportional to f;, then
another individual j € O; is chosen with probability w;;, and
finally j is replaced by an offspring of i having the same
fitness f;.

The fixation probability of graph D, denoted by p, is the
probability that a mutation spreads through all of population
V given that it arises from one single individual and that all
individuals in the remainder of the population have the same
fitness. The value of p depends on the structure of D and on
the ratio r of the mutant’s fitness to that of the other indi-
viduals. Moreover, it is the relationship between p and r that
determines whether evolution is driven primarily by natural
selection or by random drift: essentially, natural selection
predominates when p and r are highly correlated, random
drift otherwise. Note in this context that, if D is not strongly
connected (i.e., there exist nodes i and j such that no directed
path leads from i to j), then p>0 if and only if there exists
an individual from which all others are reachable. This
may cause random drift to be the main driver of evolution, so
henceforth we assume that D is strongly connected
(thus p>0 necessarily).

This type of evolutionary dynamics can be described by a
discrete-time Markov chain of states 0,1, ...,n, each repre-
senting a possible number of mutants in graph D. In this
chain, states 0 and n are absorbing and all others are tran-
sient. If s is a transient state, then from s it is possible to
move to state s+1 (with probability p,), to state s—1 (with
probability ¢,), or to remain at state s (with probability
1-ps—q,). The use of this chain to describe the dynamics
stems directly from the fact that, at each step, the number of
mutants in D changes by at most 1. In principle, however, it
is possible to zoom in on any transient state s and replace it
with a collection of (') states, each representing one of the
possibilities for the location of the s mutants in D. This
would be of no use in what follows, so we contemplate this
possibility no further.

If we denote by P,,(n|s) the probability that, having
started at state s, this (n+1)-state system eventually enters
state n, then it is well known that
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1+ 2 I qu/p,

u=1v=1

Pn+1(n|s) =

(cf. [29,30]). Note, with regard to this expression, that the
subscript n+1, which functions as an indicator of system
size, is somewhat redundant at this point. The reason why we
adopt it is that in Sec. IV the expression is used to combine
systems of different sizes and then the subscript becomes
essential for disambiguation. Note also that, in a context
wider than the one we are dealing with in this paper, Eq. (1)
can be interpreted from the perspective of a one-dimensional
random walk on the real line. This random walk is restricted
to the integers in the interval [0, 7] and, having started at the
integer s>0 in this interval, eventually ends at n with the
probability given by the equation. In our context of evolu-
tionary dynamics, it is a consequence of Eq. (1) that the
fixation probability p, which is given by P,,,(n|1), is such
that

1
p= n=1 u

1+ [T qup,

u=1 v=1

. (2)

When the probabilities w;; are such that X, wii=1 for all
i eV (i.e., not only do the probabilities associated with the
outgoing edges of i sum up to 1 but also those of the incom-
ing edges), and only then, the isothermal theorem in [1,31]
establishes that p,/q,=r for all v e{l,2,...,n—1}. In this
case, and assuming that r# 1 (i.e., the mutation is either
advantageous or disadvantageous but not neutral), it follows
from Eq. (2) that the fixation probability, now denoted by p,
is

_ 1-1/r
T

P 3)
This includes the Moran process [2], in which graph D is
such that O;=V\{i} for all ieV and w;=1/|0] for all
(i,j) € E (we use |X| to denote the cardinality of set X). It
also includes the more general case in which the w;;’s are
thus constrained and, moreover, all nodes have as many in-
coming edges as outgoing edges, provided this number is the
same for all nodes.

Other noteworthy cases for which w;=1/|0; for all
(i,j) € E are the directed graphs that in [1] are shown to be
fitness amplifiers with respect to the expression for the fixa-
tion probability p;. The isothermal theorem does not in gen-
eral apply to these graphs but, for them, substituting X for r
in Eq. (3) yields p=pg as n— oo, where

-1 @
PR= 11k

This is the case, for example, of the K-funnel. So, even
though it has an artificially contrived structure, the K-funnel
remains a centrally important graph because of its ability to
amplify fitness arbitrarily with respect to the Moran process.
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This property stems essentially from the role played by the
branching parameter b of the K-funnel. Even at its smallest
value (b=2), it ensures that layer K—1 has more nodes than
all the others put together. Consequently, the first mutant
arising in the network is likely to appear in this layer and is
also likely to be long lived (only a nonmutant in layer O can
destroy it, but this is unlikely) and perpetuate the mutation
through its offspring.

Moreover, as we explain in Sec. IV, the K-funnel has pro-
vided an indispensable reference against which to detect
which of the randomly grown layered networks in [25] have
the potential to be fitness amplifiers as well. The latter are the
only grown networks we know of that have the fitness-
amplification property. In our opinion, the fact that they
emerge out of random growth decisions makes them (and
also the K-funnel that guided their discovery) remarkable
structures.

III. FIXATION IN LAYERED NETWORKS

We henceforth use w;;=1/|0,| for all (i,j) € E exclusively
and first present materlal that applies to any graph D, layered
or otherwise. For r=0 an integer, let E(f) CE be the set of
edges (i,/) such that, at the tth evolutionary step, node i is a
mutant but node j is not. If P*(¢) denotes the probability that,
at step 7+ 1, the number of mutants in D increases (necessar-
ily by 1), then it can be calculated by summing up the prob-
abilities that this happens at each of the edges in E(z). For
edge (i,)) € E(t), the replacement of nonmutant j by an off-
spring of mutant i occurs if and only if i is chosen when
fitness-based selection is performed and, moreover, j is cho-
sen given that i has been. The former happens with probabil-
ity r/[M(t)r+n—M(t)], where M(z) is the number of mutants
at step  [so M(0)=1], the latter with probability w;;. We then
have

rl|O}]
P ()= > —————. (5)
(hepmn+M@)(r-1)
Letting m;(7) be an indicator of whether node i is a mutant at
step 7 [i.e., m;(r)=1 in the affirmative case and 0O otherwise],
this expression can be rewritten as a sum over all edges in E.
To do this, we simply recognize that

0 if (i,j) e E\E
mi(0)[1 —m,(z)]:{l ;f Z j; o (0 ©
and then
! mt)[1 —m(1)]
n+M@Or-Dijee 0]

m; (t) s mm)

r
_n+M(t)(r 1)|:(l_])EE |0| (i,j)eE |0|

=;l)[zm<r>z

n+M(t)(r— ieV Jjeo; |O|

P(1)=

m(t)m;(t)

.y mi(t)mz'(l)‘|' -
iper O]
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Using =;.0(1/|0})=1 for all ieV and X;_ym(r)=M(r)
yields, finally,

P = 3, mlim(o) (”]. (®)

n+ M) (r—1) lM(’) S ol

Similarly, the probability P~() that the number of mutants
decreases (necessarily by 1) at step t+1 is

;)[2 o _ 5 m(r>m<r>]'

P ()=
n+M@O(r=1)| 5ee 10 e 10

)

The number of mutants remains unchanged at step 7+ 1 with
probability 1-P*(t)—P(z).

These expressions for P*(z) and P(¢) hold regardless
of whether the isothermal theorem applies to graph D
or not. When it does apply, the two expressions allow
the evolutionary dynamics to be observed from an
interesting perspective, since in this case D is such
that 2(ZJ EEm ([)/|0 |_ ]eVm (t)zzel 1/|O |_ ]eVm (t)
=M(t), and therefore P*(¢)/P (t)=r= px/ q, for state
se{l,2,...,n—1} such that the number of mutants M(t)=s.
This, essentially, is the argument behind the isothermal
theorem.

Moreover, there is insight to be gained from the two ex-
pressions even if the isothermal theorem does not hold. For
fitness ratio r sufficiently close to 1, what makes P*(¢) and
P~(¢) differ from each other is the balance between M(¢) and
, where the former does not depend on the
topology of D (given 1) while the latter does. Thus, for ex-
ample, if we consider the K-funnel and let M,(f) be the num-
ber of mutants in layer k at step ¢, we have

K-2

s m;(t) S M (H)b*! N My_(t)
inee 101 5 b* b*!

= B0 - My 01+ 2 (10)

Readily, maintaining a relatively high value for the ratio
P*(r)/P~(t) (a strong forward bias) in the case of the
K-funnel depends crucially on how close M(r) and Mg_,(z)
are to each other, i.e., on how close the largest layer is to
containing a significant fraction of the M(s) mutants. The
fact that P*(r)/ P~(t) — X as n— o indicates that the topol-
ogy of the K-funnel is in fact successful at maintaining the
necessary distribution of mutants.

Equations (8) and (9) are also useful in that they provide
an alternative mechanism for simulating the evolutionary dy-
namics. Instead of repeatedly choosing i, then j € O; to re-
ceive i’s offspring, until the mutation either spreads through
the whole of graph D or dies out, we use the two equations to
decide, at each step 7, whether the number of mutants will
increase, decrease, or remain the same at step 7+ 1. In the
former two cases, and only in these cases, we choose the
nodes to be involved, create or destroy a mutant as the case
may be, then compute P*(#+1) and P~(¢+1). By doing so, all
steps in which no mutant is created or destroyed are skipped.
Of course, in order for this alternative to be computationally
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attractive the suppression of these steps has to compensate
for the additional effort to calculate the probabilities at every
step that is not suppressed.

While in the general case this will not be so, for layered
networks like the K-funnel, in which all nodes in the same
layer are topologically identical to one another (they all have
the same in- and out-neighbors), the simulation can be con-
ducted by keeping track only of the number of mutants in
each layer and the alternative becomes attractive. We then
consider the generalization of the K-funnel obtained by let-
ting layer k have any number n;>0 of nodes. In this case,
we can rewrite Egs. (8) and (9) by decomposing each of
P*(¢) and P~(¢) into K summands, each related to a pair of
subsequent layers. Thus, we obtain P*(1)=S& P} (r) and
P (=3 Pi(1), with

"My () [y = M(1)]
nln+M(@t)(r—1)]

Pi(n) = (11)

and

M ()11 = My ()]
mn+M@)(r-1)]

P(t)= ; (12)
where M () is as for the K-funnel. In these expressions and
henceforth, layer numbers are incremented or decremented
modulo K (the number of layers).

For layered networks such as these, once it has been de-
cided that a mutant is to be created or destroyed at step
t+1, the layer at which this is to happen is k with probability
proportional to P;(z), in the case of creation, or P, (t), in the
case of destruction [consistently with this, notice that
Pi(1)=0 if M, (=0 or M(t)=n; and that P ()=0 if
M (1)=0 or M, ;(t)=ny,,]. Once M(t+1) has been updated
from M,(z), it follows from Egs. (11) and (12) that only
P (t+1) and P;_,(t+1), or P (r+1) and P,_,(t+1), need to
be calculated. This is so because, although M(z+1) is up-
dated from M(z) as well, the only effect this has is to alter the
factor in the denominator of Egs. (11) and (12) that is com-
mon to all layers. As a consequence, the probabilities corre-
sponding to any layer other than k or k—1 need not be cal-
culated.

Computational results on the K-funnel are given in Fig. 3
for a variety of n and K values, where we show the speedup
afforded by the use of Egs. (I11) and (12) to compute the
fixation probability. This speedup is defined as the ratio of
how much processor time is needed to determine the fixation
probability when the two equations are not used to the pro-
cessor time that is needed when they are. It indicates, in all
cases examined, a reduction to less than half the time re-
quired by the simulation that goes through all the evolution-
ary steps. We note, however, that the approach we discuss in
Sec. IV allows for much more significant speedups.

IV. FIXATION IN ARBITRARY NETWORKS

In the absence of the computational facilitation provided
by layered networks, which, as we have seen, allows the
fixation probability to be computed more efficiently by skip-
ping all steps of the simulation in which no mutant is created
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FIG. 3. (Color online) Speedups resulting from the use of Egs.
(11) and (12) on the K-funnel with fitness ratio r=1.1. Data are
averages over at least 10* events.

or destroyed, for an unrestricted topology we turn to the
alternative strategy of attempting an early stop of each simu-
lation event based on how many mutants there are. The cen-
tral question is whether there exists a threshold number of
mutants which, once crossed from below, ensures that fixa-
tion is bound to occur with probability as close to 1 as one
wishes. We provide an affirmative answer in what follows.

The probability that the mutation eventually dies out,
given that s mutants are originally present, equals
1-P,, (n|s). We denote it by Q,,,(0|s), and it follows from
Eq. (1) that

n-1 u

> M ap,

u=s v=I

0,11(0]s) = (13)

n-1 u

1+ [T qup,

u=1 v=1

We are interested in the probability that, conditioned on the
fact that extinction does actually occur, the number of mu-
tants eventually grows from the initial s to some fixed value
M e{s,s+1,...,n—1} but does not surpass it. We denote this
probability by O™ ,(0|s) and remark that, should its depen-
dency with M be known, we would immediately be able to
discover the desired threshold for the number of mutants by
adopting s=1 and specifying a lower bound on the probabil-
ity. In other words, we would discover the threshold, call it
M*, by specifying Q* such that QY (0]1)=Q* for all
M=M*. This follows from the intuitive expectation that
QnM+1(0 |5) is to decrease as M grows for sufficiently large M.

From its definition as a conditional probability, 0™ (0]s)
is given by AB/Q,,,1(0|s), where A is the probability that the
number of mutants in the network eventually increases from
s to M and B is the probability that, given that it has M
mutants, the system eventually returns to state 0 without ever
increasing its number of mutants beyond M. We calculate the
values of A and B by resorting to discrete-time Markov
chains entirely analogous to the one we have been using but
now having reduced numbers of states. The first of these
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FIG. 4. (Color online) Contour plots of the probability that the
population acquires a maximum of M mutants, given that it even-
tually dies out [Eq. (15)], as a function of M and the fitness ratio r
for one single initial mutant (s=1) and a number of nodes n— o°.
Contour levels are denoted by e.

chains has states 0,1, ...,M, of which O and M are absorb-
ing while all else remains unchanged. We set A to the prob-
ability that the system gets absorbed into state M having
started at state s, that is, A=P,,,,(M|s). The second chain
has states 0,1,...,M+1, with 0 and M+1 as the absorbing
states and everything else unchanged. We set B to the prob-
ability that absorption occurs at state 0 once the system is
started at state M, that is, B=Q,,,,(0|M). We then obtain

PM+1(M|S)QM+2(O|M)
Qn+l(0|s)

Closed-form expressions are, in general, not known for
Eq. (1) or (13), so we assume that it suffices to consider the
case in which p,/q,=r for all transient states v. That is, we
proceed with deriving an exact expression for the isothermal
case and use the same expression as an approximation in all
other cases. In the isothermal case and for r# 1, Eq. (14)
yields

oM, (0]s) = (14)

(1-1/7)1-1/r) 1-1/7
(1=1M™M = 1M YM 1= 107

Q1 (0ls) = (15)
Readily, 0™ (0|s) becomes independent of the number of
nodes n as n grows, regardless of whether the fitness ratio
r>1 or r<1 (but note that the two limits differ). For
n—, in Fig. 4 we show plots of QnM+1(O| 1)= € for different
values of € and 1 <r=2. As expected, for fixed € the value
of M increases with decreasing r in this range, and somewhat
counterintuitively we see that the rate of increase is ever
smaller as r approaches 1. However, this is easily confirmed
as we realize that, as in the figure, the limit Q of Qﬁ1(0| 1)
as r— 1 is such that M=~ \1/Q.

Computational results on the distribution of M, the maxi-
mum number of mutants achieved when the dynamics ends
in extinction, are given in Figs. 5-7 for a variety of topolo-
gies. Figure 5 refers to the K-funnel; Fig. 6 refers to random
networks with a Poisson-distributed number of out-
neighbors, and Fig. 7 refers to a selection of networks that

PHYSICAL REVIEW E 82, 046114 (2010)

H: K=3 § K=7
10 = r=110¢ r=110
10°F
B o
:§10' r ; )

E il bl B v Ml
£ ik d K=5
510 b=4

10°F

F— b=4

E--1b=5

o - b= LY
10°F2 323 \

C Lol il

10° 10! 10°

FIG. 5. (Color online) Probability distributions of the maximum
number of mutants that occur when the mutation eventually dies out
(M) for the K-funnel with assorted values for K, branching param-
eter b, and fitness ratio r. Data are averages over 10° events.

includes an instance of each of these two types and also the
unidirectional ring. The latter figure also includes plots of the
analytical prediction given in Eq. (15). In this respect, notice
that the prediction that corresponds to the value used in the
simulations for the fitness ratio r matches the data for the
unidirectional ring perfectly. This, of course, is consistent
with the fact that, in this case, the requirements of the iso-
thermal theorem are satisfied and therefore the prediction by
Eq. (15) is exact. In all other cases the prediction is only
approximate. Nevertheless, in the inset of Fig. 7 we demon-
strate that, for the random network in use, the prediction of
Eq. (15) with a slightly lower value of r is also a perfect
match.

af r=110 F 1.10
10 n=1100F 1100
L 4
10? 3
z f — average
> z E -- n=1g‘;g
.":: - : z s ;ﬁ o =1
:'c% N &L Ll L
L F r=1.10 ¢ n=
é 10 3 z=
10° -
F - n= 500 E
S
107" 3
£ L E
10° 10" 10°10

FIG. 6. (Color online) Probability distributions of the maximum
number of mutants that occur when the mutation eventually dies out
(M) for random networks with a Poisson-distributed number of out-
neighbors. Data are averages over 107 events (10* events for each
of 10° graphs with at least 0.951 nodes in the GSCC). The plot
labeled average refers to all data for fitness ratio r=1.1, number of
nodes n=1100, and expected number of out-neighbors z=4 in all
panels. This is compared in the same panel to the results corre-
sponding to a single graph whose GSCC has 1045 or 1070 nodes,
for which 10° events have been run.
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FIG. 7. (Color online) Probability distributions of the maximum
number of mutants that occur when the mutation eventually dies out
(M) for assorted topologies with fitness ratio r=1.1. Data are aver-
ages over 10° events for the K-funnel and the unidirectional ring,
107 events for the random network (10* events for each of 103
graphs with at least 0.95n nodes in the GSCC).

Notice also, in all three figures, that for M =100 no prob-
ability is above 107>. This means that, during the simula-
tions, of all events that ended in extinction, no more than one
out of 103 achieved more than 100 mutants. As a conse-
quence, should we use M*=100 (corresponding roughly to
Q*=107% given that there were at least 10° events) and count
as an event ending in fixation any event achieving more than
M mutants, we would be introducing a deviation of no more
than 10~ with respect to the actual value of the fixation
probability. But the fixation probability obtained by full
simulations of the evolutionary dynamics is itself subject to
the so-called standard error that is inherent to any Monte
Carlo simulation. If p denotes the fixation probability calcu-
lated after N events, then the standard error is the standard
deviation of the 0’s (extinctions) and 1’s (fixations) accumu-
lated along the events divided by VN, that is, \Vp(1—p)/N.
This function of p is plotted in Fig. 8 for different values of
N, along with a flat line for the constant 1072. Clearly, the

107

Monte Carlo uncertainty

Dby [eeeeee peeeeee fooeneees e proseees IETPRReY [EETPPPS peenee
10 0.0 02 04 0.6 .

Fixation probability

FIG. 8. (Color online) Inherent uncertainty associated with the
Monte Carlo computations of the fixation probability through N
simulation events, as given by the standard error of the fixation
probability estimate p.
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FIG. 9. (Color online) Speedups resulting from the use of the
M*=100 threshold on the K-funnel with fitness ratio r=1.1. Data
are averages over 109 events.

additional deviation introduced by the use of M*=100 is
negligible when compared to the standard error of a Monte
Carlo simulation.

The above expression for the standard error can also be
used to quickly estimate an upper bound on M", in the iso-
thermal case, given the fitness ratio r>1 and N, the number
of events in the Monte Carlo simulation. To do this, we recall
from Fig. 4 that the error incurred when deciding that an
event reaching a number M of mutants will fixate is
Q= 1/M? (nearing equality as r approaches 1). Since there is
not much to be gained in making this error significantly
smaller than the one implicit in a Monte Carlo simulation,
we can determine an upper bound on M* from the condition
1/(M*)?=\p(1-p)/N. For a large population size n, we
have p=~(1-1/r)/(1-1/7")=1-1/r, which leads to the
simple estimate M*=<[Nr?/(r—1)]"4.

Speedup figures resulting from the use of early fixation
detection for M*=100 are shown in Figs. 9 and 10 for the
K-funnel (with several n and K values) and the K-layer ran-
dom networks in [25] (with two values of n, K=5, and sev-
eral values of the a parameter that, as explained in Sec. I, is
used in [25] to control the layer-selection mechanism as the
network is grown by the addition of new nodes), respec-
tively. Speedup is now defined as the ratio of how much
processor time is needed to determine the fixation probability
without early detection to how much processor time is
needed when early detection is used. Plots in the latter figure
are given against S(X,Y), which in [25] is used to obtain, for
networks that are close to having an exponentially growing
number of nodes per layer as one moves upstream through
the layers, the basis of such exponential. As explained in
[25], this basis approaches ¢5*") and equals the branching
parameter b for the K-funnel itself. [The X and Y appearing
in the notation S(X,Y) are length-K numerical sequences re-
lated to the layers in the K-layer random network that was
grown (X) and in the K-funnel (Y). The value of S(X,Y) is
the slope of the least-squares linear approximation of Y as a
function of X.]

Clearly, speedups are very significant, particularly for the
K-funnel with the largest values of n and K and all random
networks of 10 000 nodes. We also remark that, in Fig. 9, the
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FIG. 10. (Color online) Speedups resulting from the use of the
M*=100 threshold on the random layered networks in [25] with
K=5 layers and fitness ratio r=1.1 for different values of the
strength parameter a defined in Sec. I. Each graph whose layer
populations are close by more than 0.9 (in the sense of the Pearson
correlation coefficient) to being an exponentially growing sequence
is shown as a point and represented by its S(X,Y) value and
speedup. Data are averages over 10* events for each of 107 graphs,
except for the case of n=10000 nodes with a=4, in which 10*
events are used for each of 500 graphs.

fact that slopes increase with the number of layers K is
closely related to Eq. (4): as the fraction of events that lead
to fixation grows with K, we expect from Fig. 1 that the
average number of steps behaves likewise; qualitatively, this
explains why speedups increase with K.

V. FINAL REMARKS

One useful heuristic that has emerged from our study in
Sec. IV is that, when performing Monte Carlo simulations to
compute a large graph’s fixation probability for »>1, par-
ticularly if r is only slightly above 1, it suffices to choose the
value of M* to be about [N/(r—1)]"4, where N is the number
of events in the simulation. Proceeding in this way ensures
that the error incurred is roughly the standard error that is
inherent to the simulations, given approximately by no more
than \(r—1)/N. We derived this value of M* for the isother-
mal case but, empirically, demonstrated that it can also be
used with a much wider variety of topologies.

In Sec. I we mentioned that, in [25], we were unable to
extend to larger values of the number of nodes » our conclu-
sions regarding the fitness-amplification properties of the
K-layer random networks we used in some of this paper’s
experiments. Provisioned with the technique of Sec. IV, we
can now bypass the computational difficulties that hampered
our progress in that occasion by employing early detection of
fixation. Doing this for M*=100 has resulted in the data
shown in Fig. 11, from which it is finally clear that, also for
n=10 000, it is possible to grow layered networks that
achieve significant fitness amplification. As we see in the
figure, for K=5 many grown networks have values of the
fixation probability p between p, and p;. We note, however,
that this is still an easier scenario than that in [25], where
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FIG. 11. (Color online) Results for the random layered networks
in [25] with K=5 layers and fitness ratio r=1.1 for different values
of the strength parameter a. Each graph whose layer populations are
close by more than 0.9 (in the sense of the Pearson correlation
coefficient) to being an exponentially growing sequence is shown as
a point and represented by its fixation probability and S(X,Y) value.
Data are averages over 10* events for each of 10° graphs, except for
the case of n=10 000 nodes with a=4, in which 10* events are used
for each of 500 graphs. Dashed lines indicate the fixation probabili-

ties P1—P3-

K=10 was used for n=10 000, since in the present case we
had to calculate the speedups given in Fig. 10 and these
required that simulation events be carried out to completion.

Another interesting by-product of our use of the threshold
number of mutants M* is that, should the dynamics be started
with s> M" randomly placed mutants of equal fitness, then
fixation would occur almost surely. This is so because the
probability of there being so many mutants in a dynamics
that is bound to extinction is as small as allowed by the
choice of the probability threshold Q*. However, note that
Eq. (15) is of no immediate help in quantifying the ““almost
surely,” since it is conditioned on the dynamics ending in
extinction and therefore does not apply to those cases in
which the number of mutants becomes large enough that
extinction is unlikely. Nevertheless, whenever the isothermal
theorem holds, Eq. (1) implies that fixation from the initial s
mutants occurs with probability (1-1/7%)/(1—=1/r") (see also
[1]), which is asymptotically equal to 1 for r>1 as both s
and n grow.

It is also worth mentioning that, because this study has
been targeted at directed graphs, Egs. (8) and (9) are also
applicable to the special case of an undirected graph and can
lead to useful insight also in this case. Specifically, suppose
we take any strongly connected graph D without antiparallel
edges and make it functionally undirected by adding to it the
antiparallel counterpart of every one of its edges. If E and the
O; sets continue to refer to the original D, then the contribu-
tion of each mutant [ to X ;. zm,(t)/|O;] in Eq. (9) jumps

046114-8



EARLY APPRAISAL OF THE FIXATION PROBABILITY ...

from 2 £1/]0,| to 2 cpl/|0]+2 5 c£1/]0)], therefore
leading to a smaller P*(¢)/ P~(¢) ratio. On the other hand, if D
already has antiparallel edges, then one curious special case
is that of the 2-superstar in [1], which has a central node with
n—1 peripheral nodes that connect to it through antiparallel
edge pairs. This graph is already functionally undirected and,
for the number of nodes n— o, the fixation probability p
— p,. So the 2-superstar is somewhat of an exception with
regard to the P*(r)/ P~(¢) ratio for undirected graphs. In fact,
thus far we have been unable to find any other undirected
graphs for which p= p,, but to the best of our knowledge the
question of whether any exist remains unsettled.

We also note that fixation for the 2-superstar, when it
happens, is bound to take a considerable number of steps to
occur (this can be seen in Fig. 1 since the 2-superstar and the
2-funnel with the same number of nodes are the same graph).
For the 2-superstar, the sum from Eq. (9) mentioned above is
M (8)/ (n=1)+m(t)(n—1), where M(¢) is the number of pe-
ripheral mutants at step 7 and m,(¢) is either 1 or 0, indicating
whether or not a central mutant exists at that step, respec-
tively. Clearly, for fitness ratio r only slightly above 1, ob-
taining P*(z) > P~(r) depends crucially on the existence of
the central mutant. This, in turn, can easily change from step
to step until fixation is eventually approached. It is precisely
in cases such as this that the early estimates of the fixation
probability introduced in Sec. IV are most useful.

We remark, finally, that the rule for individual selection
and offspring placement we have used throughout this work
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is only one of various possibilities. Normally such a rule is
expressed in terms of an edge (i,j) of graph D. In the present
case it is a rule of the so-called birth-death type with selec-
tion at the birth since first i is selected based on the individu-
als’ fitnesses and only then is j chosen for replacement by the
offspring of i. Another birth-death alternative would be to
pick i independently of the fitnesses and do fitness-based
selection to pick j instead. Should the order in which 7 and j
are picked be reversed we would have the so-called death-
birth rules, again with two possibilities regarding which of
the two to select based on fitness. These rules and still others,
such as those that pick the edge (i,/) as a single entity, are
described in [32] and references therein. Since none of these
alternative rules is mathematically equivalent to the one we
have used, our results cannot be expected to carry over di-
rectly. However, we find it reasonable to expect that similar
criteria to accelerate the determination of the fixation prob-
ability also exist in those cases. Studying them remains open
to further research.
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