
Universidade Federal do Rio Grande do Sul

Instituto de Informática

Graduation Project

Performed at STMicroelectronics

Automatic Generation of Register Side-
Effect Test in Embedded Software

Arthur KALSING

Computer Engineering

July 2014

STMicroelectronics Industrial Advisor

 12, Rue Jules HOROWITZ Laurent BERNARD

 38019 Grenoble Cedex FRANCE laurent-andre.bernard@st.com

 University Supervisor

 Renato Perez Ribas

 rpribas@inf.ufrgs.br

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 2

Acknowledgements

I am grateful INPG-Ensimag for providing this unique opportunity of
working on this great project in a foreign country. Remarkably Laurent
Bernard, my Industrial Advisor, for the project proposal, Professor Mat-
thieu Moy, my Supervisor, and Professor Florence Maraninchi, Course
Manager, for having accepted this proposal. I also thank Professor Renato
Perez Ribas for helping me publish this work in my home university –
UFRGS. This end of studies project is a great experience for any inter-
change student and will surely add value for my future as engineer.

I would like to express my gratitude to all System Platforms Group
members that worked with me so far. This experience was remarkably im-
portant for my scientific, technique, and personal development. For sure
that was my best work experience and I’m gladly to have worked with such
coworkers. I have much and more to say about this amazing team, but let’s
synthesize:

First of all to Laurent Bernard, who supervised me over the last six
months, from the definition of the subject until the revision of my report,
always getting time to teach me and check my work (even on vacancies
and weekends!). For his patience trying to understand my “Frenguese”
(French with Portuguese accent) and his motivational way of being what
surely helped me maintain the focus and patience during the project.

To Kamlesh Pathak for his support over spirit2regtest and IP-XACT
descriptions, for the important time spent in meeting when he came to
Grenoble, and for being regardful with my work even at India. I also thank
Jerome Cornet and Mohamed Korbosli for their support over
tlm_register_bank and implementation ideas.

To Laurent Maillet-Contoz and Antoine Perrin for showing me the
important paper of the manager that must lead the team raising the moral
and encouraging its members to give their best.

To Ayoub Arfaoui and Aurelien Chichignoud my student mates, for
their friendship, for teaching me how to be more confident and less
stressed, and for the talks beyond number about Islam, French and Brazili-
an culture.

To all SPG members, especially Herve Broquin, my box neighbor, for
the relaxed work environment, with their jests and laughter, animated
breakfasts, coffee breaks and barbecues, showing me that even guys on
suit and tie can have fun at work.

Finally I would like to thank my family for encouraging me, showing
their pride and faith on me. Thank you all.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 3

Abstract

The techniques and procedures for System-on-Chips (SoC) design
are constantly being improved, not only because of the fast evolution of
this area (as predicted by Moore’s Law) but mainly due to the high com-
plexity that such task acquires. Specialized R&D teams in semiconductors
companies work in the improvement of this process, researching better
methodologies and technologies in order to gain market advantage.

This graduation project, developed within System Platforms Group
(SPG) at STMicroelectronics, aims at improving one of the steps of the
company’s tests flow, more specifically the register bank test in transac-
tional level of semiconductor’s conception. Precisely, this project aims at
improving a tool which will help the user to set up a complete register bank
test, including test for special register behaviors, automatically generating
the embedded code to be executed.

Through this text is presented the work performed over the project
step-by-step, from the analysis of the existent methodology to the tests in
real industry IPs using the improved process.

Resumo

As técnicas e processos de concepção de Systems-on-Chip (SoC) es-
tão em constante evolução, não apenas devido a rápida evolução deste
ramo da indústria (como previsto pela lei de Moore) mas principalmente
devido a alta complexidade que esta tarefa vem adquirindo. Equipes espe-
cializadas em P&D trabalham nas empresas de semicondutores pesquisan-
do novas metodologias e tecnologias para alcançar vantagem comercial.

Este trabalho de graduação, desenvolvido dentro do Grupo de Pla-
taformas e Sistemas da STMicroelectronics, visa o melhoramento de um
dos processos de validação de design da companhia, mais especificamente
o teste do banco de registradores em nível transacional. Precisamente, es-
te projeto objetiva o aprimoramento de uma ferramenta de teste que auxi-
lia o usuário na criação de uma rotina de testes completa para bancos de
registradores, incluindo testes para registradores com comportamentos
específicos, automaticamente gerando o código embarcado para ser exe-
cutado na plataforma.

Através deste trabalho será apresentado todo o desenvolvimento
do projeto, desde a análise da metodologia existente na companhia até os
testes em plataformas industriais utilizando software gerado pela ferra-
menta aprimorada.

Keywords
Transactional Level Modeling, TLM Validation, IP-XACT, Register

Bank Test, Side-Effects, System on Chip Design, Embedded Software.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 4

Table of Contents

Abstract ... 3

Resumo .. 3

Keywords ... 3

Table of Contents ... 4

Table of Figures ... 6

Glossary ... 7

1. Introduction ... 8

1.1 The Semiconductors Market....................................... 9

1.2 High level SoC design .. 9

1.3 IP Register Bank Verification 10

1.3.1 Automatically generated eSW 11

1.3.2 Known Limitations .. 11

1.4 Work Objectives ... 12

1.5 Paper Structure .. 12

2. Background ... 13

2.1 Register test flow analysis 14

2.2 Specification Level ... 15

2.2.1 IP-XACT .. 15

2.2.2 Registers bank description on IP-XACT 17

2.3 Transaction Level Modeling 19

2.3.1 SystemC ... 20

2.3.2 Registers bank modeling on TLM 20

3. Related Work ... 22

3.1 Spirit2regtest tool analysis 22

3.2 Missing features .. 24

3.3 Users requirements survey 24

3.4 Comparison between processes 24

3.5 Upgrade Specifications .. 25

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 5

4. Project Development .. 26

4.1 Tool improvement ... 26

4.1.1 Structural modifications 26

4.1.2 Side-effects utilities .. 27

4.1.3 First Release ... 29

4.2 Process automation ... 29

4.2.1 New IP-XACT parameters design 30

4.2.2 Process Automation .. 30

4.2.3 Second Release ... 31

5. Results and Discussion .. 32

5.1 Basic Tests and Non-regression Tests 32

5.2 Interrupt Controller with Power PC test 32

5.3 Acceptance and Team Feedback 33

5.4 Solution Limitations ... 33

5.5 Perspectives .. 33

6. Conclusion... 34

Bibliography ... 35

Appendix ... 36

A. Simple Register Description in IP-XACT 36

B. Improved Register Description 36

C. Generated Test .. 37

D. User Manual Section .. 38

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 6

Table of Figures

Figure 1 - SoC development abstraction levels 10

Figure 2 - Register Bank test flow .. 13

Figure 3 - Registers characteristics 15

Figure 4 - IP-XACT ecosystem.. 17

Figure 5 - Register IP-XACT structure 18

Figure 6 – Differences between abstraction levels 19

Figure 7 - Simulation time thought different levels 20

Figure 8 - spirit2regtest conversion process 22

Figure 9 - Simple platform used during the development 26

Figure 10 - New file architecture .. 29

Figure 11 - Vendor extensions for advanced attributes 30

Figure 12 – Industrial test platform 33

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 7

Glossary

 EDA (ECAD): Electronic Design Automation, category of software used
for electronic systems development.

 HDL: Hardware Description Language, formal language for electronic
and digital systems description.

 IEEE: Institute of Electrical and Electronics Engineers, world’s greatest
association of engineers, responsible for most of technological innovation
and standards.

 IP: Intellectual Property, term commonly used to refer a digital compo-
nent with industrial design rights.

 IP-XACT: Formal description language based in XML for IPs description.

 ISS: Instruction Set Simulator, virtual simulation of a processor with a
defined instruction set.

 NoC: Network on Chip, term commonly used to refer complex digital
systems which require more than the usual communication systems.

 RTL: Register Transfer Level, design abstraction for digital circuits, uses
HDL based languages, more close to the circuit itself.

 SoC: System on Chip, another term commonly used to refer complex
digital systems, a circuit with several digital components.

 SPG: Systems Platform Group, STMicroelectronics division in charge of
R&D over virtual platforms and interfaces.

 ST: Abbreviation for STMicroelectronics.

 SystemC: C++ library and simulation Kernel, dedicated to modeling cir-
cuits and SoCs.

 TLM: Transactional Level Modeling, high-level design abstraction for
modeling complex digital systems.

 XML: EXtensible Markup Language, well-formed human-readable and
machine-readable description language.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 8

1. Introduction

To achieve fast and reliable design of systems on chip (SoCs) a com-
plete and incremental flow of conception is used today inside semiconduc-
tors industry. Each stage of the flow validates a specific part of the system
attempting to avoid, at maximum, the massive simulation needed by the
lowest levels of conception. One of the highest levels of the conception
flow is the Transactional Level Modeling (TLM) which holds mainly the
functional test of the platform.

In TLM the electric behavior of the components is abstracted focus-
ing the simulation in the behavior and communication between the plat-
form IPs. The IPs are modeled with few basic components as communica-
tion ports, registers and processes, only what is strictly needed for the
functional simulation. These factors made the TLM simulation far lighter
comparing with other low-level simulations, and can validate most of the
characteristics that would be validated after. This raises the productivity
since it provides a simulation platform for software testing before having a
silicon prototype of the SoC, in other words, it allows parallel software and
hardware and reduces time to market.

One of the most important tests to be performed over TLM plat-
form is the register bank test. This validation includes the verification of
initial value, access rights and side-effects behavior of the registers. Over
the last decades the components have been increasing more and more
their number of registers, turning the register test task into a precise and
repetitive job, normally resulting in a lot of mistakes.

In order to automate the register bank test, a tool was created to
automatically generate embedded software for the test. This tool follows
the flow of TLM simulation beginning with the IP-XACT description of the
component, where the register bank is formally described, and generating
a quite complete register test. However, this tool still has several limita-
tions, especially with IPs that have unusual registers behaviors. This gradu-
ation project will focus in the enhancement of this tool, improving it in or-
der to enable the easy generation of a much more complete register test
and management of side-effects.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 9

1.1 The Semiconductors Market

The ability to transform energy into intelligence changes our lives
day-by-day, whether by our communication, transport, entertainment,
healthcare, or any other feature of our lives. Digital components are eve-
rywhere: computers, cellphones, tablets, digital cameras, in our houses, in
our cars, more and more used and explored each day. Clearly, semiconduc-
tors became essential for human development.

Consequently the semiconductors market has the most significant
growth of all industrial sectors since its emergence. Early predicted by the
famous Moore’s law the number of transistors on silicon chips doubles
every eighteen months, providing more powerful and less costly electronic
devices. To point some numbers, even with the recent European crisis and
the weak recovery of the North American economy, the worldwide semi-
conductor has revenue of US$299 billion in 20121.

1.2 High level SoC design

As the name suggests, systems-on-chip are complete systems com-
posed of both hardware and software, embedded in a single silicon chip. In
other words, we can have a computer with all its components in a single
chip. They are normally composed of a core subsystem surrounded by digi-
tal, analog, mixed-signal and any sort of needed IPs. Such architecture
points the advantage of using SoCs: they are especially designed for its fi-
nality being more efficient, cheap and reliable. However, such complete-
ness is achieved only after meticulous design and manufacture due to their
complexity and bug high costs.

System-on-chip design process is based in the description of the ar-
chitecture in several models called abstraction levels. Each model is charac-
terized by part of the system in terms of details expressiveness, allowing
the verification of the system in several stages. The first stages are used to
verify the functional characteristics of the SoC taking advantage of simpler
abstraction levels to perform fast simulation. Once the design flow reaches
the latest levels the system is already verified for most of its characteristics
and only more precise characteristics must be certificated, as the circuit
timing for example. In this manner, the engineers successfully encounter a
way to avoid time costly simulations and easy recuperate from bugs found
earlier in the process.

However, the hardware of a SoC needs its corresponding embed-
ded software. Formerly the software was the last thing to be developed
since the physical chip was needed to start the development. To solve this
problem an important new concept entered the design flow in the last
decade, the transitional level modeling (TLM). Thanks to the apparition of

1Source: Gartner, see bibliography for links.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 10

TLM, now the embedded software can be developed in parallel with the
hardware, reducing much more the time to market. The diagram below
(Figure 1 - SoC development abstraction levels) shows the current SoC de-
velopment flow.

Figure 1 - SoC development abstraction levels

There are six main levels of abstraction used in the design flow to-
day. For now we will focus in the first two levels of abstraction where most
of the work of this project was performed. The lower levels would be natu-
rally affected as can be seen in the diagram, but since they are not our fo-
cus we will skip them from this project. Better explanation of these ab-
straction levels is given in the background chapter.

1.3 IP Register Bank Verification

Register bank test is an essential step of IP verification process due
to the increasingly use of registers in complex SoC. This test must be the
more precise and complete possible ensuring correct initialization and op-
eration for registers. Imagine that a single inverse bit in a configuration
register initial value can completely disable a component module. In a
worst-case scenario, a register fault may advance to the next level of de-
sign until the layout level thereby causing losses of millions of dollars.

This test is based on sequences of reads and writes to the registers,
depending on their characteristics. Normally it begins by assuring the right
initial value of the register through a read of the register value and a com-
parison with the specification value. Next, the access mode of the register
is tested, verifying if it is possible to read and write according to the regis-
ter access rights. Finally, if the register owns some advanced behavior this
must be also tested to ensure correct operation. These three tests, appar-
ently simple, can be very complex depending on the architecture of the

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 11

register bank and particularly due to the behavior of some registers which
can cause side-effects.

The tests are normally executed by especially designed embedded
software (eSW), over TLM and RTL platforms. The advantage in this case is
that we can advance the test software in TLM level, validate it, and after
use the same code to test the component in RTL level. At first, functional
verification is performed over TLM assuring the component right opera-
tion. After, on RTL, a more exhaustive verification is performed checking
also timings and manufacture issues as stuck-at bits. The exhaustiveness of
the test depends on the level of verification desired, in some cases each bit
of each register must be exercised independently, resulting in time costly
tests.

1.3.1 Automatically generated eSW

Standardization of descriptions has much contributed for register
tests, thanks to that most of the embedded software for register test can
be automatically generated. The last IP-XACT schema release is capable of
giving most of the registers bank architecture which, in turn, is translated
by a converting tool into eSW for register test.

However, to maintain the standard consistent only the most gen-
eral and basic characteristics are presented in the description. For IPs with
more complex registers constructions, as signaling registers for example,
the standard description is insufficiently informative, preventing the com-
plete automation of the test. In other words, most of the register test pro-
cess can be automated leaving only advanced and specific characteristics
to be manually implemented.

1.3.2 Known Limitations

Advanced characteristics for registers are the main concerns in reg-
ister test today. As explained before, initial value is one of the basic tests to
ensure correctness. Now imagine a register bank where an arbitrary regis-
ter can change one bit of the next one, how can we ensure the initial value
of the affected register? Complex cases can be achieved as multiple
bounded registers, or a register that changes its value on read operation
for example. Anyways, each one must be tested.

Besides, the automatic generation of embedded software for tests
today relies on IP-XACT standards, what means that advanced characteris-
tics are not covered by the schemas. Consequently, the generated code
cannot prevent tests neither errors from advanced behaviors, in this case
the user must develop the tests by itself.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 12

1.4 Work Objectives

Aiming the improvement of register test generation and knowing
the limitations of the current flow, some general objectives were defined
for this project:

 Analyze current register test flow, in order to identify problems
and difficulties faced by users today, identify missing features
that can be implemented.

 Upgrade register test generation, by improving the eSW gener-
ator tool and possibly the methodology solving as much as pos-
sible the issues encountered in the analysis stage.

 Evaluate the results, by testing the new solution over real in-
dustry IPs and deploying the test software tool for users.

1.5 Paper Structure

In the remainder of this text we gradually present the work done
over this project, starting with the required background (chapter 2) to un-
derstanding exactly the environment in which we are inserted. Chapter 3
describes the analysis of the work done before to automatize the test pro-
cess including the methodology used, finishing with a set of upgrade speci-
fications for the improved tool. In the following chapter (Chapter 4) we de-
scribe the implementation of the upgrade divided in two stages. The last
chapter presents how we validated the new test process by setting up real
test platforms and performing a user’s survey.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 13

2. Background

The analysis of the test process was an important step for this pro-
ject, through which was possible to understand the automated flow of
conception of tests for registers bank. With this purpose, training sessions,
meetings and documentation analysis were done over the first months of
the project.

As briefly explained in the previous chapter, the registers bank test
is executed over TLM platform, programming a virtual processor with em-
bedded software to exercise each register of the IP. This basically means
that two elements are needed to perform the test, the virtual platform
with the IP transactional model and the embedded software for testing.

The TLM platform consists of a simulated core bounded to the IP
aimed for the test. Other components can be also included if the operation
of the IP depends on them. However, the focus of the tests is on the IP,
probably the only component under design while the others are normally
reused from the company database or provided by customers. The core
can be a generic native CPU performing host code execution (HCE) or an
instruction set simulator (ISS) that really simulates the processor. Finally,
the IP is obtained using a converter tool that outputs the IP model skeleton
by parsing the IP-XACT description, in our case the tool is called
tlm_skeleton and was developed by ST engineers.

Figure 2 - Register Bank test flow

Once the TLM platform is operational it is necessary to generate the
embedded software (eSW) for register test. Also, using the IP-XACT de-
scription, a converter tool called spirit2regtest converts the register bank
description into a chain of tests in eSW which are loaded into the platform

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 14

executing core. Finally, with the platform setup and the eSW loaded, the
verification can be performed. The flux diagram above (Figure 2) shows the
steps needed to perform the verification.

This flow goes on until it reaches the physical prototype of the SoC.
An important remark is that the IP-XACT description can also be automati-
cally generated from a well-defined specification document using
spec2spirit. In a completely automated design flow the specification is
meant to be the first and unique interface with the human. In the next
chapters each conception stage will be explored with emphasis on register
bank and register test characteristics.

2.1 Register test flow analysis

Registers are essential components for digital devices. They provide
a way to get information into and out the component through memory ad-
dress reads and writes. They can be used as memory for I/O, communica-
tion channel buffers, also in more architectural ways as control and status
registers. The register interface often occupies the majority of the IP’s
manual and may be complex in a variety of dimensions.

Though this might seem quite simple, register and their fields’ char-
acteristics are the main concern of this project. Ensure the correct opera-
tion of the registers is essential to ensure the correct operation of the IP
since the last one directly relies on registers information. Even after dec-
ades developing digital components, there is still no main standard for reg-
ister characteristics and virtually everything is possible. However, some
characteristics are more commonly used in chip design, for this work we
decided to divide register characteristics in the following two sets:

Basic Attributes: Commonly called access mode, the basic attribute
is mandatory information since it controls the register basic operation.

Advanced Attributes: Besides the access mode several registers
fields have also special characteristics which can trigger side-effects on
themselves or on another registers fields. Some of these characteristics are
more commonly used, here called Advanced Attributes.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 15

The whole considered set of attributes is illustrated in the table be-
low (Figure 3).

Figure 3 - Registers characteristics

2.2 Specification Level

This is the design flow first level of abstraction. In this level the ar-
chitects describe the IP or the system with all needed components, proto-
cols, specifications and functional details. Low-level details as timing and
power consumption are explored later. The product of this level as the
name suggests is an initial specification, provided normally on datasheet
style, using pre-formatted tables in a document with the description. Today
is also possible the use frameworks to help specifying, taking advantage of
components database for reuse for example. Once the description is fin-
ished we begin the automated design flow by converting this document in
a more formal and machine-readable format, as IP-XACT.

2.2.1 IP-XACT

Based on eXtensible Markup Language (XML) format, IP-XACT is a
formal hardware description standard created to improve semiconductors
design process. HDL languages were revolutionary concepts in the semi-
conductors world allowing synthesis and accurate simulation of hardware,
even so their complexity in terms of description hamper high-level ap-
proaches as reuse and automation. As an endeavor to avoid complicated
descriptions and to provide a global standard, IP-XACT was created to be a

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 16

mid-term hardware description between the initial specification and the
HDL (Hardware Description Language).

IP-XACT is an innovative technology and has much improved the
productivity of semiconductors design flow in the industry. Four main goals
are commonly pointed as its objectives:

 Ensure delivery of compatible component descriptions between
vendors.

 Enable exchanging of complex component libraries between elec-
tronic design automation (EDA) tools.

 Describe configurable components using metadata.

 Enable the provision of EDA vendor-neutral tools.

Basically, provide an easier way to describe, exchange and process
automation following a global standard.

There are two main interesting characteristics behind the use of IP-
XACT. First, the use of XML as description language, this both human-
readable and machine-readable format allows easy parsing and conversion
of the design description to models and tests between other abstraction
levels. The language is well settled and a vast set of APIs have been already
developed to aid developers processing XML data. The second main char-
acteristic is the creation of a global industry standard providing a common
format to describe IPs, their interfaces, memory mapping, registers bank,
bindings, net-list, among others. This standardization ensures coherency
between IPs from different vendors, improving integration, reuse and es-
pecially automation for the design flow. IP-XACT can be seen as a great da-
tabase for all companies, as in the Figure 4 where we can insert and ab-
stract data on different formats.

This technology is being improved since its first schema release in
2004, when it was still called SPIRIT. Accellera® has set up a committee
called SPIRIT Consortium, where most of the great semiconductors compa-
nies have contributors, and finally in 2009 the first IEEE approved version
was released. This is the starting point of this project, more specifically the
approved IP-XACT IEEE 1685-2009, when the first traces of registers side-
effects have been added to the standard.

Nowadays EDA companies have already developed a strong ecosys-
tem around IP-XACT with converters, CAD tools and frameworks. Designers
are free to choose which alternative better suits or so develop their own
tools. STMicroelectronics has a complete set of tools for IP-XACT which can
automatically create and set up most of the virtual platform, leaving only
the specific behavior of the IPs to be coded by the users.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 17

Figure 4 - IP-XACT ecosystem

Once we have the IP-XACT description one can proceed to the next
stages of development of the SoC. In the design flow we can consider this
document as the output of the specification level and the input for some of
the next levels, as TLM and RTL, for example.

2.2.2 Registers bank description on IP-XACT

Register description on IP-XACT underwent certain changes through
his official releases. The first traces of special behavior on register began to
appear in the last IEEE approved version, what could mean a possible
standardization for some attributes. However, key information is still miss-
ing in the schema, what prevents the complete automation of the test re-
garding advanced attributes. Even so, the schema clearly illustrates that it
is possible to add information using vendor extensions.

The IP register bank is declared inside the component memory map
structure, more specifically inside an addressBlock. Once an addressBlock is
declared, one can start adding the registers by blocks (registerFile) or indi-
vidually (register). The register structure is very well detailed with a com-
plete set of information for register, allowing also the declaration of bit
fields (field). Finally, within the field structure we can find the leaves of ad-
vanced attributes. An example of IP-XACT description for register is given
below.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 18

<spirit:register>

<spirit:name>MYIP_REG1</spirit:name>

<spirit:description>Read-write 8 bits register

</spirit:description>

<spirit:addressOffset>0x003B</spirit:addressOffset>

<spirit:size>8</spirit:size>

<spirit:access>read-write</spirit:access>

<spirit:reset>

 <spirit:value>0xFF</spirit:value>

</spirit:reset>

<spirit:field>

<spirit:name>ZSET</spirit:name>

<spirit:description>Zero set field </spirit:description>

<spirit:bitOffset>4</spirit:bitOffset>

<spirit:bitWidth>2</spirit:bitWidth>

<spirit:access>read-write</spirit:access>

</spirit:field>

</spirit:register>

Regarding the possible attributes in relation with the two defined
groups, IP-XACT covers all the basic attributes and part of the advanced
attributes. The access element allows the declaration of the access mode
defined as: read-write, read-only, write-only, read-writeOnce or writeOnce.
EnumeratedValues, modifiedWriteValue, writeValueConstraint and readAc-
tion allow the declaration of the whole set of advanced attributes, howev-
er, the schema does not mention any target, this means that these attrib-
utes are self-applied to the fields. The diagram below (Figure 5) illustrates
the register and field structures and its attributes.

Figure 5 - Register IP-XACT structure

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 19

2.3 Transaction Level Modeling

Transaction Level Modeling is a high-level approach for digital sys-
tems design and simulation, register-accurate and with bit true-behavior,
focused on the component functionality. This means that only the strictly
needed elements of the component are modeled as data transfer, inter-
rupts and memory mapping. Real implementation characteristics as the
communication protocol, timings and power consumption are normally
abstracted providing more flexibility and productivity on building virtual
platforms for functional validation and verification, embedded software
development and architecture exploration. Since its creation TLM has be-
come the industry standard for creating inter operable transaction-level
platforms.

This abstraction level was created to solve some critical problems of
the design flow as the delayed embedded software development (incom-
patible with the time to market), increased simulation time of lower levels,
and also to provide a way to validate the system before the synthesis solv-
ing bugs at design time. The diagram below (Figure 6) shows a detailed
view of each level with their objectives and characteristics.

Figure 6 – Differences between abstraction levels

An increase of 10x in the speed of simulation is expected from CA to
TLM and more than 1000x comparing RTL to TLM. The result of this implan-
tation was the acceleration in the development of IPs, with early correction
of bugs and simulation of several characteristics of the IP, mainly the func-
tional behavior. Today, great effort is directed to develop ways to perform

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 20

timed behavior and power analysis in TLM, further improving early archi-
tecture exploration.

Figure 7 - Simulation time thought different abstraction levels

2.3.1 SystemC

SystemC is an industry standard language, created by a consortium
of CAD vendors in 1999 and standardized by IEEE in 2005. The need of effi-
cient simulation, modular design and core reuse lead to use C++ language
due to its popularity and efficiency. In fact, SystemC is implemented as a
set of C++ classes for digital systems modeling, in other words an open
source C++ library. The choice of distribution as an open source library
comes from the fact that it should be supported by CAD vendors, IP and
software providers.

One of the main differences between common developing lan-
guages and HDL languages is the notion of parallelism, a real need in SoC
simulation. In counterpart, SystemC uses description parallelism and pro-
vides an event-driven simulation core within the library, providing accurate
cycle-less simulation.

Nowadays SystemC is widely used and supported in the industry.
The implementation in library form, with open standards and C++ language
has most benefited the expansion of the language. There are several tools
for VHDL and Verilog co-simulation support, with also visualization, wave-
forms and simulation tools. The benefit from C++ is also remarkable,
providing reuse of the language compilers and debuggers.

2.3.2 Registers bank modeling on TLM

The design of registers bank in TLM is well supported by STMicroe-
lectronics development teams, for a specific development kit called
tlm_register_bank was created with this purpose. Using C++ classes they
model the bank, registers and fields, including their attributes. There are
several advantages of using this devkit:

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 21

- Easy description of the register bank: manually declaring registers or
using a register map file which can be automatically created by con-
verter tools (tlm_skeleton) using the IP-XACT description.

- Versatile Side-Effects API: provides easy definition of special behaviors
between registers and fields with also support to commonly used side-
effects. Any combination of attribute between registers and fields is
valid respecting the rule of the same size of bits for both.

- Standard messaging: Debug, warning and error messages for easy de-
bug of the register bank.

- Protocol independent implementation: the bank does not depend on
the communication protocol which can be changed without problems.

Besides the well-covered implementation of the devkit most of the
company developers were already familiarized with, these were the main
motivations to use this devkit as base model for the upgrade of spir-
it2regtest.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 22

3. Related Work

It is important to note that the generation of eSW for register test is
a very specific part of the whole validation process, that is why there are
no available tools in the market performing the exact same function as we
expected for the project. Knowing this we decided to focus in the analysis
of the existing process of the company that was already being used for
more than a year, but still not covering all the users’ requirements. We
continue this text with the analysis of spirit2regtest.

3.1 Spirit2regtest tool analysis

Spirit2regtest is a converter tool which automatically generates the
eSW for registers test. It takes the IP-XACT description of the IP as input,
parses the component memory map and serializes this information creat-
ing tests for each register in a chain. The output is a collection of C files in-
cluding header files with IP memory map information, support files for
standalone test and the test environment itself.

Internally, the algorithm of the tool is globally quite simple, the
complexity comes from the amount of allowed parameters for the user and
also the amount of information per register. It starts by parsing the de-
scription file input using XML::Simple parser, a free software library.
XML::Simple works by parsing an XML file and returning the data within it
as a Perl hash reference. Within this hash, elements from the original XML
file play the role of keys, and the data between them takes the role of val-
ues. Once XML::Simple has processed an XML file, the content within the
XML file can then be retrieved using standard Perl array notation. Next the
tool verifies each element of the component memory map generating code
according to user parameters and register attributes.

Figure 8 - spirit2regtest conversion process

The analyzed version generates a chain of tests for each register ac-
cording to its access rights. It begins by testing the initial value of the regis-
ter (if it is readable), testing the access right and finally an additional test in
case of advanced attributes on the IP-XACT description. Besides, thanks to
a ST vendor extension, registers described with “SideEffect” does not have
any test generated, instead the tool places a warning message. The table
below (Table 1) summarizes the possible generated tests according to at-
tributes:

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 23

Test name Description Scope

Initial Value test Verify registers initial value Every readable register

Read-Write test Walking ones test RW

Read-Write light test Pattern test RW

Read-Only test Checks RO att. RO

Write-Only test Checks WO att. WO

Read-WriteOnce test Checks RWOnce att. RWOnce

WriteOnce test Checks WOnce att. WOnce

Alias test Check registers address RW

ModifiedWriteValue test
Checks modified write val-
ue attributes of IP-XACT

BCLR, BSER, ZCLR, ZSET,
BTOGGLE, ZTOGGLE,
WCLR, WSET

ReadAction test
Checks read action param-
eter of IP-XACT

RCLR, RSET

Table 1 - Generated tests of analyzed version

Finally the tool also generates the main.c file with an entry point for
the test chain, makefile and configuration files for standalone execution of
tests. This is the default operation of the tool, but it is also possible to gen-
erate only header files or specific files for some ST divisions using com-
mand line parameters. The generated files are portable from TLM to Silicon
without modification. They are summarized below:

- <ip_name>.h: contains C macros with information of each regis-
ter of the bank which will be used by the tests.

- <ip_name>_test.c/.h: contain the test chain for the register
bank. Each register has its own test function with specific meth-
ods for its fields and attributes.

- s2rt_regsutil.c/.h: contain generic functions for basic register
test which are used by other generated test files.

- s2rt_config.h: contains configuration setting for the execution
of the generated test, may be modified according to user envi-
ronment settings.

- main.c: Main file which declares the local memory map and calls
the test chain.

- <ip_name>_standalone.h: This file is used to simulate a test in
the host (not embedded in a TLM platform).

- Makefile.<ip_name>: Makefile used to build the generated test
for self-test mode. Can also be used as a model for compilation
of the files.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 24

3.2 Missing features

Thought this analysis we detected two main aspects of the tool that
must be discussed. At first, there is no distinction between RTL and TLM
verification. Tests as walking ones and alias are not suitable for TLM since
their objective is to identify manufacture issues not explored in TLM level,
these tests must be skipped in case of TLM verification. Secondly, the tool
does not provide any support functions in case of register side-effect, forc-
ing the user to code the test by himself. Hard coded tests increase the
chances of bugs and development time.

3.3 Users requirements survey

Before finishing the analysis, it was also performed a survey be-
tween users of the tool in order to identify weak points of the generated
code and difficulties of the users when using it. The major issue reported
by the users was the difficulty performing a consistent test without errors
caused by side-effects. The current tool version does not make any distinc-
tion between side-effect registers and common registers declaring their
tests sequentially in the description order. This organization forces the user
to search over the test chain for the registers that are causing side-effects
and change the order of execution of the tests, testing the target before
the side-effect register. For complex IP’s with large registers bank this is a
hard and repetitive task. Finally, some users also replied about the known
problem of lack of support code for side-effect registers, giving examples of
algorithms which have been commonly used on the tests.

3.4 Comparison between processes

The analysis performed over the flow was important to understand
the differences and problems that were disturbing users. First, there was
no way to completely automate this process since registers can have very
specific behaviors, however, the commonly used side-effects can absolute-
ly be standardized, tlm_register_bank is a proof of that. Next, IP-XACT still
does not have enough information to describe commonly used side-
effects, which is why both sides of the verification process do not automat-
ically generate the code for this. Finally, spirit2regtest does not have any
development support for advanced behaviors. The table below (Table 2)
summarizes these issues according to register attributes categories.

eSW side TLM-IP side

Support Auto-generate Support Auto-generate

Basic Attributes OK OK OK OK

Adv. Attributes
(self-applied)

OK OK OK OK

Adv. Attributes
(with target)

NO NO OK NO

Table 2 - Summary of analyzed verification flow

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 25

3.5 Upgrade Specifications

Finally, thanks to this analysis, a precise list of specifications for the
project could be done. In meeting with spirit2regtest’s main developer, Mr.
Kamlesh Pathak and this project industrial advisor, Mr. Laurent Bernard,
we decided to perform the tool upgrade in two stages giving time to per-
form half-way validation between them since the second part relies on the
correct operation of the first.

The first part of the improvement was to upgrade the tool, improv-
ing the generated code according to users demand and adding support to
advanced attributes. Precisely the following points:

 Simplify code generated for main.c file and include more sup-
port for TLM tests;

 Create simple entry point for registers with side-effect;

 Develop standard functions for common side-effects (advanced
attributes);

 Develop generic functions for custom side-effects;

The second part was to improve the automation of the process in-
cluding new side-effect covering for register test. Two different options
were discussed: providing an extra input file with only the effects descrip-
tions or improve the IP-XACT descriptions through vendor parameters. We
decided to apply the second one since the descriptions were actually in use
and probably the attributes would naturally be included after in the next
official schema releases. Finally, with enough information available the tool
could be upgraded to parse and create more complete tests:

 Define new IP-XACT parameters for common side-effects;

 Upgrade spirit2regtest with automatic generation for common
side-effects;

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 26

4. Project Development

This chapter describes the implementation of the proposed solu-
tions for the problems described in the last chapters. The implementation
was divided in two main stages, first the improvement of the tool itself fol-
lowed by the automation of the process.

4.1 Tool improvement

The first task before start upgrading the tool was to understand
specific constraints of eSW and prepare a proper test platform. For that the
first weeks were spent in research over embedded software constraints,
tests strategy and also comprehension of tool’s legacy code.

A platform for tests was constructed in order to validate the tool
while performing the improvements. The design under test (DUT) IP-XACT
description was created, a simple target component with a large register
bank where had been declared at least a register for each possible attrib-
ute, as well as extra registers to use as targets for side-effects. The TLM
platform was generated using ST-flow tools and consisted basically on: a
native wrapper to simulate the CPU, a memory component to store the
eSW, the DUT and a bus to interconnect the components. This process was
done several times during the development to re-create the DUT with dif-
ferent register bank configurations. The test eSW generated by spir-
it2regtest was executed in the CPU component in HCE mode.

Figure 9 - Simple platform for test during the development

4.1.1 Structural modifications

Before starting developing the support functions, some structural
modifications were performed over the tool regarding user requirements.
Initially some small changes were done over the eSW configuration files to
provide more suitable tests for TLM, avoiding walking ones and alias test.
For main.c file the objective was to let it more neutral, therefore, output
and verbose functions were moved to other files leaving only the main call
for the test chain.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 27

To improve the interface between users and the generated eSW it
was necessary to modify the structure of the current implementation. In
the improved file architecture, special registers were separated from the
common registers in a new file called <ip_name>_side_effect_test.c/h,
providing a new test chain file with only the registers declared with special
behaviors. The new chain of tests for special registers is called at the end of
the basic test chain therefore common registers were already tested and
possible side-effects will not hamper their test anymore.

4.1.2 Side-effects utilities

With friendlier test organization for the user, it was time to provide
the tests development support for registers with side-effects. For this pur-
pose two new files were added to the architecture following the same style
of s2rt_regsutil.c/h, the files were called s2rt_regsutil_side_effect.c/h.

These new files contain basically two kinds of support, functions for
commonly used side-effects and functions for custom side-effects. For ad-
vanced attributes (commonly used side-effects), complete test functions
were provided allowing the users to set up tests for registers and fields on-
ly pointing them through function parameters. For custom side-effects, ge-
neric functions were also provided, with utilities that can help users to de-
velop their own tests as read and write directly from field, for example.

The main difficulty of this task was to provide functions respecting
embedded code constraints, such as fixed data types and right bitwise op-
erations. The use of masks representing register bit fields was chosen as
the best option since it is possible to perform any verification with only this
information. The reads and writes performed in embedded software world
must always respect registers data type to ensure correct operation that is
why most of the developed functions have the register size as a parameter.

User compatible interface was also taken into account since the
success of use relies directly on the development of friendly user APIs. Un-
fortunately C language does not provide the elegance of oriented object
languages which allow much more flexible constructions of functions pro-
totypes. Even so, the support functions were designed to always follow the
same pattern, using basically always the same quantity of information, as
the following example:

uint32_t BCLR_register_test(src_addr, src_size, sfld_width, sfld_offset

 tgt_addr, tgt_size, tfld_width, tfld_offset);

This function performs the bit clear behavior (BCLR) test between
the source (src, sfld) and target (tgt, tfld) fields. The choice for field and
width instead of directly the mask was made to avoid user errors as com-
posed (e.g. 11100111 declares 2 fields of 3 bits) and bad calculated masks.
The return of all test functions is the number of errors occurred during the

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 28

test. The whole set of parameters can be encountered in the <ip>.h file in
the form of C #define macros, the user does not need to remember a
bunch of numbers but only the source and target names. A real example of
use can be seen in the snippet below:

Err_count += BCLR_register_test(base_addr + REG1_OFFSET, REG1_SIZE,

 REG1_F1_WIDTH, REG1_F1_OFFSET,

 base_addr + REG2_OFFSET, REG2_SIZE,

 REG2_F1_WIDTH, REG2_F1_OFFSET);

In this example, this function call will perform the verification of the
bit clear operation between the field “F1" of the register “REG1” and the
field “F1” of the register “REG2”. At this point of the project every function
call was coded manually, however the whole set of parameter in this func-
tion is available within the IP description and the automation can be done,
as we will see in the next chapter (4.2).

For the functions test strategy, it was chosen a two-phase test that
verifies the correct operation of the source. Each function performs a not
effective test, writing the value that must not cause the effect in the target
register and verifying the target value that must contain the same value.
Next each function performs an effective test, writing the value that must
cause the effect in the target register and verifying that the target value
has changed. For instance, the BCLR test algorithm is described below:

Bit Clear Test:

1. Save source and target original values;

2. Replace (write) target value to 0xFFFF…;

3. Write 0x0000… in source (not effective test);

4. Verify that target value still the same;

5. Write 0xFFFF… in source (effective value);

6. Verify that target value changed to 0x0000…;

7. Restore source and field original values;

On the last released version there were available 22 test functions
and 6 general-purpose functions for the user. For further information, the
complete set of functions is available on the user manual and can be seen
in the appendix (App D).

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 29

4.1.3 First Release

Comparing with the previous tool release, here is the list of the
main changes in the tool:

 Neutral main.c file;

 More support for TLM verification;

 Separation between normal and SE registers;

 Support functions for advanced attributes;

 Support functions for custom side-effects;

An important remark is that all the new features of the tool are
controlled by a command line argument (-side_effect_management) in or-
der to maintain compatibility for old version users. The new architecture of
the generated files is illustrated the image below (Figure 10).

Figure 10 - New file architecture

4.2 Process automation

This chapter describes the second stage of the project implementa-
tion where we increase the automated code generation capability of
spirit2regtest. We start by the improvement of IP-XACT descriptions fol-
lowed by the upgrade of the tool to parse this new information, finally
providing complete support for advanced attributes.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 30

4.2.1 New IP-XACT parameters design

The first task required for side-effect test automation was the de-
sign of new IP-XACT extensions in order to provide the missing information
for common side-effects. As presented in the IP-XACT chapter the missing
information were the effect and target field, without these key information
it is not possible to automatically generate the tests.

With the help of team’s IP-XACT specialist we have designed vendor
extensions to improve the standard schema. The extensions must be de-
scribed inside the field structure and can be used multiple times as needed.
In other words, a register can have multiple fields and a field can have mul-
tiple side-effects, for example, a field with maximum and minimum value
depending of two other fields. Each description will have three attributes:
effect, target register offset and target field offset. We decided to put only
these three parameters to avoid overloading the descriptions, the target
complementary information can be encountered in the IP description. Fi-
nally, we decided to use values instead of names because the names
change more frequently than their offsets in IP design. The diagram below
(Figure 11) shows the designed vendor extensions for side-effect descrip-
tion.

Figure 11 - Vendor extensions for advanced attributes

4.2.2 Process Automation

Once the improved IP-XACT description was defined, it was time to
upgrade spirit2regtest code generation. Since the basic registers test were
already being automatically created, the declaration of the advanced tests
is limited to registers described as having special behavior. The tool parses
the vendor extensions and automatically declares the calls to the support
functions created in the first implementation stage of the project. The
needed parameters for the field are fetched in the XML description using
the register and field offset. The tool begins by searching for the register
node which has his unique address offset, there it takes the register size.
Next it searches for the field node which also has a unique bit field offset,
there it takes the field width. With these data the tool must only declare
the right test function call, according to the effect value in the vendor pa-

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 31

rameter. In case of unknown effect or any problem searching for the field
(e.g. bad address offset) the tool will not generate any test, but a warning
instead.

4.2.3 Second Release

With this improved version the user does not need to care with
most of registers side-effects. Using the designed parameters the user
needs only to declare the known effects in the IP-XACT description, the
tool will automatically create the tests. For unknown effects the tool will
create the test entry point and put a message indicating side-effect exist-
ence, the user only need to open the file with the special registers and
code the test with help of the support functions. For the second release of
this project we can remark the following new features:

 Supports new vendor extensions;

 Automatically generate test for registers with advanced attrib-
utes;

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 32

5. Results and Discussion

Here are presented the obtained results in the last stage of the pro-
ject where was performed the evaluation of the last release of the soft-
ware. Furthermore, a personal discussion is also presented were we talk
about the work done and the final product.

5.1 Basic Tests and Non-regression Tests

Most of the validation of this work was done during the develop-
ment, performing black-box tests with each test chain implemented. Be-
sides, all the code respects C99 rules and good practice rules imposed by
the company. To ensure compatibility and non-regression of the new ver-
sions for the users, there were also performed TSP (Test-Suite Processing)
tests with a pre-defined suite of tests, which generates code for several IP
descriptions and compares with golden models. Every release of the soft-
ware passed through all the TSP tests without error.

5.2 Test on Interrupt Controller with Power PC

A test with a real complex IP was performed in order to validate the
final release and ensure that the software was still portable through differ-
ent platforms. The major difference of this test in relation with the devel-
opment test was that this platform used a different kind of processor, pre-
cisely a Power Architecture (also known as PowerPC) processor from Free-
scale®, simulated through an ISS. The compiler was provided by WindRiv-
er® company.

The design under test was an Interrupt Controller with about 1070
registers in his bank. The IP has this elevated number of registers because
each interruption have a priority, the controller support up to 1024 inter-
ruptions so having 1024 priority registers. Finally, it was verified also that
several registers have special behaviors as side-effects, or being flags to
interrupts, a suitable IP to test the tool.

For this test the TLM model of the controller was already config-
ured. The platform was generated and the ISS was included using an UART
communication channel to provide the processor output traces. Using a
tool called TLM Device bound to the processor UART it was possible to con-
figure the data output and visualize the verbal output of the generated
software.

After analysis of the IP-XACT description it was verified that it did
not describe the special behaviors in the registers, so this information was
added into the description using the designed vendor extensions. Finally,
using the latest spirit2regtest version, the code was generated and com-
piled for the PowerPC processor, being executed after and performing the
test correctly.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 33

Figure 12 – Industrial test platform

5.3 Acceptance and Team Feedback

After an introductory presentation and demonstration, the team
liked the work performed over the tool, also the new designed vendor ex-
tensions will be included on other company softwares. Since we had at
least two releases of the tool, after three months of use there were no re-
quest concerning the tool, this can be seen as a good thing since there
were no reported errors neither misunderstanding problems.

5.4 Solution Limitations

Unfortunately the choice of C as language for the generated code
drives to a less elegant solution. With object-oriented languages, as C++ for
example, there are many more features to be explored as method overload
and inheritance which could provide a better interface for the user. Even
so there are few processor compilers that support high level languages. C
language was chosen since it is largely more compatible.

Another limitation is that the tool generates code for several possi-
ble simulations, with the possibility to enable or disable specific tests. In
other words, depending of the desired tests, great amount of dead code
remains inside the software. Depending on the compiler optimizations this
can hamper the process raising the size of the binary files, the needed
amount of memory and also the test speed. Hopefully most of the compil-
ers today perform this kind of optimizations, suppressing dead and un-
reachable code, the test will be performed at its maximum efficiency.

5.5 Perspectives

We hope that this project will be used and improved along the
years since more commonly used side-effects can appear. With the devel-
oped work in place, implementing more support functions is not a hard
task. Besides, IP-XACT standard schemas are also evolving year by year, this
work can be a contribution to the standardization of commonly used side-
effects, officially including the vendor extensions in some part of the next
schema release.

For STMicroelectronics verification flow, this work can be used to
improve not only test generation, but also the TLM virtual platform genera-
tion since now there is sufficient information on the IP-XACT schema.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 34

6. Conclusion

The industry is on track to meet the requirements of automation.
Through this project it was possible to get in touch with today’s semicon-
ductors industry processes and real needs. It was also very interesting to
see real semiconductors design flow, integrating several systems, data-
bases and methods in order to raise production speed.

With progressive work, all the project objectives were reached and
the final product is already on use. After meticulous analysis of the existent
tool, the possibilities and needs of the test process, we performed the de-
velopment over the flow upgrading both description standard and test
generation tool, finally validating it with tests for real IPs. The improved
register bank test process benefits the company helping users on TLM and
RTL, validation and verification of IPs, saving time to other important activi-
ties. It now generates much more complete software for register testing,
highlighting specific behaviors of registers and offering a complete support
for developing their tests.

This project was composed of mixed activities on SoC design in dif-
ferent abstraction levels, working with hardware and software develop-
ment. There were specification level tasks such as the improvement of IP-
XACT descriptions, TLM level tasks as the creation and generation of virtual
platforms for register testing, finally, automation tasks such as the im-
provement of register test generation tool. It also helped me develop my
knowledge of a small, but essential part of chip design. Work with TLM can
be a grateful job for those who love the logic of digital systems but did not
like to enter deeply on physic low representation levels. TLM allows the
production of virtual SoC with the elegance and simplicity of high level lan-
guages. Another gain was the experience with embedded software, espe-
cially with their constraints that, at my point of view, requires much more
caution developing since they may be executed in different processors, and
normally without any operational system support.

From a personal point of view, this opportunity was especially im-
portant for me considering the scope of international studies. Besides the
scientific and technic improvement of the knowledge we cannot forget the
improvement of basic human skills as sociability, communication and or-
ganization. The work was performed within an international company envi-
ronment, featuring communication with people from different cultures
around the world. In the same way because the wide technology field
knowledge which requires good synthesis skills to understand, catch the
essential information, simplify, exemplify and share. I’m very happy to say
that this was my best work experience so far and that I feel comfortable
moving forward working in this knowledge area.

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 35

Bibliography

 STMicroelectronics, "Who We Are", Mar. 2013. Web. 27 Feb. 2013.
<http://www.st.com/st-web-
ui/active/en/about_st/st_company_overview.html>

 iSuppli, “Qualcomm Rides Wireless Wave to Take Third Place in Global
Semiconductor Market in 2012", Dec. 2012. Web. 27 Feb. 2013.
<http://www.isuppli.com/Semiconductor-Value-
Chain/News/Pages/Qualcomm-Rides-Wireless-Wave-to-Take-Third-
Place-in-Global-Semiconductor-Market-in-2012.aspx>

 iSuppli, “Worldwide 2005 top 20 semiconductor market share ranking",
Mar. 2006. Web. 27 Feb. 2013.
<http://i.cmpnet.com/siliconstrategies/2006/03/isupplitables.gif>

 Accellera , “IP-XACT Technical Committee“, Unkwnown. Web. 16 May
2013. <http://www.accellera.org/activities/committees/ip-xact/>

 Gartner , “Worldwide Semiconductor Revenue Declined 2.6 Percent in
2012”, STAMFORD, Conn., Apr. 3, 2013.
<http://www.gartner.com/newsroom/id/2405215 >

http://www.st.com/st-web-ui/active/en/about_st/st_company_overview.html
http://www.st.com/st-web-ui/active/en/about_st/st_company_overview.html
http://www.isuppli.com/Semiconductor-Value-Chain/News/Pages/Qualcomm-Rides-Wireless-Wave-to-Take-Third-Place-in-Global-Semiconductor-Market-in-2012.aspx
http://www.isuppli.com/Semiconductor-Value-Chain/News/Pages/Qualcomm-Rides-Wireless-Wave-to-Take-Third-Place-in-Global-Semiconductor-Market-in-2012.aspx
http://www.isuppli.com/Semiconductor-Value-Chain/News/Pages/Qualcomm-Rides-Wireless-Wave-to-Take-Third-Place-in-Global-Semiconductor-Market-in-2012.aspx
http://i.cmpnet.com/siliconstrategies/2006/03/isupplitables.gif
http://www.accellera.org/activities/committees/ip-xact/
http://www.gartner.com/newsroom/id/2405215

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 36

Appendix

A. Simple Register Description in IP-XACT

<spirit:register>

<spirit:name>MYIP_SER</spirit:name>

<spirit:description>A read-write 8 bits register

</spirit:description>

<spirit:addressOffset>0x003B</spirit:addressOffset>

<spirit:size>8</spirit:size>

<spirit:access>read-write</spirit:access>

<spirit:reset>

 <spirit:value>0xFF</spirit:value>

</spirit:reset>

<spirit:field>

<spirit:name>ZSET</spirit:name>

<spirit:description>Zero set advanced attribute test

</spirit:description>

<spirit:bitOffset>4</spirit:bitOffset>

<spirit:bitWidth>2</spirit:bitWidth>

<spirit:access>read-write</spirit:access>

</spirit:field>

</spirit:register>

B. Improved Register Description

<spirit:register>

<spirit:name>MYIP_SER</spirit:name>

<spirit:description>A read-write 8 bits register

</spirit:description>

<spirit:addressOffset>0x003B</spirit:addressOffset>

<spirit:size>8</spirit:size>

<spirit:access>read-write</spirit:access>

<spirit:reset>

 <spirit:value>0xFF</spirit:value>

</spirit:reset>

<spirit:field>

<spirit:name>ZSET</spirit:name>

<spirit:description>Zero set advanced attribute test

</spirit:description>

<spirit:bitOffset>4</spirit:bitOffset>

<spirit:bitWidth>2</spirit:bitWidth>

<spirit:access>read-write</spirit:access>

<spirit:vendorExtensions>

<st:sideEffect

st:type="ZSET"

st:targetRegOffset="0x0054"

st:targetFieldOffset="4"/>

</spirit:vendorExtensions>

</spirit:field>

</spirit:register>

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 37

C. Generated Test

/*!

* \brief

* myip _ser_register_test : MYIP_SER register test function

* Scope : testMemMap/testRegisters/MYIP_SER

* Purpose : Test S2RT_SER register and return the test status

*/

uint32_t myip_ser_register_test(ADDRESS_TYPE address, TEST_TYPE

test) {

/** variable declaration */

uint32_t errorNbr;

uint8_t pattern;

uint8_t index;

uint8_t expected_value;

uint8_t current_value;

/** variable initialisation */

…

/*!

* \brief

* Initial Value test for MYIP_SER register

*/

if (test & TEST_RESET) {

 errorNbr += VALregister_test_8(address,

 myip_MYIP_SER_RESET_VALUE,

 ((myip_MYIP_SER_RWMASK | myip_MYIP_SER_ROMASK)

 & (~myip_MYIP_SER_RAMASK)));

 }

 /*!

 * \brief

 * ZSET test for S2RT_SER register

 */

 if (test & TEST_SPREG) {

 errorNbr += ZSET_register_test(myip_BASE_ADDRESS +

 myip_MYIP_SER_OFFSET,

 myip_MYIP_SER_SIZE,

 myip_MYIP_SER_ZSET_WIDTH,

 myip_MYIP_SER_ZSET_OFFSET,

 myip_BASE_ADDRESS +

 myip_MYIP_TG16_OFFSET,

 myip_MYIP_TG16_SIZE,

 myip_MYIP_TG16_F2_WIDTH,

 myip_MYIP_TG16_F2_OFFSET);

 }

 return errorNbr;

}

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 38

D. User Manual Section

SIDE EFFECT SUPPORT FOR REGISTER TEST

Spirit2regtest support for side-effects is activated using -side-effect-
management option. The tool provides additional files with advanced test
functions for the behaviors and also automatically generates tests for regis-
ters which contains the vendor extension defined below.

IP-XACT ST Vendor Extension for side-effects

This vendor extension was designed to provide IP-XACT registers fields’
side-effects declaration. It must be declared within the field node of the
source register (the register that produces the side-effect) and has three
parameters:

- type: register Effect, can be one of the following: BSET, BCLR,
ZSET, ZCLR, BTOGGLE, ZTOGGLE, WSET, WCLR, RSET, RCLR,
MAX, MIN, STEP, SBO, SBZ.

- targetRegOffset: hexadecimal value for the register target offset.

- targetFieldOffset: decimal value for the target field offset within the
target register.

If the declared behavior (type) is not recognized by the tool the test will not
be generated, only the test function entry. The snippet below shows the
parameter in IP-XACT format:

<spirit:vendorExtensions>

<st:sideEffect st:type="EFFECT"

st:targetRegOffset="0xXXXX"

st:targetFieldOffset="XX"/>

</spirit:vendorExtensions>

NOTE: Do not forget to declare the st namespace in the document header:

<spirit:component xmlns:st="http://www.st.com/XMLSchema/SPIRIT">

Multiple side-effects can be declared over a field, e.g. the user can add
Maximum and Minimum value constraint on a single field (where the con-
straint value is on another 2 fields).

Advanced Test Functions Description (s2rt_regutils_side_effect)

S2rt_regsutil_side_effect file contains a set of advanced test functions and

utilities for test development. The return for the test functions is the number
of errors occurred during the tests. As input the user must provide basic
information about the register/field and also for the target when it exists.
These functions are divided in 4 groups:

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 39

Bitwise operations between two registers fields

These functions perform the side-effect test between two fields, verifying
that the source field changes the value of the target field correctly. Each
function store the source and target original values at the beginning and
restore the values ate the end. The user must provide 4 parameters for
each field: register address, register size, source width, source offset.

Each function performs two tests: verifies that the source field really chang-
es the target on true condition, verifies that the source field does not
change the target value on false condition.

Test Name Description

BCLR_register_test

Write 0x00… pattern into source field

Check no changes in target bits

Write 0xFF… pattern into source field

Check clear in target bits

BSET_register_test

Write 0x00… pattern into source field

Check no changes in target bits

Write 0xFF… pattern into source field

Check set in target bits

ZCLR_register_test

Write 0xFF… pattern into source field

Check no changes in target bits

Write 0x00… pattern into source field

Check clear in target bits

ZSET_register_test

Write 0xFF… pattern into source field

Check no changes in target bits

Write 0x00… pattern into source field

Check set in target bits

ZTOGGLE_register_test

Write 0xFF… pattern into source field

Check no changes in target bits

Write 0x00… pattern into source field

Check toggle in target bits

BTOGGLE_register_test

Write 0x00… pattern into source field

Check no changes in target bits

Write 0xFF… pattern into source field

Check toggle in target bits

WCLR_register_test

Read source field

Check no changes in target bits

Write in source field

Check clear in target bits

WSET_register_test

Read source field

Check no changes in target bits

Write in source field

Check clear in target bits

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 40

RCLR_register_test

Read source field

Check clear in target bits

Write in source field

Check no changes in target bits

RSET_register_test

Read source field

Check set in target bits

Write in source field

Check no changes in target bits

Table 3: Bitwise operations test functions description

Interdependencies between two registers fields

These functions perform the side-effect test between two fields, verifying
the correct operation of the bounded field in relation with his limit/step regis-
ter. These functions calculate an out of bound value and apply to the field
verifying that the value automatically changes.

Test Name Description

MAX_constant_register_test

Write value greater than constant in field

Check that the current field value is the

maximum possible

MAX_variable_register_test

Read targeted maximum field

Write value greater than maximum

Check that the current field value is the

maximum possible

MIN_constant_register_test

Write value lower than constant in field

Check that the current field value is the

minimum possible

MIN_variable_register_test

Read targeted minimum field

Write value greater than minimum

Check that the current field value is the

minimum possible

ConstantBounds_register_test
Perform MAX_constant_test

Perform MIN_constant_test

VariableBounds_register_test
Perform MAX_variable_test

Perform MIN_variable_test

STEP_constant_register_test

Write out-stepped value (if exists)

Check that the current field value is

steeped

STEP_variable_register_test

Read targeted step field

Write out-stepped value (if exists)

Check that the current field value is

steeped

Table 4: Interdependence operations test functions description

Automatic Generation of Register Side-Effect Test in Embedded Software

KALSING, Arthur – Graduation Project 41

Restricted Value Attributes

These functions perform the field test which has restrictions to write values.
They test each allowed value and also test a not allowed value to confirm
the constraint.

Test Name Description

WRITE_AS_READ_register_test

Write reset value on field

Check that field value still the same

Write field inverse value

Check that field value still the same

ENUM_register_test

Write each enumerated value and

check

Write a not enumerated value

Check that the field value does not

change

SBZ_register_test Check that field accepts only zeros

SBO_register_test Check that field accepts only ones

Table 5: Restricted value test functions description

General purpose functions

These functions were created to be used as a support for custom cases
where the user must code the register test.

Test Name Description

register_write Write value on register

register_read Read register value

field_write
Write value on field (access entire
register)

field_read
Read field value (access entire regis-
ter)

register_expected_behavior_test

Write value in source register

Read target register value

Compare with expected value

field_expected_behavior_test

Write value in source field

Read target field value

Compare with expected value

Table 6: General purpose test functions description

