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We investigate the effects of random perturbations on fully chaotic open systems. Perturbations can be applied
to each trajectory independently (white noise) or simultaneously to all trajectories (random map). We compare
these two scenarios by generalizing the theory of open chaotic systems and introducing a time-dependent
conditionally-map-invariant measure. For the same perturbation strength we show that the escape rate of the
random map is always larger than that of the noisy map. In random maps we show that the escape rate κ

and dimensions D of the relevant fractal sets often depend nonmonotonically on the intensity of the random
perturbation. We discuss the accuracy (bias) and precision (variance) of finite-size estimators of κ and D, and
show that the improvement of the precision of the estimations with the number of trajectories N is extremely
slow (∝1/ ln N ). We also argue that the finite-size D estimators are typically biased. General theoretical results
are combined with analytical calculations and numerical simulations in area-preserving baker maps.
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I. INTRODUCTION

External perturbations affect almost any observation to be
made and are usually modeled by simple stochastic processes
[1]. In this paper we are interested in stochastic perturbations in
open chaotic maps, i.e., discrete-time systems, which exhibit a
transiently chaotic dynamics. Such systems appear in a variety
of physical situations (scattering, planetary astronomy, chemi-
cal reactions, fluid dynamics, environmental sciences, etc.) [2].

In an ensemble-based framework, there are two different
ways of introducing perturbations, for which the following
common terminology applies [3]:

Noisy map: perturbations are applied independently to
each trajectory.

Random map: the same perturbation is applied to all
trajectories simultaneously.

Both the noisy- and random-map pictures appear in
numerous physical systems. In fluid dynamics, molecular
diffusion is an example of physical processes that can be
modeled by noisy maps, and randomly varying velocity
fields affecting fluid advection can be modeled by random
maps [4–9]. Random-map models of fluid dynamics are
used whenever a two-dimensional velocity field shows a
nontrivial time dependence (e.g., when fluid vortices perform
complicated movements [8]) and have been used to explain
experimental observations of fractal spatial patterns of floating
particles on the surface of a three-dimensional fluid [5]. Such
fractal patterns in random maps have been shown to enhance
biological and chemical reactions taking place in fluids, a
problem of great interest for the spreading of pollutants in
the atmosphere and for the dynamics of plankton in the
sea (see Ref. [9] and references therein). In climate and
weather models, physical processes on a subgrid level are
typically represented by closure relations and parametrizations
of relevant diffusion processes, which correspond to the
noisy-map picture. Stochastically parametrized models are a
subject of great recent interest because of their potential to
improve modeling power and thus prediction skills [10,11].
In contrast, external forcing, e.g., solar irradiation (possibly

modulated by major volcano eruptions or anthropogenic CO2

emission), would affect possible weather evolution scenarios
the same way, which correspond to the random-map picture
[12]. Another situation where the random-map picture applies
is wave-front propagation through randomly structured media,
e.g., in underwater acoustics [13,14]. More generally, noisy
maps appear typically in spatially extended systems when
microscopic sources of stochasticity are present, while the
random-map picture appears when some macroscopic forcing
affects all trajectories simultaneously. From another point of
view, noisy maps apply when repeated experiments with single
trajectories are performed, while the random-map picture
applies when we are interested in the expected outcome of a
single experiment with a fixed realization of the perturbation.

The above distinction can be motivated also from a
predictability point of view, whereby noisy maps describe
models with uncertainties, and random maps describe models
that are perturbed by an a priori known process. Here we are
concerned with the predictability of a typical trajectory, which
is arbitrarily chosen from an ensemble, and the measures of
predictability will be defined as averages over this ensemble.
In the well-studied case of dissipative closed systems the
ensemble at any time t is taken to be constituted by trajectories
that are arbitrarily initialized in the infinitely distant past,
t0 → −∞. In the random-map framework this ensemble is
referred to as a random or snapshot attractor, which is a
fractal set if the trajectories are chaotic [3]. A remarkable
property of the snapshot attractor is that its geometry and the
measure supported by it are changing continuously in time, but
its fractal dimension is constant [3,7,15]. However, e.g., the
finite-time average maximal Lyapunov exponent, quantifying
the finite-lead-time predictability of the typical trajectory, is
time-dependent [16]. In contrast, in the noisy-map framework
the average pointwise prediction error at some finite lead time
cannot be arbitrarily reduced by improving the precision of the
initial conditions. The random-map picture may thus seem to
be in stark contrast to the noisy dynamics from a predictability
point of view; however, from a more fundamental point of view
it has been shown that fractal snapshot attractors constitute
building blocks of the noisy stationary attractor [16].
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In autonomous chaotic open systems the density of tra-
jectories surviving for a long time inside the system, not
leaving a window of observation, decays exponentially and is
distributed according to the so-called conditionally invariant
measure [2,17,18]. In these systems, predictability concerns
whether we can foretell the route of escape of a trajectory
when there are a number of options for that. A measure of
this predictability of the typical, i.e., arbitrarily initialized
trajectory in the observational window, is the uncertainty
exponent. The latter is the scaling exponent of the fraction
of predictable trajectories with respect to the precision of
the initial conditions [19]. For random maps the uncertainty
exponent is thus trivially related to the fractal dimension of the
boundary of basins from which the trajectories escape through
different routes. The fractal scaling of the basin boundary
is time-dependent at finite, practically accessible scales and
so predictability (or the rate at which it can be improved) is
also time-dependent. For noisy maps the basin boundary is
space filling and so, similarly to the case of closed systems,
predictability cannot be improved at all.

In this paper we concentrate on simple (fully hyperbolic)
chaotic open systems and simple stochastic perturbation
processes, and focus on the effects of the perturbation strength
and the comparison between noisy and random maps. We
combine the concepts of conditionally invariant [2] and time-
dependent but map-invariant [16,20,21] measures, and argue
that the trajectories in the random open maps are distributed
according to a time-dependent conditionally-map-invariant
measure (to be clarified below). Based on this formalism we
obtain that for the same stochastic perturbation process the
escape rate κ of the random map is always smaller than that
of the noisy map. We also investigate the dimension D of
the relevant fractal sets of random open maps and discuss the
accuracy and precision of finite-size estimators of κ and D.
Under conditions when noise-enhanced trapping is observed,
i.e., when the average lifetime of trajectories is constructively
increased by noise [22–24], we find numerical evidence that
both κ and D of the associated random map also show a
nonmonotonic dependence on the perturbation strength.

The paper is organized as follows. In Sec. II the theory of
open systems is generalized for random maps, introducing a
time-dependent version of the conditionally invariant measure.
In Sec. III we provide general relations for the escape rate in
autonomous, random, and noisy maps, followed by the dis-
cussion of finite-size estimators. The analogous investigation
for the fractal dimension appears in Sec. IV. Finally, our main
conclusions are summarized in Sec. V.

II. MEASURES OF OPEN MAPS

We consider the temporal evolution over t = 0, . . . ,T of
an ensemble of n = 1, . . . ,N trajectories under the action
of the map �xt+1 = ft (�xt ) in a d-dimensional phase space
�x ∈ X, when on each iteration with respect to t the map ft

is chosen from an ensemble according to some probability
distribution [7]. We assume that members of this ensemble are
invertible, i.e., xt = f −1

t (xt+1), open, and fully chaotic (to be
clarified below). Equivalently, we can say that the mapping
rule f depends on a control parameter a, and we consider
perturbations around a fixed value a∗ as a = at = a∗ + δξt ,

where δ is the strength of the perturbation, and the ξt are
independent identically distributed random variables (e.g.,
Gaussian with zero mean and unit variance), which in general
vary across different trajectories n (but do not depend on �xn).
Altogether, the dynamics of the ensemble is written as

�xt+1,n = ft,n(�xt,n) ≡ f (�xt,n,δξt,n). (1)

According to the theory of open maps [2,25], for t → ±∞ al-
most all trajectories leave a finite region of the phase space � ⊂
X in which they exhibit some nontrivial dynamics. A central
quantity in our analysis will be the probability density function
ρ(�x,t) of surviving trajectories in �x ∈ � up to time t , which is
obtained by dividing the number of trajectories in an ε neigh-
borhood of �x by the total number of surviving trajectories N (t)
[in the limit of ε → 0 when N (0) → ∞]. While N (t)/N (0) →
0 for t → ∞, the normalized density ρ(�x,t) may approach a
nontrivial density and be used to define a measure dμ = ρdVX

(where dVX denotes a phase-space volume element in X). Next
we discuss in detail the properties of this measure in the cases
of autonomous-, random-, and noisy maps.

A. Autonomous maps

In the unperturbed case, δ = 0 in Eq. (1), the map is au-
tonomous, and the following results are known from transient
chaos theory [2]: The dynamics is governed by a time-invariant
nonattracting chaotic set in �, also called a chaotic saddle,
which is composed of the points that do not leave � under the
action of the mapping (1) in either direction t → ±∞ [26]. For
fully chaotic maps this is a zero measure fractal set, lying at
the intersection of its stable and unstable manifolds; the latter
sets are composed of points within � that never leave � for
t → ∞ and −∞, respectively. The normalized density ρ(�x,t)
converges to a well-defined stationary density ρ(�x) for t → ∞.
The measure μ associated with ρ(�x) is said to be conditionally
invariant (in brief c-measure and c-density, respectively) be-
cause for any set A ⊂ � it obeys the following relation [17,18]:

μ(A) = μ(f −1(A))
μ(f −1(�))

, (2)

where f −1(�) ⊂ � corresponds to the set of points that
do not escape � over one iteration of f . Because of a
constant rescaling given by the denominator in Eq. (2),
c-measures are not invariant under the map f , i.e., not
f - or map-invariant [21]. For clarity, we refer to them as
conditionally-map-invariant. The c-measures of autonomous
maps are time-invariant however. The c-measure associated
with ρ(�x) is a probability measure [21], indicating the chance
of finding a typical trajectory in a particular area of phase
space, provided that it has not escaped until time t .

B. Random maps

Consider choosing a random sequence of maps ft by
varying the parameter a = at = a∗ + δξt : ft (�xt ) ≡ f (�xt ; δξt ).
At each time t applying the same perturbation ξt to all N

trajectories, ξt,n = ξt in Eq. (1), corresponds to the random-
map approach. The sequence of random perturbations can
be indexed by the realization r as ξt,r , with which we have
different realizations of the sequence of random maps: ft,r .
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TABLE I. Summary of measures of chaotic systems discussed in the text. The measure
in association with the saddle is supported by the unstable manifold of it [2].

Autonomous maps Random maps Noisy maps

attractor strange snapshot noisy
measure SRB t-dependent sample fuzzy

μatt μ̂att
t,r μ̃att = 〈μ̂att

t,r〉r = 〈μ̂att
t,r〉t

saddle fractal or chaotic snapshot noisy
measure c-measure t-dependent c-measure fuzzy c-measure

μ μ̂t,r μ̃ = 〈μ̂t,r〉r = 〈μ̂t,r〉t

For a fixed realization, we can again consider the set of points,
initialized at a particular time t = t∗, that never escape � for
t → ±∞. This set is called a snapshot saddle [2], whose
geometry generally changes with time t . Its unstable manifold
at time t , from which points never escape � for t → −∞,
can be seen as the open-map counterpart of snapshot attractors
of closed random maps [6]. This way the snapshot attractor
is said to be defined in a pullback sense as the set that is
approximated by identically perturbed trajectories initialized
in the infinitely distant past; more recently it has been referred
to as a pullback attractor [20]. The constituent trajectories
are distributed according to a time-dependent sample measure
[11], which is a generalization of the Sinai-Ruelle-Bowen
(SRB) measure of the autonomous case [3,11]. The unstable
manifold of the snapshot saddle also depends on the entire
history of ξt,r over t ∈ (−∞,t∗], whereas the snapshot saddle
itself depends also on the future t ∈ [t∗,∞).

For an ensemble of trajectories initialized at t = 0, later at
some t � 0 the normalized density of surviving trajectories
ρ(�x,t) will be concentrated around the unstable manifold
belonging to the time t snapshot saddle, distributed approx-
imately according to a time- and realization-dependent c-
density ρ̂t,r (�x). The associated time-dependent generalization
of c-measures supported by the unstable manifold obey the
following relation:

μ̂t+1,r (A) = μ̂t,r (f −1
t,r (A))

μ̂t,r (f −1
t,r (�))

. (3)

We say that the measure μ̂t,r is conditionally-map-invariant,
but it is not time-invariant.

C. Noisy maps

The physical picture for noisy maps is provided by
molecular diffusion, in which case random perturbations act
independently on each particle. In terms of the dynamics
described by Eq. (1), this means that ξt,n and ξt,n′ are
independent for any pair of n �= n′. From the point of view
of the random maps, the noisy map corresponds to combining
the N trajectories of all R realizations, with R,N → ∞. In the
case of attractors, this corresponds to combining the snapshot
attractors to build up the so-called fuzzy attractor [16], and the
natural measure supported by the fuzzy attractor is the average
of those supported by the snapshot attractors: μ̃att(A) =
〈μ̂att

t,r (A)〉r = 〈μ̂att
t,r (A)〉t [11,20]. This naturally extends to the

case of open maps, where the c-measure μ̃ of any set A ⊂ �

of the noisy maps is given by

μ̃(A) = 〈μ̂t,r (A)〉r = 〈μ̂t,r (A)〉t , (4)

where the last equality is guaranteed by the ergodicity of ξ and
shows that μ̃ is naturally time-invariant. This means that the
normalized density of surviving trajectories in the noisy map
ρ̃(�x,t) converges ρ̃(�x) for t → ∞, where ρ̃ = 〈ρ̂t,r〉r = 〈ρ̂t,r〉t
is independent of time or realization. Note that we use
the following notation for averaging with respect to, e.g.,
realizations:

〈•〉r = lim
R→∞

〈•〉Rr=1 = lim
R→∞

1

R

R∑
r=1

•.

A summary of the relevant measures mentioned in this
section is given in Table I. In the remainder of this paper we
discuss two fundamental quantities of the dynamics: the escape
rate κ and the dimensions D of the relevant fractal sets. We
are mainly interested in comparing results observed in random
maps to the corresponding noisy maps (for a fixed distribution
of ξ and fixed δ), and we also compare these two cases to
the unperturbed map for increasing values of the perturbation
strength δ.

III. ESCAPE RATE

A. General relations

In fully chaotic open systems, in which the dynamics is
governed by a nonattractctive chaotic set contained by �, the
survival probability inside � for t → ∞ decays exponentially:

P (t) = lim
N(0)→∞

N (t)/N(0) ∼ exp(−κt), (5)

where κ is the escape rate. In the case of Hamiltonian systems,
deviations from exponential decay appear in the generic
case of mixed phase-space systems; see Refs. [24,27,28]
for interesting recent investigations on the effects of noise
perturbations in this case. In terms of the analysis based on
surviving trajectories proposed in Sec. II, the exponential
decay in Eq. (5) corresponds to a fixed fraction exp(−κ)
of surviving trajectories not escaping after each time step.
Considering that the denominator on the right-hand side of
Eq. (2) is a normalization factor accounting for the escape
of trajectories in one iteration of f , one obtains the well-
established relation for autonomous maps [17]:

κ = − ln μ(f −1(�)). (6)
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In random open maps, the results of Sec. II show that
Eq. (6) can be applied for each realization leading to a
time- and realization-dependent single-step escape rate κ̂t,r =
− ln μ̂t,r (f −1

t,r (�)). In the spirit of Eq. (5), the physically
relevant escape rate for a fixed realization r is obtained by
aggregating the escapes over time. Therefore, the overall
escape rate of the random map κ̂ is given by

κ̂ = 〈κ̂t,r〉t = 〈κ̂t,r〉r = −〈
ln μ̂t,r

(
f −1

t,r (�)
)〉

r
, (7)

where we used the ergodicity of the random perturbation ξ as
in Eq. (4). Ergodicity guarantees that all (typical) realizations
of ξ lead to the same escape rate κ̂ over t = 0, . . . ,T → ∞
and that this value equals the mean obtained over different
realizations r = 1, . . . ,R → ∞.

For noisy maps the c-measure is time-invariant and the
expression corresponding to Eq. (6) is as follows:

κ̃ = − ln
〈
μ̂t,r

(
f −1

t,r (�)
)〉

r
, (8)

where we used Eq. (4). Comparing Eqs. (7) and (8) we see that
the difference stands in the order of taking the average and the
logarithm.

We now rewrite Eq. (7) as the logarithm of a geometric
mean

κ̂ = lim
R→∞

− ln

(
R∏

r=1

μ̂t,r

(
f −1

t,r (�)
)
)1/R

,

which is known to be always smaller than- or equal to the
arithmetic mean used for κ̃ in Eq. (8). With this we arrive at
our first result:

κ̃ � κ̂, (9)

i.e., the escape rate κ̃ in the noisy-map configuration
(perturbation applied independently to each trajectory) is
smaller than- or equal to the escape rate κ̂ in the random-map
configuration (perturbation applied consistently to all
trajectories) for the same random process ξt and perturbation
strength δ. In fact, this inequality is due to the concavity of
the logarithmic function—in the same way as the inequality
of the arithmetic and geometric means. Equality is achieved
only when μ̂t,r (f −1

t,r (�)) is independent of time. Typically,
however, for increasing δ we expect κ̃ to become increasingly
smaller than κ̂ .

B. Finite-size estimation

Important properties of finite-size S estimators e(S) include
the bias or accuracy and the variance or precision, which are
respectively given by the expected value 〈e(S)

r 〉r (minus the true
value) and variance var[e(S)

r ]r of a distribution created by an
ensemble of realizations of a relevant quantity. Each realization
is produced by assigning random values to members of a
finite-size set of the relevant quantity (e.g., initial conditions,
sequence of perturbations, etc.). If e(S)

r converges to the true
value for any r as S → ∞, then the estimator is said to be
consistent. If 〈e(S)

r 〉r equals the true value for any S, then the
estimator is said to be unbiased. When the estimation would
involve a finite R number of realizations, e.g., by simply taking
the mean over different finite-size estimates, then to work out
the improved precision of this estimation we have to consider
the combined estimator e(S,R) ≡ 〈e(S)

r 〉Rr=1 and the distribution

created by an ensemble of makeups of R realizations each.
With the standard terminology, a makeup is then a realization
of a group of realizations.

Here we consider the nontrivial case of the random maps
only. Above we saw that for every (typical) realization r the
escape rate converges to the same value κ̂ = 〈κ̂t,r〉t in the
limit of observation time T → ∞. In practice, T is restricted
to a maximum value Tmax due to the finite number of initial
conditions N (0), which, according to Eq. (5), is

Tmax ≈ κ−1 ln N (0). (10)

Due to the ergodicity of ξ , the same κ̂ is obtained by
averaging the time- and realization-dependent single-step
escape rate over different realizations κ̂ = 〈κ̂t,r〉r . We thus see
that there are two possible strategies to improve the precision
of estimating κ̂: (i) increasing N (0) (which, for simplicity, we
denote hereafter by N ) or (ii) increasing R. In this section we
discuss in detail the finite-T , -R, and -N estimation of κ̂ , as
well as the precision of the estimation and its scaling with T ,
R, and N .

1. Accuracy of estimation

It is useful to distinguish between two steps in the estimation
of κ̂: The first corresponds to the estimation of κ̂t,r , the escape
rate for a single iterate and a single realization of the random
map, with a finite number of initial conditions N , and the
second corresponds to the averaging of κ̂t,r over a time interval
of length T and in turn a number of R different realizations.

The first step applies to the case of autonomous maps as
well, and for simplicity we discuss this step in the framework
of autonomous maps. The escape rate κ is estimated through
estimating the measure inside the escape region, according to
Eq. (6). After sufficiently long times, the c-measure μ(f −1(�))
is estimated simply as the fraction of surviving trajectories
with one iteration of the map, i.e., N (t + 1)/N(t). With
different realizations of the (finite number) of initial condi-
tions we expect N (t + 1) to feature a binomial distribution
B[N (t),μ(f −1(�))], whose mean is N (t)μ(f −1(�)). This
shows that N (t + 1)/N(t) is an unbiased finite-N estimator
of μ(f −1(�)). However, − ln[N (t + 1)/N(t)] is a biased
(inaccurate) finite-N estimator of κ because the average is
performed after taking the logarithm, applying once more the
same reasoning leading to Eq. (9). In practice, it is important to
guarantee that N (t + 1) is sufficiently large so that this bias is
sufficiently small. Numerically this is not always easy because
N ∝ exp(−κt) and time t must also be sufficiently large in
order for N (t + 1)/N (t) to be a good estimate of μ(f −1(�))
(convergence of the initial density to the c-measure μ).

Assuming we have accurate estimates of κ̂t,r , we proceed
to the second step and consider the effect of averaging over
time 〈κ̂t,r〉t or realizations 〈κ̂t,r〉r . As argued by Eq. (7), the
ergodicity of ξ guarantees that both averages converge to the
same value κ̂ . In practice it is also interesting to consider finite
averages performed simultaneously over T time steps and R

realizations, resulting in the combined estimator

κ̂ (T ,R) ≡ 〈〈κ̂t,r〉t ′+T
t=t ′+1

〉R
r=1. (11)

This also converges to κ̂ for either T → ∞ or R → ∞, which
makes it a consistent estimator. Moreover, the finite-T and
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finite-R estimations are also unbiased. For this we consider
the values of κ̂ (T ,R) obtained for a set of m = 1, . . . ,M → ∞
makeups, each one with (fixed) R realizations and T time steps
for the estimation. According to the central limit theorem, the
distribution of the estimates with respect to the makeups m

will be approximately normal with average equal to κ̂ .

2. Precision of estimation and its scaling with T,R, and N

The variance of the same distribution scales with the
number of terms being averaged as follows:

σ 2
〈κ̂〉 ≡ 〈(κ̂ (T ,R))2〉m − 〈κ̂ (T ,R)〉2

m ∼ σ 2
κ̂

T R
, (12)

where σ 2
κ̂ = σ 2

〈κ̂〉(T = 1,R = 1) = var[κ̂t,r ]t = var[κ̂t,r ]r . We
now compare the two different strategies of improving the
precision of estimating κ̂: (i) R fixed and T → ∞ and (ii) T

fixed and R → ∞. For a fixed N number of trajectories all
trajectories escape in some finite time Tmax given by Eq. (10).
Substituting the latter into Eq. (12) we arrive at the scaling law

σ 2
〈κ̂〉 ∝ 1/ ln N. (13)

The latter indicates that with strategy (i) a steady improvement
of the precision of estimates can be achieved by increasing
the number of trajectories N with an exponential rate. Thus
the precision can be improved much more effectively using
strategy (ii), i.e., by increasing the number of realizations R

so that the improvement, according to Eq. (12), is (inversely)
proportional (as opposed to a logarithmic relation) to R.

C. Examples

To illustrate aspects of transient chaos in fully chaotic open
systems an area-preserving baker map will be analyzed. A
general property of the baker map (xt+1,yt+1) = B(xt ,yt ) is
that the mapping rule B is defined in a piecewise manner such
as:

B− = (xt/a,ayt ), yt < 1/2, (14a)

B+ = [1 + (xt − 1)/a,1 + a(yt − 1)], yt > 1/2, (14b)

where a is the only free parameter. Trajectories mapped outside
the unit square (x,y) ∈ [0,1] × [0,1] are considered to have
escaped (open boundaries).

1. Example 1: Area-preserving naturally open baker map

In this example we obtain an analytic expression for the
escape rate that illustrates inequality (9). For a > 2 the map is
said to be naturally open. The stochastic perturbation is added
in a around a fixed value a∗ as at = a∗ + δξt , where at � 2
and ξt is an independent identically distributed (i.i.d.) random
variable with zero mean and finite variance σξ .

First, consider the random map. Starting with the unit
square, after T iterations a number of 2T strips of equal width
	T

t=11/at remain. The escape rate can be thus obtained as [2,8]:

κ̂ = −
〈

ln
2

at

〉
t

=
〈

ln
ar

2

〉
r

≈ κ∗ − 1

2

(
δσξ

a∗

)2

, (15)

where κ∗ = ln(2/a∗) is the unperturbed escape rate, ergodic-
ity (4) has been used, and the approximation is obtained as
a second-order Taylor expansion in δ. It is worth noting that

the escape rate decreases with the perturbation intensity, i.e.,
the trapping is enhanced by the perturbation. A comparison
of Eq. (15) with Eq. (7) reveals that the fraction of surviving
trajectories in terms of the c-measure is μ̂t (f −1

t (�)) = 2/at .
Notice that in this simple example the c-measure depends only
on the current value of the perturbation, but not on the complete
history. This is a consequence of the fact that at each time step
a fraction 1 − 2/at of the surviving trajectories escape. The
logarithm of the survival probability ln P (t) can be thought
of as a simple random walk (with a drift κ̂) and therefore
the scaling laws discussed in Sec. III B2 can be obtained
explicitly. The reduction of κ̂ with δ (noise-enhanced trapping)
can be understood in this case simply as a consequence of the
concavity of the logarithmic function κ = ln(a/2).

Next we consider the noisy map, apply Eq. (8), and take the
following approximations:

κ̃ = − ln

〈
2

ar

〉
r

≈ − ln

{
2

a∗

[
1 +

(
δσξ

a∗

)2]}

≈ κ∗ −
(

δσξ

a∗

)2

= κ̂ − 1

2

(
δσξ

a∗

)2

� κ̂ . (16)

Interestingly, for small perturbations the noise increases the
trapping by reducing κ∗ by twice the amount as in the case of
random maps. The authors of Ref. [9] find the same quadratic
deviation of the mean of the logarithm and the logarithm
of the mean of a random variable, for ‘small strengths of
its randomness’ δσξ/a∗, corresponding to the second-order
approximations in our Eqs. (15) and (16). Choosing ξ to be
uniformly distributed in [−1,1], we can also compute κ̂ and
κ̃ exactly using 〈· · · 〉t = 〈· · · 〉r = 1

2

∫ 1
−1 · · · dξ . For a∗ = 2.5

and δ = 0.5 we obtain κ̂ = 0.2164 . . . and κ̃ = 0.2096 . . . .

2. Example 2: Area-preserving closed baker map with a leak

In our second example we explore a case in which no
simple analytic expressions for μ̂t,r and κ̂ exist, but in
which numerical results confirm the validity of the scaling
σ 2

〈κ̂〉 ∝ 1/T (12), the inequality κ̃ < κ̂ (9), and noise-enhanced
trapping for small δ. We start from the area-preserving closed
baker map, obtained by setting a = 2 in Eqs. (14), into which
we introduce a leak of width 
x = 0.1 vertically in the middle
of the map’s phase space. Any trajectory that is mapped into
the leak region is considered to have escaped. Differently
from the previous example, here the stochastic perturbation
is defined to act on the coordinates independently such that
x → x + δξx and y → y + δξy , where ξx,ξy ∈ [−1,1] are
uniformly distributed independent random variables. This way
escape out of the unit square is also possible.

In Fig. 1(a) we show the temporal decay of the number of
surviving trajectories N (t) for R = 104 different realizations
of ξt [all N (0) = 106 trajectories are exposed to the same
sequence ξt ] [29]. In agreement with Eq. (7), the escape
rate of the random map κ̂ can be obtained by averaging the
logarithm of the number of surviving trajectories over different
realizations, i.e., 〈ln N (t)〉r ∼ ln N (0) − κ̂ t . In Fig. 1(a) this
slope is shown to be somewhat larger than the value κ̃ ,
which in principle [for N (0) → ∞] corresponds to indepen-
dent perturbations applied to each initial condition, so that
ln〈N (t)〉r ∼ ln N (0) − κ̃ t . It is expected that κ̃ is obtained
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FIG. 1. (Color online) Difference between the escape rate in the noisy- (κ̃) and random maps (κ̂). (a) Number N (t) of surviving trajectories
out of N (0) = 106 over time for perturbation strength δ = 0.1 in the area-preserving closed random baker map with a central vertical leak
of width 
x = 0.1. A number of R = 104 experiments (realizations of ξ ) were carried out and (200 of them) are shown as gray lines in the
backdrop. The lines in the front show: 〈N〉R

r=1 (blue solid line), corresponding to the noisy map as in Eq. (8); exp 〈ln N〉R
r=1 (red dashed line),

corresponding to the random map as in Eq. (7); and exp(〈ln N〉R
r=1 ± σln N/2) (dash-dotted lines), corresponding to the standard deviation around

the expected value in the random-map case. The lower inset shows the histogram of N (t = 15) and the upper inset shows the scaling of the
dispersion σln N (half the vertical space between the dash-dotted lines) as t1/2 (the solid straight line indicates a slope of 1/2). (b) Dependence
of κ̃ and κ̂ on the perturbation strength δ. A number of R = 104δ experiments are done for each δ > 0 [at this time for the noisy map all
N (0) = 106 trajectories are perturbed independently in all R experiments]. The escape rates κ̃ and κ̂ were estimated from data from time t = 6
up to 20 (giving T = 14). In the case of the random-map error bars indicate the standard deviation σ〈κ̂〉. In the case of the noisy map the error
bars σ〈κ̃〉 are smaller than the square marker. In (a) and (b) data points are connected by lines to guide the eye.

here rather inaccurately, because our procedure acts as if κ̃ was
determined from a small R = 104 number of trajectories, and
the value was redundantly replicated and averaged N (0) = 106

times. Nevertheless, the results are suitable to indicate the
general inequality (9). In the insets of Fig. 1(a) we explore the
dispersion of ln N (t), which is shown to follow a t1/2 scaling,
according to the general rule (12) and observing Eq. (5). Notice
that proper scaling is attained after a relatively short transient
time [t ′ as in Eq. (11)] once the initially uniform densities
closely approximate the c-density. The dependence of κ̃ (�)
and κ̂ (•) on the noise strength δ is shown in Fig. 1(b).
The difference between κ̃ and κ̂ steadily increases with the
perturbation strength and both curves show a nonmonotonic
dependence with a local minimum. This effect has been
explained in [24] as follows: For small δ the probability of
escape through the leak is reduced κ̃ > κδ=0 because the
invariant density over the leak is smoothed in comparison
with the unperturbed case, which has a fractal support; for
large noise more and more trajectories escape through the
open boundaries, leading to an increase in κ̃ . From a different
perspective, Ref. [30] develops a framework for understanding
a similar nonmonotonic behavior in the diffusion coefficient of
a chain of chaotic maps under small noise perturbations. The
idea is to consider the dependence of the diffusion coefficientD
on the perturbed parameter a, and then compute the perturbed
diffusion coefficient for small perturbations as an integral
of D(a) over the range of perturbations in a (observing the
probability density of the perturbation process). We see that
applying this approach to the case of the escape rate [23], we
obtain the random-map escape rate κ̂ for Example 1 as given
by Eq. (15). This approximation is exact only in special cases
(as in the case of Example 1) when the escape at time t depends
only on the value of a at time t and it is independent of the

values at any time t ′ < t . It remains to be shown to what extent
this approximation explains the nonmonotonic dependence of
κ̂ and κ̃ on δ for Example 2 and for chaotic systems more
generally. Overall, here we have shown that κ̂(δ) follows the
same general trends as κ̃(δ), but the noise-enhanced trapping
is less effective due to the inequality (9). In the following
section we explore the effect of the random perturbation on
the associated fractal dimension.

IV. DIMENSIONS

A. General relations

An important difference between the dimension and escape
rate is that the noisy perturbations wash out the fine details
of the invariant sets and the (asymptotic) dimensions are not
fractional D = Dphase space [31]. Speaking about fractality is
thus meaningful only in terms of the random map, and a
nontrivial inequality such as (9) cannot be established for the
dimensions. Next we discuss three different relationships be-
tween the dimension and other quantities. After that, exploiting
these relationships, estimations of the dimensions will be based
on: first, box-counting (BC), second, the Kantz-Grassberger
(KG) relationship, and third, the uncertainty exponent α.

Box-counting (BC). The fractal dimension is defined
directly by the relevant measures discussed in Sec. II. The full
fractal dimension spectrum Dq of a measure can be computed
by applying, e.g., a box-counting algorithm. The relevant
measures in the case of random open maps are the sample
measure supported by the random saddle and the c-measure
supported by the unstable manifold of the random saddle.
The dimension spectrum of the sample measure in the stable
direction is identical to that of the c-measure, denoted by
D(2)

q . Although large-scale features of μ̂t in phase space, in
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association with a limited memory of the past, depend on time,
its asymptotically fine details are determined by the complete
history of the system’s evolution. The fractal dimension
quantifying the asymptotic scaling of the measure is thus
constant [15]. This too makes the dimension a qualitatively
different characteristic number from that of the escape rate
κ̂t , which changes in time together with μ̂t [Eq. (7)].

The Kantz-Grassberger (KG) relationship. For autonomous
fully chaotic two-dimensional open maps the connection
between the geometry and the dynamics on the chaotic saddle
is established by the pair of Kantz-Grassberger relations, which
reads as follows [32]:

D
(1)
1 = 1 − κ

λ
, (17a)

D
(2)
1 = λ − κ

|λ′| , (17b)

where D
(1)
1 and D

(2)
1 are the partial information dimensions

across (along) the stable (unstable) and unstable (stable) man-
ifolds, respectively, and λ and λ′ are the corresponding average
positive and negative Lyapunov exponents on the chaotic
saddle, respectively [33]. In conservative area-preserving
systems λ = −λ′, as a result of which D

(1)
1 = D

(2)
1 and, e.g.,

D(1)
q = D

(1)
0 for any q. In the case of random maps, relations

similar to (17) hold [7]:

D̂
(1)
1 = 1 − κ̂

λ̂
, (18a)

D̂
(2)
1 = λ̂ − κ̂

|λ̂′| . (18b)

Analogous to κ̂t,r (but bearing in mind the issue mentioned
in [33]), we can define the time- and realization-dependent
one-step positive and negative average Lyapunov exponents
as ensemble averages, e.g., λ̂t,r = 〈λ̂t,r,n〉n [n as in Eq. (1)],
and with this λ̂ = 〈λ̂t,r〉t = 〈λ̂t,r〉r , where the latter equality is
due to the ergodicity of noise. The same applies to λ̂′. For each
trajectory λ̂t,r,n = ln ŷt,r,n and λ̂′

t,r,n = ln ŷ ′
t,r,n are defined by

ŷt,r,n and ŷ ′
t,r,n, which are, respectively, the stepwise stretching

and shrinking rates along the corresponding covariant Lya-
punov vectors, i.e., the corresponding manifolds.

The uncertainty exponent (α). Fractality can be related
to the concept of uncertainty. The latter is measured by the
uncertainty exponent α, which specifies the scaling of the
ratio of the number of uncertain boxes to that of all the boxes
with the resolution or box size such as Nb(ε)/N0(ε) ∝ εα .
The certainty of a box is defined so that any trajectory from it
takes the same route of escape. For example, in the case of the
unperturbed baker map (Example 1 of Sec. III C) trajectories
can escape from either the left or the right side of the leak. The
uncertain boxes for ε → 0 shrink onto the stable manifold of
the chaotic saddle, and thus the uncertainty exponent is related
to the Hausdorff dimension as [19]

D
(1)
0 = 1 − α (19)

because the number of all boxes in a plane scales as N0(ε) ∝
ε−2. The uncertainty grows with decreasing α, which means
that it gets more difficult to improve the predictability of
the outcome for the typical (randomly chosen) trajectory by
increasing the precision of the initial condition. Equation (19)

indicates that the stronger the fractality, the greater the uncer-
tainty, and the same relation holds for noisy as well as random
maps. For noisy maps predictability cannot be arbitrarily
improved by improving the precision in the initial conditions,
consistent with α̃ = 0 and D̃

(1)
0 = 1. If the perturbation history

is known, then the random-map framework is relevant (in
which case the term “random” is rather misleading), fractality
is resolved (D̂(1)

0 < 1), and predictability can be improved
(α̂ > 0), similarly to the unperturbed case.

B. Finite-size estimations

Different algorithms for the computation or estimation of
the fractal dimension based on the relations of the preceding
section (BC, KG, α) are commonly used. Here we discuss
the accuracy (bias and consistency) and precision (variance
or spread) of the estimations based on these algorithms when
applied to random maps. As discussed before [see Eq. (10)],
with a finite N number of trajectories, numerical experiments
are limited to a maximum time Tmax [34], and estimations are
based preferably on averaging over different experiments, that
is, realizations R of the perturbations, labeled as strategy (ii)
in Sec. III B.

1. List of estimators

The BC estimator. Most naturally the fractal dimension is
calculated by a direct estimation of the scaling of lnNb(ε)
with − ln ε (or that of the information for the information
dimension). Here Nb is approximated by the count of boxes
in a regular rectangular grid that contain at least one point out
of finite N (T < Tmax) points that represent, e.g., the unstable
manifold. The scaling line is fitted by a straight line over
a finite-ε range, up to a minimal box size ε∗, whose slope
estimates the dimension D̂

(2,ε∗)
BC,r . The actual estimator is then

defined as the average over R realizations

D̂BC ≡ D̂
(2,ε∗,R)
BC = 〈

D̂
(2,ε∗)
BC,r

〉R
r=1. (20)

KG estimator a. Another type of estimator is based on
the KG relations (18). For simplicity, we focus only on the
second of these relations (the same conclusions apply to the
other option). Similarly as for D̂BC , we define the estimator
as an average of the single-realization KG estimator over R

realizations:

D̂KGa ≡ D̂
(2,T ,R)
KGa = 〈

D̂
(2,T )
KGa,r

〉R
r=1 =

〈
λ̂(T )

r − κ̂ (T )
r∣∣λ̂′(T )

r

∣∣
〉R

r=1

, (21)

where κ̂ (T )
r = 〈κ̂t,r〉t ′+T

t=t ′ (t ′ � 1 for well-approximating the
measure) is a version of κ̂ (T ,R) of Eq. (11), without averaging
with respect to the realization, and similarly, e.g., λ̂(T )

r =
〈λ̂t,r〉t ′+T

t=t ′ [35].
KG estimator b. An alternative KG estimator could

be defined by changing the order of division and
averaging:

D̂KGb ≡ D̂
(2,T ,R)
KGb = λ̂(T ,R) − κ̂ (T ,R)

|λ̂′(T ,R)| =
〈
λ̂(T )

r − κ̂ (T )
r

〉R
r=1〈∣∣λ̂′(T )

r

∣∣〉R
r=1

,

(22)
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where the last equality follows from the convention (11). Note
that here we do not have a single-realization estimator for
the dimension, but only for the escape rate and the Lyapunov
exponents.

A BC estimator based on the uncertainty exponent α. The
stable manifold is contained by the basin boundary, which
separates regions of initial conditions from which trajectories
take different routes of escape. Thus the number of uncertain
boxes can be approximated also by an approximate finite-
εmin resolution survey of the basin boundary. Trajectories are
initialized on a regular rectangular array of points and all of
them will escape one way or another in a finite time. The
route of escape will assign logical values to the grid points.
The scale is varied by a rectangular grouping of k2 grid points
so that ε = kεmin. A box of size ε is certain if all the k2

grid points are assigned the same logical value. This way
we have another means of box-counting estimation of either
the uncertainty exponent or, according to relation (19), the
Hausdorff dimension of the stable manifold:

D̂α ≡ D̂(1,εmin,R)
α = 〈

D̂(1,εmin)
α,r

〉R
r=1 = 1 − 〈

α(εmin)
r

〉R
r=1. (23)

2. Accuracy of estimation

Similarly to the discussion of the escape rate, we first
discuss the accuracy of the finite-time estimation, and then the
accuracy to do with averaging over realizations. A single-step
and single-realization measure of the dimension, akin to κ̂t,r ,
has not been defined because the true dimension is constant.
However, the single-realization box-counting estimate D̂

(2,ε∗)
BC,r

is found to be time- and realization-dependent. This can
be explained with its relationship to the finite-time single-
realization estimator D̂

(2,T )
KGa,r as follows. First, in terms of the

baker map, which is a paradigmatic example for the fractal
structure of chaotic attractors or saddles, a number of T

iterations determine the scaling of geometry down to a size
ε ∝ |λ′|T (see Example 2 of Sec. IV C). Second, with a finite
N number of points to evaluate D̂

(2,ε∗)
BC,r , fractal scaling holds

down to a scale ε∗ related to N as ln 1/ε∗ ∝ ln N . These two
points suggest that with finite N , the system has a memory of

T ∝ ln 1/ε∗ ∝ ln N (24)

steps back into the past. Indeed, we have found numerically
D̂

(2,ε∗)
BC,r to correlate with D̂

(2,T )
KGa,r for an appropriate T . Thus

the time dependence of the latter can be related to the time-
dependent finite-memory and scale properties of the measure.
In the limit N → ∞, the entire past determines the dimension
and both D̂

(2,ε∗)
BC,r and D̂

(2,T )
KGa,r converge to the true value D

(2)
1

as ln 1/ε∗ and T → ∞ for any realization. For finite T and
N , the accuracy of D̂

(2,T )
KGa,r depends on the accuracy of κ̂ (T )

r

and λ̂(T )
r . It has been argued in Sec. III B1 that κ̂ (T )

r is biased,
but it can be effectively reduced by choosing N large enough.
The situation with λ̂(T )

r is similar, and therefore so it is with
D̂

(2,T )
KGa,r . As for D̂

(2,ε∗)
BC,r , some box-counting algorithms has been

reported in [36] to be negatively biased, which agrees with our
numerical experiences. Unlike the bias of D̂

(2,T )
KGa,r , the bias of

D̂
(2,ε∗)
BC,r may not be insignificant relative to other components of

the bias of the total estimator D̂
(2,ε∗,R)
BC . Fitting the approximate

scaling line ofNb(ε)/N0(ε) to calculate the dimension through

the uncertainty exponent, according to Eq. (23), leads to a
different bias than what we have if the scaling line of Nb(ε) is
fitted directly.

Next we focus on the second step, i.e., the averaging over
different realizations. We start by comparing DKGa and DKGb.
First we recall our results from Sec. III B1 that κ̂ (T ,R) is an
unbiased estimator of κ̂ (assuming that N → ∞). We can
argue that the same applies to λ̂(T ,R). Therefore, D̂KGb →
D̂ as R → ∞ and we conclude that D̂KGb is a consistent
estimator. Now we notice that DKGb and DKGa will typically
lead to different values because the ratio of the averages is
different from the average of the ratios. For the case of i.i.d.
random variables we have 〈x/y〉 = 〈x〉〈1/y〉 > 〈x〉/〈y〉. (The
inequality holds also for dependent x and y.) Therefore, we
conclude that DKGa is not a consistent estimator, and it always
overestimates the true value. The bias of these estimators at
finite R can be determined by considering the average value of
DKGa and DKGb over different makeups (as in Sec. III B1). In
this case, both estimators would correspond to the average of
ratios instead of the ratio of averages. Therefore, we conclude
that both DKGa and DKGb are biased estimators.

As for D̂BC , even if we do not have an analytical model
of it, the correlation between D̂

(2,ε∗)
BC,r and D̂

(2,T )
KGa,r suggests that

D̂BC should also be expected to be biased (besides the effect
reported in [36]). Because of its similar nature, the same can
be said about D̂α .

In the example above the source of the bias was taking the
arithmetic mean 〈· · · 〉Rr=1 and it is natural to ask ourselves
whether other approaches could lead to a better estimate.
In this regard, e.g., the harmonic mean (〈D̂−1

r 〉Rr=1)−1 is
not expected to perform better when the numerator is not
constant. In the case of i.i.d. random variables x and y,
again with a reference to the numerator and denominator of
D̂

(2,T )
KGa,r , the harmonic mean underestimates the true value:

〈y/x〉−1 = 〈y〉−1〈x−1〉−1 < 〈x〉/〈y〉. When σ 2
x /〈x〉2 is much

greater (smaller) than σ 2
y /〈y〉2, the arithmetic (harmonic)

mean gives the better approximation since we find, e.g.,
that 〈y〉/〈y−1〉−1 − 1 ∝ σ 2

y /〈y〉2. It is easy to verify that for
equal values of these, the harmonic mean yields smaller
bias.

To the end of creating an unbiased D̂
(2,T ,R)
KGa -type estimator,

an appropriate generalized f -mean can be found only when
the numerator and denominator are interrelated in a special
way. As an example, when the Jacobian |Ĵt | = ŷt ŷ

′
t of a

closed dissipative system is constant, as in the case of the
fluid flow in [6], the appropriate generalized f -mean can be
characterized by the form f (D̂(2,T )

L,r ) = D̂
(2,T )
L,r /(D̂(2,T )

L,r − 1). In

the latter D̂
(2,T )
L,r is the Lyapunov dimension that can be obtained

from D̂
(2,T )
KGa,r when κ → 0.

3. Precision of estimation and its scaling with R and N

Considering that λ̂(T )
r , e.g., is defined similarly to κ̂ (T )

r ,
its variance scales similarly as given by Eq. (12), which is
inherited, along with the Gaussian form of limit distributions,
by D̂

(2,T )
KGa,r . Considering averaging with respect to realization

too, we have

σ 2
D̂KGa

∝ 1

T R
. (25)
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For some fixed R, using relationship (24), we have then

σ 2
D̂

∝ ln 1/ε∗ ∝ 1/ ln N. (26)

We note first that these scaling laws of precision apply to
attractors of closed systems too, in agreement with previous
derivations by Namenson et al. [6]. Second, they are formally
analogous to scaling laws of the escape rate estimates (12)
and (13), respectively. Therefore, third, just as with the escape
rate, it would be an overwhelming numerical burden to im-
prove the precision of the dimension estimate by increasing the
ensemble size. It is done much more effectively by producing a
number of estimates with different realizations of the perturba-
tion sequence and averaging them. However, unlike in the case
of the escape rate, this approach for estimating the dimension
introduces a bias, as discussed previously in Sec. IV B2.

C. Examples

We consider here the two examples specified in Sec. III C.

1. Example 1: Area-preserving naturally open baker map

By this example we intend to support the claim that
dimension estimates are generally biased as well as the scaling
laws of the precision of estimates given by Eqs. (24) and (26).
The finite-time positive Lyapunov exponent can be obtained
as λ̂(T )

r = 〈ln at,r〉Tt=1. Note that after T iterations each stripe is
stretched by a factor of 	T

t=1at . With this and having already
obtained an analytic expression for κ̂ (T )

r given by Eq. (15), we
can write the order-T approximant to the dimension across
(along) the unstable (stable) manifold as

D̂
(2,T )
KGa,r = D̂

(2,T )
0,r = ln 2

〈ln at,r〉Tt=1

. (27)

We numerically generate a large M number of sequences of at

of length T , by which the first part of scaling law (26) can be
prompted as follows. (For simplicity, R = 1 and we omit the
realization index r in the notation.) The width of the stripes
can be considered as the minimal box size to cover the order-T
approximant of the manifold: ε∗ = 	T

t=11/at . Thus, not only
does the dimension estimate D̂

(2,T )
0 depend on the realization

of the random sequence at , but so does the minimal box size ε∗.
Therefore, it is not straightforward to generate a distribution
of D̂

(2,T )
0 belonging to the same ε∗ just by generating a

large M number of “realizations”. However, by increasing the
sequence length T , the effects of decreasing box size can
be explored. In Fig. 2(a) dimension estimates D̂

(2,T )
0 are

plotted against the corresponding minimal box sizes, or rather
ln 1/ε∗. For each fixed T the data points align to a hyperbola
segment. The large number of realizations generates sampling
distributions of D̂

(2,T )
0 and ε∗ or ln 1/ε∗. The vertical distance

between a pair of dash-dotted lines indicates the standard
deviation of the sampling distribution of D̂

(2,T )
0 . The upper

inset in the figure shows the standard deviation σD̂0
against

ln 1/ε∗, belonging to fixed values of T , and confirms that
scaling law (26) holds. The lower inset shows the sampling
distribution of D̂

(2,T =500)
0 , which can be well-approximated by

a Gaussian form.
We can obtain the scaling laws formally as well, as follows.

We shall introduce now the following notation involving the

FIG. 2. Fractal dimension in the area-preserving naturally open
baker map. (a) Fractal dimension D̂

(2,T )
0 vs minimal box size ε∗. A

number of M = 104 experiments (realizations of at ) were carried
out to generate statistics. The standard deviation of D̂

(2,T )
0 with T

fixed is marked by a pair of dashed lines. The lower inset shows the
histogram of D̂

(2,T =500)
0 and the upper inset shows the scaling of the

dispersion σD̂0
(half the vertical space between the dash-dotted lines,

approximately) as (ln 1/ε∗)−1/2 for large values of ln 1/ε∗, with ε∗
belonging to the respective expected values μD̂0

(the solid line has
a slope of 1/2). (b) Comparison of the harmonic (lower line) and
arithmetic mean (upper line) estimates. For both panels T = 10l,

l = 1, . . . ,50. Discrete data points that indicate the means and stan-
dard deviations of dimension estimates are connected to guide the eye.

minimum box size: ν = ln 1/ε∗. For the baker map we have
that ν = T 〈ln at 〉. It follows then that σ 2

ν ∝ T 2/T = T . Next,
Eq. (27) can be rewritten as D̂0 = ln 2T/ν. If we linearize this
about the mean ν̄, we can establish that σ 2

D̂0
≈ |D̂′

0,ν(ν̄)|2σ 2
ν .

That is, in the large-T limit σ 2
D̂0

≈ ln2 2T 2/ν̄4T . From the
definition of ν we have that ν̄ ∝ T , and with this σD̂0

∝ 1/ν̄,
which conforms with Eqs. (25) and (26).

We note that in this special case, considering Eq. (27),
the harmonic mean of the D̂

(2,T )
KGa,r (or D̂

(2,ε∗)
BC,r ) values would

provide an (approximately) unbiased estimator of D̂
(2)
1 = D̂

(2)
0 .

A comparison of the harmonic and arithmetic means is shown
in Fig. 2(b), where their difference for decreasing T or ln 1/ε

is clearly indicated, which gives the measure of the bias of the
arithmetic mean.

2. Example 2: Area-preserving closed baker map with a leak

The fractal dimension D̂
(1)
0 = D̂

(2)
0 is evaluated for the same

values of the perturbation strength δ as considered previously
in the case of evaluating the escape rate [Fig. 1(b)]. It has
been estimated in five different ways using the estimators
defined in Sec. IV B1, distinguished by different markers in
Fig. 3. (The reader is referred to the Appendix for details.)
The results indicate a characteristic enhancement of fractality,

042902-9
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FIG. 3. (Color online) Fractal dimensions in the area-preserving
closed baker map with a leak for several values of the additive
perturbation strength δ. Error bars indicate the standard deviation
of the sample mean in the spirit of Eq. (25). An increasing number of
experiments were done for increasing δ (R = 5 × 103δ and R = 10
for δ = 0). Five different estimators are employed as described in
the Appendix. All estimates are obtained for six values of δ ∈ [0,0.1]
with 0.02 increments, but results using the different estimators for the
same δ are plotted with a spacing for better visibility. A gray curve
corresponding to the best fitting quadratic polynomial emphasizes
the nonmonotonic dependence of the dimension on the perturbation
strength.

with a maximal value of D̂ for some finite δ. This value should
be the same as the one for which maximal trapping occurs,
for the following reason. With additive perturbation of the
baker map, the Lyapunov exponents are unchanged, which is
not simply because the perturbation terms do not explicitly
appear in the Jacobian matrix, but also because the Jacobian
matrix is the same in every point of phase space, for which
reason the randomly perturbed trajectories do not have an
influence either. Thus, considering the KG relations (18) for
random maps, the dependence of the dimension on the noise
strength is inherited solely from that of the escape rate in this
example. If the Lyapunov exponents monotonically depend on
the noise intensity, which is believed to be the case in general,
then noise-enhanced fractality and uncertainty should always
accompany noise-enhanced trapping.

The different estimators seem to be biased to different
degrees, as the error bars do not overlap systematically. The
estimator D̂

(2,T ,R)
KGb (marker ×) has been shown to be consistent,

and thus it is expected to yield the most accurate figures for
large R’s, closely approaching the true value. Therefore, its
mismatch with the other markers indicates the bias of the
corresponding estimators approximately. Since they group
fairly closely around the true value, they are also capable of
robustly indicating the nonmonotonic behavior.

V. CONCLUSION

We have investigated how the characteristic measures
of transiently chaotic systems (κ , D0, and λ) depend on the
type (noisy or random maps) and strength of the stochastic
perturbations. Random maps are described in terms of a time-
dependent conditionally-map-invariant measure, a measure

that we introduced as a natural combination of concepts
from transient chaos theory [2,18] and (dissipative) random
maps [16,20]. For any fixed time, this measure exhibits a clear
fractal character, similarly to the measure of the autonomous
system. As in the case of attractors [16], we argue that the
measure of the noisy map corresponds to the average of the
time-dependent random-map measure over different times (or
realizations) and is smooth on fine enough scales. Based on
this description, we showed that the escape rate for the random
map κ̂ is always larger than the one of the noisy map κ̃ (for
the same perturbation strength).

All measurements in numerical and experimental situations
are limited to finite numbers of trajectories N and realizations
R. We have shown that in the random map the precision of
finite-time estimates of κ̂ and D̂ alike converge extremely
slowly with N , typically as ∝1/ ln N . We have shown that
this limitation can be compensated for by estimating through
averaging over different realizations R, whereby the precision
scales as ∝1/R. In the case of the fractal dimension D̂,
however, our results indicate that the different finite-size
estimators are typically biased, and even inconsistent as
R → ∞. This means that the quality of estimating D̂,
depending on N and R, has to be carefully analyzed to
guarantee that the inaccuracy (bias) and precision (spread) are
small.

Our results regarding the dimension gain a practical
meaning through its relation with uncertainty: the greater the
dimension, the greater (smaller) the uncertainty (exponent α),
as can be seen by the relation α = 1 − D in Eq. (19). The finite-
size and resolution estimates of D̂ vary with the realization
of the stochastic perturbation process, as a consequence of
which the uncertainty (due to the uncertain choice of the initial
condition) depends on the specifics of the current perturbation
too.

Similarly to noise-enhanced trapping [24], in random maps
we have observed a nonmonotonic dependence of κ̂ and D̂

on the perturbation strength δ when the extrema occur at
approximately the same finite value of δ. This entails that for
the same perturbation strength the uncertainty is also maximal.
The intuitive picture for this is that perturbation-enhanced
trapping increases the chaotic lifetime of the trajectory,
which makes it less predictable. The perturbation strength
has to be increased beyond this point to steadily improve
predictability.

Finally, we consider a concrete physical situation in which
our results could be tested. Consider a two-dimensional �x ∈ R2

fluid flow exhibiting a velocity field �v(�x,t) with a complicated
dependence on t (or being stochastically perturbed), leading
to a transiently chaotic dynamics of fluid particles �̇x = �v
(see, e.g., Ref. [8], and references therein). We are interested
in measuring the spatial evolution and lifetime of tracers in an
observational region. We consider two experimental protocols:
(i) Single tracers are measured successively and the results
over different tracers are combined and (ii) an ensemble of
tracers is used in each experiment. Identifying case (i) with the
noisy-map scenario and case (ii) with random-map scenario,
we predict for the lifetime of tracers an exponential decay
with an escape rate κ(ii) � κ(i), and for the spatial pattern at a
fixed time (measured from the placement of tracers) a fractal
dimension D(ii) � D(i) = 2.
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APPENDIX: NUMERICAL COMPUTATION
OF THE D̂ ESTIMATORS

Results distinguished by different markers in Fig. 3 corre-
spond to the different algorithms described in Sec. IV B1 and
further details are provided below. Before each description, the
name of the algorithm is followed by the type of marker used.

BC estimator a (� and �). In this special case of the
area-preserving closed baker map with a vertical leak centered
around x = 1/2, the stable (�) and unstable (�) manifolds in
two dimensions are aligned to straight horizontal and vertical
lines, respectively. This allows for the collapse of all data
points and box-counting in one dimension. The patterns of
both the stable and unstable manifolds are irregular when
perturbations are present, meaning that different lines that
constitute the manifold may have different lengths. With
collapsing the unstable manifold, despite its irregularity as
just described, the true value of the fractal dimension is not
affected. Numerical results, however, reject equality of the
dimension estimates for two values of the perturbation strength
(δ = 0 and 0.02). This may be because the irregular geometry
of the manifolds introduces an additional bias of the very

simple box-counting dimension estimator. For the simulation
a number of N = 5 × 106 trajectories are initially uniformly
distributed in (x0,y0) ∈ [0,1] × [0,1]. The unstable manifolds
are approximated by the trajectories that did not escape after
tf = 20 iterations.

BC estimator b (∗). Fractality across the stable manifold can
be resolved also by initializing the ensemble (N = 5 × 105)
along a line across the manifold (e.g., x0 = 0.3 and y0 ∈ [0,1]).

KG estimator b (×). For the estimator D̂
(1,T ,R)
KGb the escape

rate κ̂ (Tκ ,R) is evaluated based on the interval t ∈ [6,tf /2],
where tf is the minimum of all simulation run times at which
all trajectories are already escaped (same simulation as for the
BC estimator based on the uncertainty exponent α).

BC estimator based on the uncertainty exponent α a (•).
The basin boundary is determined along the same line as for
the BC relationship b and the dimension of it is estimated
by fitting the scaling line Nb(ε). For this the finest resolution
is facilitated by N = 5 × 105 trajectories. In the case of the
unperturbed baker map the same basin boundary is obtained
by checking whether it is the left or right side of the leak, or the
lower (y < b) or upper (y > b) regime, the trajectories escape
from. For the results presented, the first option was taken. This
is the estimator that overall best conforms with the supposedly
most accurate estimation (KG estimator b).

BC estimator based on the uncertainty exponent α b (+).
The dimension can be obtained also by first estimating the
uncertainty exponent by fitting the scaling line Nb(ε)/N0(ε)
and then applying relation (19). Interestingly, this approach
modifies both the accuracy (leading to overestimation) and
precision of estimation.
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