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We study the three-spin spherical model with mean-field interactions and Gaussian random couplings. For
moderate system sizes of up to 20 spins, we obtain all stationary points of the energy landscape by means of
the numerical polynomial homotopy continuation method. On the basis of these stationary points, we analyze
the complexity and other quantities related to the glass transition of the model and compare these finite-system
quantities to their exact counterparts in the thermodynamic limit.
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I. INTRODUCTION

In this work we analyze key characteristics of the energy
landscape of the spherical p-spin-glass model (pSM) [1,2] by
means of the numerical homotopy continuation method. This
method is capable of finding all stationary points of the energy
function. However, since the number of stationary points grows
exponentially with the system size N, one is restricted to
rather small systems. The interest in the pSM resides in its
connection with the theory of the glass transition. Although
it is, strictly speaking, a spin-glass model with disordered
quenched couplings, its physics resembles in many respects
that of structural glass formers and has been a key model in
the study of the glass transition (for a review, see Ref. [3]).

Its landscape properties have been extensively studied in
the large- N limit where, owing to its mean-field character, the
model can be solved exactly. The number of stationary points
of the so-called Thouless-Anderson-Palmer (TAP) free energy
has been computed and characterized in Refs. [2,4-6]. A key
quantity is the complexity

Y(e) = %ln/\/(e), (1)

as a function of the energy density e, where NV is the number of
stationary points of the TAP free energy. Besides the number
of stationary points, also their index [ turns out to be relevant,
i.e., the number of negative eigenvalues of the Hesse matrix
evaluated at a stationary point. For this reason it is convenient
to also introduce the complexities

1
i)=& InNi(e). 2

where N is the number of stationary points of the TAP free
energy with index /. The picture that emerges is that the
pSM has a high-energy regime characterized by the presence
of exponentially many stationary points with large index.
Asymptotically in the large-N limit, the complexities X,

“dbmehta@syr.edu
tdaniel.stariolo @ufrgs.br
fkastner@sun.ac.za

1539-3755/2013/87(5)/052143(9)

052143-1

PACS number(s): 05.20.—y, 75.10.Nr, 02.60.—x

are equal for all I =0, ... ,N — 1. This regime corresponds
to a high-temperature, or “simple liquid,” regime. Below a
certain threshold energy ey, the number of minima becomes
exponentially dominant over higher-index stationary points,
and the system’s dynamical behavior is governed by states near
the bottom of the landscape [7]. Interestingly, ey, coincides
with the energy at which a dynamic singularity is present,
in the sense that relaxation times diverge in the large-N
limit. This dynamic singularity corresponds to the so-called
mode coupling transition and is present in many glass-forming
models [8—10]. In the minima-dominated regime, for large N,
the complexity of minima gives a finite contribution to the free
energy of the system, called the configurational entropy.

In mean-field models like the one we are considering in the
present article, divergent energy barriers lead to true ergodicity
breaking at ey,. Although this is known not to be true anymore
in more realistic models with short-range interactions, several
short-range models still show signatures of a change of regimes
in the energy landscape near the mode coupling transition. One
such signature is the vanishing of the mean index density i
near the mode coupling transition, where i(e) is obtained by
averaging the index density i = I /N of the Hesse matrix over
all stationary points with energy e [9,10]. In real systems, it is
expected that relaxation in the low energy regime will be driven
by activation over barriers, due to the dominance of minima
in the energy landscape probed by the system’s dynamics.
The complexity of minima stays positive in a restricted energy
window below the threshold, diminishing continuously until
a second characteristic energy below which the complexity
changes sign. In the mean-field picture, this means that,
for energy densities e < e, the number of minima becomes
exponentially small (instead of exponentially large) for large
N. Interestingly, this energy coincides with the point at which
a replica calculation gives a replica symmetry breaking phase
transition in the thermodynamic limit. At this point a true phase
transition, hallmarked by a single step of replica symmetry
breaking, occurs and the model enters a spin-glass phase (or
“ideal-glass phase” in the structural glass terminology [4,11]).

From a landscape perspective on thermodynamic properties
of the model, the pSM has the striking feature that the
equations defining the stationary points of the TAP free energy
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(which is a mean-field free energy function of local magnetiza-
tions) are formally identical to the equations determining the
stationary points of the Hamiltonian [2,5]. Therefore, in the
thermodynamic limit, many temperature-dependent properties
of the model can be inferred directly from an analysis of the
energy landscape. In general (i.e., for models other than the
pSM) such a duality of TAP free energy stationary points and
Hamiltonian stationary points does not hold. The extrapolation
of energy landscape characteristics (based on the Hamiltonian)
to the thermal behavior of glassy systems (governed by the free
energy) must be done with considerable care.

The energy landscape approach has greatly improved the
understanding of the glass transition, and much of this success
is due to the exact results for landscape-related quantities
of the pSM in the thermodynamic limit. Nonetheless, many
questions related to the way that barriers and timescales scale
with size are relevant for real systems and are still poorly
understood. The numerical homotopy continuation method,
by virtue of its capacity of determining all stationary points
of a complex polynomial, opens up a way of obtaining
exact finite-system properties of the energy landscape of
the pSM for system sizes up to N = 20 (i.e., far from the
thermodynamic limit). The main goals of the present study are
(1) to characterize the landscape of a small cluster of spins,
which can be considered as a prototype of a real, large-N
glass model, and approach in a systematic way the emergence
of complexity as known in the large-N case, and (2) to test
how far the validity of the thermodynamic-limit results for the
pSM extends to finite and even small system sizes.

II. THE MEAN-FIELD p-SPIN SPHERICAL MODEL

The p-spin spherical model is defined by the Hamiltonian

N
Jisiseeniy O Oy * ** O 3)

subject to the spherical constraint

N
Yol =N, )
i=1

which restricts the configurations o = (oq, ... ,0n) € RN
to an (N — 1)-sphere of radius VN (hence the name of
the model). The configuration space of the pSM is, there-
fore, effectively (N — 1)-dimensional. The coupling constants
Jii.....i, are Gaussian random variables with zero mean and

standard deviation /p!/2NP~!. The Hamiltonian Eq. (3)
consists of p-spin interactions between all possible groupings
of p lattice sites. For such a fully connected model, the
mean-field approximation is known to be exact, and for this
reason the model itself is called the mean-field pSM. At
least qualitatively, the phenomenology of the pSM is rather
insensitive to the value of the integer parameter p, as long as
p = 3. For this reason we will restrict our numerical study
to the case p = 3, where the Hamiltonian of the three-spin
spherical model (3SM) is given by

N
1
H = _ginkil‘]i’j’kaiajak. (5)
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In order to compute stationary points of the Hamiltonian
Eq. (3) restricted to the spherical configuration space by the
constraint Eq. (4), it is convenient to resort to the formalism
of Lagrange multipliers. We define the Lagrangian

N
L:H+00<Zof—1v>, (6)

i=1

where op is a Lagrange multiplier. The stationary points of
the constrained system are then the solutions of the system of
equations

oL
30’,’ -

For the 3SM, these equations are

0, i=0,...,N. (7

N
Z Ji jx0jox + 6eo; =0, (8)
k=1

where e = H/N is the energy density at a stationary point [5].

The stability of a stationary point is governed by the Hesse
matrix

92L al
'F[m = = — 1m0k — Slm» 9
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with/,m =1, ... ,N, where §; ,, denotes Kronecker’s symbol.

The matrix 7 as defined in Eq. (9) is an N x N matrix.
Evidently, this cannot be the correct Hesse matrix of the
3SM: as mentioned earlier, the spherical constraint Eq. (4)
restricts the configuration space of the model to an (N — 1)-
dimensional sphere. Hence the correct Hessian H, i.e., the
one constrained to the spherical configuration space, should
be an (N — 1) x (N — 1) matrix. This can be accounted for
by eliminating from 7{ the eigendirection perpendicular to the
surface of the configuration space manifold. For a spherical
configuration space, such a perpendicular eigenvector is radial
for any given stationary point. It is possible to prove that the
eigenvalue corresponding to this radial eigenvector is equal
to 3e for the 3SM [6]. Knowledge of this radial eigenvalue
allows us to easily obtain the index of the correct (constrained)
Hessian H from the unconstrained one,

ITH(o®)] = I[H(c®)] — O(—e), (10)

where 0® = (o}, ... ,0%) is a solution of Eq. (8) and e =
H(c®)/N is the corresponding energy density. Similarly, the
d~eterminant of the constrained Hessian can be obtained from

H:

det(H
det(H) = eS(H), for
e

e 0. (11)

III. NUMERICAL POLYNOMIAL HOMOTOPY
CONTINUATION METHOD

The stationary points of the 3SM are the solutions of the
N coupled nonlinear equations in Eq. (8). Since an analytic
solution of these equations is unlikely to be feasible, we resort
to a numerical technique. Due to the polynomial character
of Eq. (8), the so-called numerical polynomial homotopy
continuation (NPHC) method [12] is particularly suitable. This
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method has the virtue of being able to find all the solutions of a
given system of polynomial equations, and has been applied in
the past to a variety of problems in particle theory and statistical
mechanics [13-24]. A drawback of the NPHC method is that it
is restricted to fairly small system sizes. A detailed description
of the method can be found in Ref. [15] or in Sec. III of
Ref. [19].

Running the NPHC method on a computer, we consider a
configuration (o1, ... ,oy) to be anumerical solution of Eq. (8)
if it satisfies these equations with tolerance not exceeding
1019, The NPHC method searches solutions in CV and, since
we are interested only in real solutions, we have to dispose
of all the complex ones as a last step. We consider a solution
to be real if the absolute value of the imaginary part of each
component o; does not exceed the tolerance 107°. We have
checked that the choice of this tolerance does not affect the
number of real solutions found, i.e., this number is robust for
the problem at hand. All stationary points can be further refined
to arbitrary numerical precision if necessary. Moreover, we
have used an efficient implementation of Smale’s a-theory [25]
to certify that each of the numerical solutions is indeed in the
quadratic convergence of the associated actual solution (see
Ref. [26] for an introduction of the method from the potential
energy landscape point of view).

IV. RESULTS

By means of the NPHC method, we computed all stationary
points of the 3SM for system sizes N between 14 and 20 and,
for each value of N, ten different realizations of the random
couplings were used. In the Introduction, we had outlined the
relevance of the stationary points and their indices for the
relaxational properties of glassy systems. In the following
sections we will analyze for the finite-size 3SM the most
relevant properties, including complexities, mean indices,
and the Hesse determinant, and compare them to analytic
predictions for their infinite-system counterparts.

A. Number of stationary points

In Fig. 1 (top) we show the total numbers of complex and
real stationary points, respectively, averaged over the disorder
samples. The linear increase in this logarithmic plot nicely
illustrates that the total number of stationary points grows
exponentially with N. While this is true in many models, the
relevance of this behavior in the 3SM model is that not only
the energy function, but the free energy itself has the same
structure of stationary points. This is in stark contrast with
the majority of statistical systems for which the number of
stationary points of the free energy in order parameter space
is usually much smaller. This is intimately connected to the
glassy behavior of the 3SM at low temperatures and energies.
The large number of complex stationary points is the limiting
factor for applying the NPHC method to larger system sizes.

In the large- N limit, an analytic expression is known for the
disorder average E (V) of the total number A/ of real solutions,

li IIEN—IIZ 12)
Jlim - InEQV) = S In2, (

(Eq. (2.20) of Ref. [27]). In Fig. 1 (bottom) we plot In E(N)/N
versus 1/N for our finite-system data. Although not an exact
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FIG. 1. (Color online) Top: Disorder average E(N\) of the total
number N of complex (red squares) and real (blue dots) stationary
points on a logarithmic scale, plotted vs. the system size N. Both
numbers grow exponentially with N. Bottom: Logarithmic density
of E(N) for the real stationary points, plotted vs. the inverse system
size (blue dots). The analytic result in the thermodynamic limit is
indicated by a red square.

match, the numerical data tend nicely toward the exact limiting
value, even for the very small system sizes considered.

B. Complexity versus energy

Resolving the number of stationary points with respect to
the energy, we obtain the complexity X(e) as introduced in
Eq. (1). Although Eq. (1) captures the essential idea of the
complexity, a technical difficulty is hidden in the number
N(e) of stationary points at energy density e: Rigorously
speaking, N (e) will be zero almost everywhere. To obtain
a well-defined quantity, some kind of binning would be
necessary, for example, by defining N'(e) to be the number
of stationary points in the interval [e,e + A] for some small
A > 0. A drawback of this approach is that an arbitrary
parameter A is introduced, and the effect of the choice of
A is difficult to control.

This problem can be circumvented by resorting to the
cumulative complexity

T(e) = %m M(e), (13)

{o

is the number of stationary points with energies not larger than
e. The cumulative complexity I'(e), though discontinuous, is
a well-defined, monotonically increasing function for all finite
system sizes N. Also in analytical calculations the cumulative

where

M(e) = H(o)

oH .
M oy =ovi, 12 < e” (14)
301'
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FIG. 2. (Color online) The annealed average of the cumulative
complexity I' plotted vs. the energy density e for various system

sizes N. For comparison, the analytic large-N result is shown as a
black dotted line.

complexity I' is usually preferred to its noncumulative coun-
terpart X, and exact analytic expressions are known for the
pSM in the thermodynamic limit (Eq. (2.15) of Ref. [27]).
The cumulative complexity is a self-averaging quantity in the
large- N limit, but since our system sizes are far from that limit,
we calculated quenched averages,

1

N, =—EQd , 15

(C)q I (In. M) (15)
as well as annealed averages,
1

(T)a = N InE(M), (16)

where E denotes averaging over 10 disorder realizations [5].
In Fig. 2, we show (I"), for various system sizes N, together
with the thermodynamic limit result. Although, for the small
N considered, the finite-system data are not close to the
thermodynamic limit result for most e, the trend we observe is
correct: For energies e less than about —0.55, the finite-system
data lie below the infinite system result but become larger as N
grows; for e larger than about —0.45, the finite-system data lie
above the infinite system result but decrease with increasing
N.The quenched average (I')q (not shown) turns out to be very
similar to (I"), and the two are almost indistinguishable on the
scale of Fig. 2 for most e. The only visible difference is that, for
energies smaller than the ground state of any one of the disorder
realizations, (I')q is ill-defined (or —o0). As a consequence,
the quenched average (I")q is nonnegative, and convergence to
the negative values of the analytic result in the thermodynamic
limit cannot occur. For this reason the annealed average (I'),
appears more suitable for such a comparison.

In particular, the critical energy e, i.e., the energy at
which the complexity goes to zero in the thermodynamic
limit, can be defined approximately, for finite NV, as the point
at which (I'), changes sign. This point can be easily read
off, even for the small system sizes studied here for which
there is no rigorous relation with a true phase transition. As
mentioned in the Introduction, the infinite-system value of
e. marks the transition to a spin-glass phase. For the pSM
in the thermodynamic limit, an implicit analytic expression
for the critical energy is known [27], yielding the approxi-
mate numerical value e, &~ —1.17. The finite-system critical
energies are plotted versus the inverse system size 1/N in
Fig. 3. Despite the small system sizes, the results indicate a
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FIG. 3. (Color online) Finite-system critical energies e. (blue
dots), determined as the energy values at which the annealed
average (I'), plotted in Fig. 2 changes sign. For comparison, the
thermodynamic limit value e, &~ —1.17 is plotted as a red square.

trend that appears to be nicely consistent with the analytic
thermodynamic limit value. It is important to note that the
finite N critical energies previously defined do not coincide
with the ground-state energy of the clusters.

C. Index-resolved number of stationary points

The index I of a stationary point ¢°, i.e., the number of
negative eigenvalues of the Hesse matrix H(c®), is known to
be a relevant quantity for the physical properties of the system
under consideration. In particular, minima are stationary points
with I = 0 and correspond to regions in phase space in which
a trajectory may be trapped, which in turn is relevant for
glassy dynamics. Higher-index stationary points, in contrast,
allow the system to diffuse more easily due to their inherent
instability.

In Fig. 4 (top) we plotted, for several system sizes N, the
logarithm of the total number of stationary points versus the
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FIG. 4. (Color online) The total number of stationary points vs.
index [ (top) and vs. index density i (bottom) for various system
sizes N.
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index /. The number of stationary points has a maximum at
and is symmetric around / = N /2. This symmetry is a direct
consequence of the antisymmetry of the Hamiltonian Eq. (5)
of the 3SM: For every stationary point 0® = (03,07, ... ,05)
with index /(c®), the point 6° = (-0, —0},..., —0y) is
also stationary and its index is I(6%) = N — I(c®).

For the pSM in the thermodynamic limit, analytic results
are available for the mean total number A7 of stationary points
of a given index /,

. 1 1 1
Jim S IEW) = 212~ > ~0.013, (17)

see Eq. (2.21) of Ref. [27]. Interestingly, this result is
independent of the index I. The numerical values for A; from
our finite-system data are much larger than the infinite-system
results, but the scaling behavior with N is roughly consistent
with the expectation for small indices /. For I > N/2, the
curves in Fig. 4 (top) bend downwards as a consequence of the
earlier mentioned symmetry of the 3SM Hamiltonian Eq. (5).
This strong finite-size effect can be reduced by considering
the mean total number A; of stationary points of a given
index density i [see Fig. 4 (bottom)]. The trend of the data
in Fig. 4 (bottom) indicates a decrease of N; with increasing
system size, but our data do not allow an extrapolation to the
thermodynamic limit.

Similar to Fig. 4 (bottom), a unimodal shape of In \;/N
versus i has previously been observed for several other models.
Examples include the XY model with power law interactions
for up to 13 degrees of freedom [15]; the one-dimensional
XY model, for which all the stationary points were found
analytically for any N [28,29]; the random-phase XY model in
two dimensions, for which all stationary points were computed
for small square lattices (uptoa 3 x 3)[14,22]; Lennard-Jones
clusters for up to 14 atoms [30]. In Ref. [31], for large bulk
systems consisting of weakly interacting subsystems, A; was
analytically shown to follow a binomial distribution in /.

D. Index-resolved complexity

In Fig. 5 (top) the cumulative complexities I'; of stationary
points of index I = 0, 1, 3, and 10 are shown as functions of the
energy density e for various system sizes. Not unexpectedly,
lower-index stationary points are more numerous at low
energies, higher-index stationary points at high energies.
Below a certain threshold value around e = —0.9, only minima
(stationary points of index I = 0) are present.

Also for the index-resolved complexities I'; analytic results
are known in the thermodynamic limit; see, e.g., Eq. (2.16)
of Ref. [27]. For a convenient comparison we show a plot
of these results in Fig. 5 (bottom). For energies e > ey, =
—2/+/3 ~ —1.155 above the threshold energy, the cumulative
complexities I'; in the thermodynamic limit are constant in e
and independent of 1,

Tj(e)=1n2/2—1/3, foralllande > en.  (18)

Below ey, the inequality I';_j(e) > I';(e) holds for all I =
1,...,N. This inequality implies that, in the thermodynamic
limit, the complexity I'g(e) of minima dominates the total
complexity I'(e) for all ¢ < ey. Due to this dominance of
minima, true ergodicity breaking occurs below this threshold,
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FIG. 5. (Color online) Top: The cumulative complexities I'; of
stationary points of index / =0, 1, 3, and 10 (from light to dark
lines) as functions of the energy density e for system sizes N = 14,
16, 18, and 20. Among the curves of a given index I, the energy e at
which I'; changes sign decreases with increasing system size, and this
regularity allows one to easily relate system sizes to the various curves
in the plot. Bottom: The corresponding thermodynamic limit results.

and the diffusivity of the systems goes to zero. This makes the
threshold energy ey, a relevant characteristic of the dynamical
behavior of the pSM [2,4,32].

Strictly speaking, the threshold energy ey, is defined only
in the thermodynamic limit where the heights of the barriers
between stationary points diverge. For finite N, the barrier
height remains finite, ergodicity is restored, and therefore,
one cannot expect a true diffusion arrest in the dynamics to
take place at a particular energy. Nonetheless, it would be
interesting to study a finite-system analog of the threshold
energy level in the pSM. For some models that in certain
respects behave similar to the pSM, such a finite-system analog
of ey, can be defined as the energy below which a crossover
takes place toward extremely slow dynamics. This slowing
down is attributed to the suppression of escape directions in
the energy landscape [9,10]. For the rather small system sizes
at our disposal, we expect the relaxational dynamics of the
system to be ruled by a spectrum of relaxation time scales
that are related to the N-dependent heights of energy barriers
in the low-energy regime dominated by minima. It would be
interesting to analyze the dynamics of small clusters of spins
in this regime and try to interpret the results in the light of the
energy landscape properties described here. This could shed
light on the mechanism that leads, in the large-system limit, to
the characteristic two-step relaxation of glassy systems.

For the small system sizes we have studied, the finite-N
results do not even qualitatively resemble the thermodynamic
limit results. For small indices I << N, we at least observe
the correct trend, as the large-e value of I'; is decreasing
with increasing system size N. The trend is reversed (and
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inconsistent with the large- N result) for larger values of 7, but
this finite-size behavior can be attributed to similar reasons as
discussed at the end of Sec. IV C.

E. Cumulative mean index density

One indication of the occurrence of a mode coupling
transition at some value of the energy density e is, as mentioned
in the Introduction, the vanishing of the mean index density
i(e) [9,10,30,33], as obtained by averaging the index density
i = I/N of the Hesse matrix over all stationary points with
energy e. For the reasons explained above, we prefer to use a
cumulative version of this quantity,

1(c%)
> N (19)

{os: H(o%)<Ne}

jle) =

defined as the index density averaged over all stationary points
with energy densities not larger than e. Results for j, averaged
over 10 disorder realizations, are shown for system sizes N =
14, ...,20 in Fig. 6. The cumulative mean index density is
found to be a monotonically increasing function of the energy
density e, saturating at a value of 1/2 with increasing energy.
This limiting value is again a consequence of the symmetries
of the 3SM. Within the narrow range of system sizes we were
able to probe, the N-dependence is very weak.

As previously remarked, in the large-N picture, the thresh-
old energy ey, below which the landscape is dominated by
minima, plays an important role. Naively, one might try to
identify the finite-system counterpart of ey, with the value of
e at which j(e) starts deviating from zero. Here we follow
a different approach: In the large-N limit and asymptotically
for e > ey, the mean index density i(e) is expected to grow
like a power law of the distance from the threshold energy
(Eq. (55) of [33]). Accordingly, a similar power law holds for
the cumulative mean index density,

jle) o (e —ew)*, for e> e, (20)

with exponent o = 3/2. Fitting such a power law to the data
of Fig. 6, we find that the optimal fit parameter o ~ 1.3 differs
somewhat from the expected thermodynamic limit value.
The finite-system threshold energies ey, though not an exact
match, are at least in reasonable agreement with the large-N
predictions. In Fig. 7, ey, is plotted versus inverse system size,
and we observe a correct trend toward the infinite-system value
em = —2/+/3 ~ —1.155.

N e
-1.0 -0.5 0.5 1.0

FIG. 6. (Color online) Cumulative mean index density ]_ VSs.
energy density e for various system sizes N.
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FIG. 7. (Color online) Finite-system threshold energies ey, (blue
dots) as obtained from fits to the cumulative mean index densities j(e)
plotted in Fig. 6. An extrapolation to small values of 1/N appears
at least not inconsistent with the thermodynamic limit value ey, =
—2/\/§ ~ —1.155 (red square).

F. Hesse determinant

In order to further characterize the stationary points of
the Hamiltonian Eq. (5), we computed the determinant of
the Hesse matrix at each of the stationary points. Similar,
but complementary, to the index of a stationary point, also
the Hesse determinant represents a way of projecting the
information contained in the Hesse matrix onto a single
number. In energy landscape studies, the Hesse determinant
has been used previously in the study of phase transitions,
also in the absence of disorder. One of the key results in this
context relates the vanishing of the Hesse determinant in the
thermodynamic limit to the occurrence of a phase transition
[34,35]. More precisely, under some technical assumption, in
these references it was shown that, if there exists a sequence of
stationary points oy, for N € N such that the energy density
of this sequence converges,

— | S
ec = lim H(oy))/N. (21)
and such that
. s 1/N
Nll_lgo}detH(cr(N)H =0, (22)

then the stationary points may induce a phase transition at the
energy density e in the thermodynamic limit. Equation (22)
implies that stationary points have to become sufficiently “flat”
in the thermodynamic limit in order to be capable of inducing
a phase transition. This scenario was confirmed in a number of
exactly solvable long-range interacting models (mostly with
mean-field interactions) [34—-36], and it also led to the analytic
prediction of the exact transition energy of the self-gravitating
ring model [37].

On the basis of finite-system data, it is, of course, not
possible to construct infinite sequences of stationary points
o(SN) for N € N. But we can try and see whether, for the small
system sizes at our disposal, the Hesse determinant exhibits a
tendency to vanish at some value of the energy, possibly close
to the threshold energy or critical energy of the 3SM. To inves-
tigate this, we have computed Hesse determinants and energy
densities for all stationary points of all our 10 disorder real-
izations of the model. The data, plotted in Fig. 8, do not reveal
any indication of a vanishing Hesse determinant. Moreover,
comparing the data for system sizes N = 16 (top) and N = 20
(bottom) in Fig. 8, no significant size-dependence is visible.
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FIG. 8. (Color online) For all stationary points o® of our 10
disorder realizations of the 3SM, the pairs (e, D) are plotted, where
e = H(c®%)/N is the energy density and D = |det H(c®*)|"/V is the
rescaled Hesse determinant at a stationary point. The top plot is for
system size N = 16, the bottom one for N = 20.

This is a negative result, and its interpretation is not
entirely clear. On the one hand, the absence of any significant
differences between the plots for N = 16 and N = 20 may
be seen as an indication that the range of system sizes we
are able to deal with is way too small to observe finite-size
scaling effects that allow for an extrapolation toward the
thermodynamic limit. But it may, of course, also be that,
even for much larger systems, the Hesse determinant remains
bounded away from zero. Note that such a scenario would not
be in contradiction with the criterion Eq. (22): This criterion
specifies necessary conditions for a sequence of stationary
points to induce a phase transition. And although examples
are known where such stationary points indeed are responsible
for the occurrence of a phase transition, this need not be the
case for other models. And indeed, several model systems
are known in which stationary points are not related to the
occurrence of a phase transition [17,38-44], and this might
also be the case for the 3SM.

In summary, the exponentially (in N) large number of
stationary points renders the criterion Eq. (22) very impractical
for a naive numerical approach like ours. Only with intuition
about the relevant types of stationary points, and a numerical
algorithm focusing exclusively on those points, might a
numerical test of the condition Eq. (22) be viable.

V. DISCUSSION AND CONCLUSIONS

We have studied the potential energy landscape of the
mean-field p-spin spherical model (pSM) for p = 3. By
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means of the numerical polynomial homotopy continuation
method, we obtained a complete characterization of the energy
landscape, in the sense of computing all stationary points of
the Hamiltonian Eq. (5) for a number of disorder realizations.
Since the number of stationary points grows exponentially with
the system size N, the capacity to compute all the stationary
points is simultaneously a virtue and a limiting factor, as it
restricts the method to rather small system sizes (up to N = 20
in our study).

The pSM is known as a prototype of a fragile glass-forming
system and for several of its landscape characteristics, like
the number of stationary points, indices, and associated com-
plexities, analytical results are known in the thermodynamic
limit. The research reported in the present article complements
these thermodynamic limit results with their finite-system
counterparts. The aim of such a study is to gain insight into
how certain infinite-system properties of the model emerge
from finite N clusters. In particular, when dealing with mean
field models, which show artificially divergent energy barriers
when N — o0, the finite-size scaling of the barrier height with
N is a key quantity for understanding the slow dynamics of the
model. For the small system sizes studied, we found results
that, though roughly compatible with large-N results, show
significant finite-size effects.

The index-resolved number of stationary points, N7, shows
amaximum at / = N /2 and, due to a symmetry of the Hamil-
tonian Eq. (5), is symmetric around this point. At variance with
this result, analytical calculations in the thermodynamic limit
give just a constant value, independent of /. While the change
with increasing N is roughly compatible with the asymptotic
result, we cannot draw a strong conclusion about this point,
which deserves further study with larger systems.

When studying the cumulative complexities I'(e), we found
it convenient to focus on the annealed disorder averages as
defined in Eq. (16). These quantities have the advantage of
changing sign at a certain value of the energy density e, which
we define as the finite- N “pseudocritical” energies. These can
be seen as finite-system counterparts of the critical energy in
the thermodynamic limit. Although, for the small sizes studied,
the actual values of the pseudocritical energies are not close to
the thermodynamic limit results, the trend is the correct one.
An interesting outcome of these results is that the number of
saddles is exponential in the system size for energies down to
a critical value (N-dependent), which is always larger than the
ground-state energy, i.e., this important property is not limited
to the thermodynamic limit.

Strong finite-size effects are also seen in the index-resolved
cumulative complexities. Nevertheless, in agreement with
the large-N picture, the low-energy sector is found to be
dominated by small-index stationary points. In particular, at
the lowest energies, only stationary points of index I =0
(i.e., minima) occur. Upon increasing the energy, stationary
points with higher indices appear and gradually become more
numerous than lower-index stationary points. This should
also reflect in the relaxation properties of the model. In
the large-N limit, minima dominate completely for energy
densities between the critical one e. and the threshold energy
ewm- This leads to the well-known two-step relaxation of the
model in that energy regime. For small clusters, we expect that
a hierarchy of time scales will be present, which reflects the
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stability properties of the dominant set of stationary points at
each energy.

Different from the quantities mentioned earlier, the mean
index density shows rather weak finite-size effects. Its behavior
is qualitatively similar to the large-N results, rising like a
power law above the “pseudothreshold” energy. From fits
to our data we obtain an exponent o ~ 1.3 for such a
power law, reasonably close to the asymptotic result o« = 3/2.
From the same fits, finite- NV approximations to the threshold
energy can be extracted. These energies show the correct
trend with increasing N and are systematically larger than
the corresponding pseudocritical ones. The energy intervals
so defined should be the small-N analogs of the “minima-
dominated” regime known to be present in the thermodynamic
limit. Whether this has implications to the finite-N dynamics is
not known and is a point that certainly deserves to be studied.

Finally, we studied the rescaled Hesse determinant D, eval-
uated at the stationary points of the 3SM. It is known, at least
for certain models studied in the literature, that the vanishing
of this quantity at some value of e in the thermodynamic limit
may signal the presence of a thermodynamic phase transition
at that energy density. Despite the fact that the model shows a
phase transition at e, in the thermodynamic limit, we found no
evidence of a tendency to zero of the Hesse determinant at any
value of e. There are many possible reasons for this to happen,

PHYSICAL REVIEW E 87, 052143 (2013)

the small system-sizes considered being one of them. Another
reason may lie in the determinant criterion itself: It is based
on the assumption that stationary points are “at the origin” of
a phase transition. Although this hypothesis is correct in many
models, it is known to fail in others [17,38—44], and in this
case the reasoning behind the criterion breaks down.

The present paper focuses on properties of the potential
energy landscape only. Since many of these properties are
known to reflect also in dynamical and thermodynamical
properties of finite systems, a study of these latter properties
and a comparison to finite- N energy landscape properties may
lead to further insights on the interplay between landscape
and dynamics. This is a project worth being addressed in the
future.
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