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Glassy dynamics and hysteresis in a linear system of orientable hard rods
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We study the dynamics of a one-dimensional fluid of orientable hard rectangles with a non-coarse-grained
microscopic mechanism of facilitation. The length occupied by a rectangle depends on its orientation, which is
a discrete variable coupled to an external field. The equilibrium properties of our model are essentially those
of the Tonks gas, but at high densities the orientational degrees of freedom become effectively frozen due to
jamming. This is a simple analytically tractable model of the glassy phase. Under a cyclic variation of the
pressure, hysteresis is observed. Following a pressure quench, the orientational persistence exhibits a two-stage
decay characteristic of glassy systems.
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I. INTRODUCTION

Almost all liquids, if cooled sufficiently fast, form a glassy
structure; much effort has been directed towards understanding
this phenomenon. Monte Carlo simulations have shown
that systems with purely hard-core interactions can describe
qualitatively much of the observed phenomenology of the glass
transition, e.g., the very fast rise of relaxation times, and the
absence of an associated latent heat. Theoretical analysis of
such models is hampered by an incomplete understanding
of the equilibrium (fluid-solid) phase transition. The best
studied hard-core model is a system of hard spheres, which
has experimental realizations in colloidal, granular, and other
systems [1–3]. In many cases, size dispersion, or other built-in
complexity, is introduced in order to avoid crystallization and
thereby observe a glass transition [4–7]. For monodisperse
systems, there is no transition in one dimension [8], while two-
and three-dimensional systems are highly prone to crystallize.
In higher dimensions [9–12], nucleation rates are low and the
glassy state is more easily attained. Indeed, in the limit of very
high spatial dimensionality, there seems to be an ideal glass
transition [6,13], although how far this extends down to lower
dimensions is still debated [14].

Hard core potentials need not be spherically symmetric.
On a lattice, for example, where the symmetry is discrete, the
behavior strongly depends on the dimension of the system,
the lattice structure, and the exclusion range (see [15,16] and
references therein).

Here we study the dynamic properties of a one-dimensional
system of classical hard rectangles, with only two allowed
orientations, horizontal and vertical. These will be called
“rods” in what follows. Classical linear fluids have been
extensively studied over the last decades [8,17–28]; the case
of elongated rods with orientational freedom has also been
analyzed [20,29–34]. While the equilibrium properties of
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this class of models are well understood, their dynamic
properties, in particular those related to the glass transition,
have received somewhat limited attention [35–39]. The simple,
one-dimensional model considered here, reproduces (at least in
part) the glassy phenomenology with an explicit (non-coarse-
grained) microscopic mechanism of facilitation. In analogy
with closely related models in which the constraints are kinetic
instead of geometric [40–42], due to a spatial and temporal
coarse-graining, here there is no thermodynamic transition
and the only nontrivial behavior is kinetic. In the present
context this represents an advantage, in that the relaxation
is not complicated by critical slowing down or metastability.

At short time scales, the glassy phase can be modeled
as a metastable phase, in restricted thermal equilibrium. An
exact calculation of the properties of such metastable states,
including the equation of state, has been made recently for a toy
model [39,43]. In these papers, ergodicity is explicitly broken,
and one assumes that in the glassy phase some transition
rates are exactly zero. The simple model considered here
provides an extension of the treatment in Ref. [39] to include
the description of slow evolution of the macroscopic glassy
state at longer time scales. In our model, ergodicity is not
explicitly broken, and the dynamics is capable of bringing the
system to equilibrium, but at high pressures, the relaxation
of orientations becomes so slow that these variables are
effectively frozen over any reasonable time scale. Under steady
increase of pressure, they never fully relax. Macroscopic
properties in the frozen regime are found to depend on history,
in particular, on the rate at which the pressure is increased.

The structure of the paper is as follows. The next section
introduces the model while Sec. III reviews its equilibrium
properties. We describe the dynamic behavior in Sec. IV.
Section V contains some concluding remarks.

II. MODEL

We consider a system of N rigid rods of length σ � 1
and unit width on a line of length L. Each rod is described
by the variables (xi,Si), where xi ∈ [0,L) is the position of
the center of mass and Si is an Ising-like variable denoting
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FIG. 1. (Color online) Example of a rod configuration.

its orientation (0 for horizontal, 1 for vertical). Rods in state
Si = 0 occupy a length σ while those in state Si = 1 occupy
a unit length (see Fig. 1). Since the order of the particles
cannot change, we take x1 < x2 < · · · < xN . For convenience,
we define x0 ≡ 0 and xN+1 ≡ L; there are no orientational
degrees of freedom or excluded volume associated with these
variables. We define inter-rod distances, yi = xi+1 − xi , so
that

∑N
i=0 yi = L. When all rods are constrained to have the

same orientation or, equivalently, σ = 1, the original Tonks
gas [8] is recovered. Without this restriction, the model is
analogous [44] to a binary mixture of rods (with conservation
of the total particle number, but not the number of each species
separately). The particles are subject to an external field h′,
coupled to the orientations {Si}, so that the potential energy
takes the form

H =
∑

i

φhc(yi) + h′ ∑
i

Si, (1)

where the first term denotes hard core interactions and the sums
extend over the N rods; for h′ > 0 the horizontal orientation
is favored.

The hard-core interaction between the ith rod and its right
neighbor is

φhc(yi) =
{

0, yi � ai

∞, yi < ai

,

where ai is the minimum distance between the centers of rods
i and i + 1, given by

ai = σ + 1
2 (Si + Si+1)(1 − σ ). (2)

An important quantity is the mean free volume per particle,
vf = v − σ + (σ − 1)m, where v = ρ−1 = L/N and m is the
fraction of rods in the vertical orientation, or “magnetization”.

We define a local, continuous-time, stochastic dynamics
for the positions (or equivalently, the separations yi), and
orientations. The time evolution is Markovian, and satisfies
the detailed balance condition. Each rod executes unbiased
diffusive motion. The wall at xN+1 = L also undergoes
diffusive motion, but is subject to a bias: the ratio of the jump
rate that increases L by δL to rate of the reverse transition is
exp(−pδL), where p denotes the pressure divided by kBT .
Each rod can also change its orientation (Si = 0 � Si = 1)
while maintaining its center fixed.

The dynamics includes an important constraint on orienta-
tional transitions: particle i can only change its orientation if
its neighbors to the left and right are sufficiently far away that
its rotation (through 90◦) is not blocked. In order for particle i

to change its orientation, it is necessary that

yi >
σ + Si+1(1 − σ ) + r

2
, (3)

σ+
√

1+σ2

2

FIG. 2. (Color online) Geometrical constraint associated with an
orientational transition in the continuous model that motivates the
geometric constraint, Eq. (3) (notice that our model considers discrete
states). Analogous restrictions apply also for the other possible
orientations.

where r ≡ √
1 + σ 2 is the rod diagonal; the analogous relation

for yi−1 must also be satisfied for the transition to occur.
Equation (3) represents the nonoverlapping condition that
would apply if the rod were to rotate continuously (see Fig. 2).
We assume this hard-core constraint of the underlying con-
tinuum space in our model, even though we consider that
the transitions between horizontal and vertical states are
instantaneous. Note that these conditions depend on the
states of the neighboring rods (i ± 1), but not on Si itself.
Without the nonoverlapping constraint, r is replaced by σ in
the above equation. Any violation of the excluded volume
condition is rejected. These transitions are accepted in accor-
dance with the Metropolis criterion, that is, with probability
min[1, exp(−β�H)]. One Monte Carlo step (MCS) consists
in an attempt to update all degrees of freedom (i.e., all positions
and orientations, and the volume).

Our Monte Carlo simulations were performed on systems
of N = 1000 rods; and results represent averages over 100 (or
more) independent realizations.

III. EQUILIBRIUM PROPERTIES

The equilibrium properties of the model are indeed very
simple. The canonical configurational partition function is
given by

ZN (h,L) =
∑
{Si }

e−h
∑

i Si

∫
R

dy1 . . . dyN, (4)

where h = βh′ and the subscript R denotes the restrictions∑N
i=1 yi = L and yi � ai , where the minimum distances ai

are defined in Eq. (2). The usual factor of 1/N! is absent due
to the fixed order of the particles on the line. Introducing the
variables zi = yi − ai , (with z0 ≡ x1 and zN ≡ L − xN ), we
have

ZN (h,L) =
∑
{Si }

e−h
∑

i Si

∫
0
dz0 · · ·

∫
0
dzN

×δ

[
N∑

i=0

zi − L + Nσ − (σ − 1)
N∑

i=1

Si

]
.
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FIG. 3. (Color online) Equilibrium fraction of vertical rods as a
function of pressure p, for h = 0 and 4, (empty and filled symbols,
respectively). Points are simulation results, while the lines correspond
to Eq. (8). When p is large enough, all rods are aligned vertically.

We study the system in the constant-pressure ensemble; the
partition function is

YN (h,p) =
∫

dLe−pLZN (h,L).

A simple calculation yields

YN (h,p) = e−pNσ p−N (1 + κ)N (5)

with κ ≡ exp[(σ − 1)p − h]. The Gibbs free energy per
particle is given by g = −(Nβ)−1 ln Y , where, in the ther-
modynamic limit,

lim
N→∞

1

N
ln YN = −σp + ln(1 + κ) − ln p. (6)

In this limit the volume per particle is

v(p,h) = − 1

N

∂ ln Y

∂p
= σ − (σ − 1)κ

1 + κ
+ 1

p
, (7)

while the fraction of vertical rods is

meq(p,h) = − 1

N

∂ ln Y

∂h
= κ

1 + κ
. (8)

Equations (7) and (8) imply the relation

v = 1

p
+ meq + σ (1 − meq), (9)

which implies that the free volume per particle is vf = 1/p,
as in the Tonks gas. It is worth noting than in equilibrium,
the variables {yi} and {Si} are all mutually independent. The
behavior of m as a function of the pressure for several values
of σ and h is illustrated in Fig. 3.

IV. TIME-DEPENDENT PROPERTIES

In this section we study the kinetics of the magnetization
m and molecular volume v. We assume that the diffusive
relaxation is much faster than the orientational relaxation.
Then the displacement degrees of freedom may be assumed to
be in thermal equilibrium. At high pressures, most update

attempts for orientation change fail, as they are blocked.
Suppose first that the orientations are fixed. In this case, the
different sectors in the pico-canonical ensemble are specified
by orientation of each rod. Different sectors with the same
number of vertical rods are macroscopically equivalent. Within
a sector, the displacement degrees of freedom are assumed to
be in equilibrium. Then the translational dynamics will bring
the system to a constrained equilibrium distribution, in which
the distances zi are independent, exponentially distributed
random variables with mean 1/p, and the mean length of the
system is 〈L〉 = N [m + σ (1 − m)] + (N − 1)/p, where m is
the fraction of vertically oriented particles, not necessarily
equal to the equilibrium value meq.

Now, allowing the orientations to fluctuate, an equation of
motion for m(t) can be derived if we assume that the translation
dynamics is rapid, so that between any pair of successive
orientational transitions, the interparticle distances attain the
constrained equilibrium distribution mentioned above. Under
this hypothesis, it can be easily seen that changes in the
orientations are mutually independent.

Consider, for example, a transition from Si = 0 to 1.
This would be allowed only if the two gaps on the
two sides of the rod are large enough. In the re-
stricted equilibrium ensemble, separations are indepen-
dent, exponentially distributed random variables, P (y) =
p exp(−py), and the probability that a hole larger than
w = (r − σ )/2 appears at one of its sides is P (vf > w) =
exp[−p(r − σ )/2]. Given that such gaps must exist at both
sides and that this flip is against the field, we see that the
effective transition rate is proportional to exp[−p(r − σ ) − h],
and that it is independent of the state of the neighboring rods.
Thus we may write the transition rate for Si = 0 to 1 as

γ+ = γ exp[−p(r − σ ) − h], (10)

where γ is an arbitrary attempt rate, independent of p and h. On
the other hand, if the transition is from 1 to 0, w = (r − 1)/2
and

γ− = γ exp[−p(r − 1)]. (11)

Note that only γ+ depends on h and that these rates satisfy
detailed balance. For small values of the pressure, free space
is abundant and the slowest process is a flip against the field,
so that the larger time scale involved is given by γ −1

+ . On the
other hand, when the pressure is large enough, the production
of large enough holes is the dominant slow process and the
relevant characteristic time now scales as γ −1

− .
The evolution of m(t) is governed by

dm

dt
= γ+(1 − m) − γ−m ≡ −�m + γ+, (12)

where � = γ+ + γ−. If the rates are time independent, then
letting φ = m − meq = m − γ+/�, we have

dφ

dt
= −�φ, (13)

showing an exponential approach to equilibrium.
The system is driven out of equilibrium if the pressure (or

the external field, h) is time-dependent. Suppose that γ+ and
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γ− depend on time through the pressure. Then we have

m(t) = e−G(t)

(
m0 +

∫ t

0
ds γ+(s) eG(s)

)
, (14)

where

G(t) =
∫ t

0
dt ′ �(t ′). (15)

A particularly interesting example is that of a system
initially in equilibrium at pressure p0, and subject to a pressure
that increases linearly with time, p(t) = p0 + λt for t > 0,
where λ is the annealing rate. In this case,

G(t) = γ

λ

[
e−h−p0(r−σ ) 1 − e−λ(r−σ )t

r − σ

+ e−p0(r−1) 1 − e−λ(r−1)t

r − 1

]
(16)

so that

lim
t→∞G(t) = γ

λ

[
e−h−p0(r−σ )

r − σ
+ e−p0(r−1)

r − 1

]
, (17)

which is finite for λ > 0. Inserting this result in Eq. (14),
we see that the initial magnetization m0 is not “forgotten”
even when t → ∞. It is easily verified that memory of the
initial magnetization persists for a pressure increase of the
form p(t) = p0 + λtα , for any positive values of λ and α.

Examples of m(t) (for pressure increasing linearly with
time) are shown in Fig. 4 for p0 = 1, h = 5, σ = 2, and
γ = 1. For λ = 10−4, the difference between m(p) and the
equilibrium result is small. For larger rates of pressure increase,
on the other hand, there are marked differences between the
final value of m and the equilibrium result. Although m(t)
is well described by Eq. (14), as can be seen by the excellent
agreement with the simulation, the same does not occur for the
molecular volume, v(p), and the free volume, at larger rates
of pressure increase λ. The reason is that in this case the rate
of pressure increase is large enough so that we can no longer
treat the interparticle distances as in instantaneous thermal
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FIG. 4. (Color online) Fraction m of vertical rods versus pressure
p for h = 5, σ = 2, γ = 1 and several values of the rate of pressure
increase, λ. From top to bottom, λ = 0 (equilibrium, bold line), 10−3,
10−2, and 10−1. Points: simulation; solid lines: theory, Eq. (14).
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FIG. 5. (Color online) Volume per molecule v versus pressure p

for the same parameters as in Fig. 4 during the pressure annealing.
Points represent the simulation data while the solid lines are the
improved theoretic predictions based on Eq. (18) (with γ � 0.3).
The lines for λ = 10−4 and λ = 0 (equilibrium, bold line) are
indistinguishable at this scale. Inset: free volume vF . Analogous
deviations from equilibrium are again seen for large values of λ.

equilibrium, on the time scale of the orientational relaxation.
This effect can be incorporated in an approximate manner in
the theory if we assume that the free volume per molecule
follows a relaxational dynamics, that is,

dvF

dt
= −�v

(
vF − 1

p

)
. (18)

To evaluate the transition rates γ+ and γ− we require the
probability density p(z). The simplest hypothesis is that p(z) is
exponential, as in equilibrium, but with the mean free volume
vF in place of its equilibrium value, 1/p, so that p(z) =
v−1

F exp(−z/vF ). Then the evolution of the magnetization is
given by Eq. (12), with transition rates as in Eqs. (10) and
(11), but with p replaced by 1/vF . With an appropriate choice
of the relaxation rate �v , this simple theory yields reasonable
agreement with simulation results at larger quench rates, as
is shown in Fig. 5. Some deviations between the theoretical
prediction and simulations are evident at the highest quench
rate, for smaller pressures; this is not surprising given the
simplifications introduced.

In addition to the “freezing out” of the orientational degrees
of freedom under a steady pressure quench, the system exhibits
interesting hysteresis effects under an oscillatory pressure.
Hysteresis loops obtained through numerical simulation are
illustrated in Fig. 6, for various values of λ = |dp/dt | in
triangle-wave cycles of pressure variation. Similar results are
obtained via numerical integration of Eq. (12), assuming rapid
equilibration of the free volume. Notice that for larger rates,
the system describes a sequence of irreversible loops before
entering a reversible one. For even larger rates than those
shown in the figure, we find a greater number of irreversible
loops, analogous to those obtained in compaction experiments
of rods under vibration [45].

It is worth noting that an external field h is not required to
observe freezing. Even with h = 0, the rapid reduction in the
transition rate γ+, Eq. (10), with increasing pressure ensures
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FIG. 6. (Color online) Fraction of vertical rods under cyclic vari-
ation of the pressure, showing hysteresis loops. For the highest rate,
λ = 0.1, the loop only closes after several cycles. Parameters: h = 5,
σ = 2; the pressure varies between 1 and 20 at rates λ as indicated.

that the orientational degrees of freedom cannot equilibrate. In-
hibition of orientational relaxation is greatest for

√
1 + σ 2 − σ

as large as possible, i.e., for σ tending to unity. (Of course this
tends to reduce the excess of v over its equilibrium value.)
Thus, for h = 0, σ = 1.1, and other parameters as above, one
finds m∞ ≡ limt→∞ m(t) = 0.620 if the pressure increases
at a rate of λ = 1, and m∞ = 0.5409 for λ = 10. (As λ is
increased, m∞ approaches the initial magnetization, equal to
1/2 for h = 0.)

If instead of a smooth annealing, the system is suddenly
quenched from low to high pressure, a two-step decay typical
of glassy behavior is observed in the orientational persistence
(the fraction of rods that did not flip since t = 0). Figure 7
shows the results for several values of the final pressure after
the system is quenched from an equilibrium state at p0 = 1.
Whatever the value of the final pressure, the initial decay of

-4
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lo
g 1
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FIG. 7. (Color online) Persistence P (t) as a function of time as
the system pressure is quenched from 1 to p at t = 0, for σ = 2 and
h = 5. When p is small, the decay is exponential while for larger
values, after an initial exponential decay, the persistence develops
a plateau whose height is close to the initial magnetization m0 and
whose width increases with p. The solid lines are from Eq. (19).

the persistence function is exponential and ruled by the against
the field flip of rods that are horizontal at t = 0, so that P (t) �
exp(−γ+t) in this regime. As the final pressure is increased,
the flip from 1 to 0 becomes slower and a plateau develops,
after the initial fast decay, whose width increases with the final
pressure. The height of this plateau is on the order of the initial
magnetization, m0. (Its precise value is slightly smaller than
m0 since some of the up rods will have already flipped during
the initial fast regime.) When the final pressure is large, it
takes a long time for a rod to flip, since enough space must
be freed, which requires a cooperative rearrangement of the
neighboring rods. This happens with a rate proportional to γ−.
Thus, the data in Fig. 7 are well fit by a sum of exponentials,
corresponding to the fast and slow processes in the model:

P (t) � e−γ+t + m0e−bγ−t , (19)

where, for the parameters of Fig. 7, b � 0.4 and m0 � 0.01.
The coefficient of the second term, 0.01, is the height of the
plateau and roughly corresponds to the initial magnetization.
Thus, starting with an even smaller initial pressure, and thus a
larger magnetization, the plateau can be tuned to higher values.
The width of the plateau increases with the final value of the
pressure and diverges as p → ∞. This diverging relaxation
time, γ −1

− , is related to the increasing length of the cooperative
region [33]. Notice that, at variance with other models for
the glass transition, the slow relaxation is not associated with
stretched exponentials.

V. CONCLUSIONS

One-dimensional systems with short-range interactions,
such as the model studied here, do not exhibit a phase
transition at finite temperature and pressure in equilibrium.
A jamming transition involving certain degrees of freedom
may nevertheless occur [33], with a diverging length scale,
as the control parameter (inverse pressure or temperature)
goes to zero. Here we study a simple, geometric model on
the line, for which analytical results for both the statics and
the dynamics may be obtained and compared with numerical
simulations, with excellent agreement. This system of hard
rods is subject to geometric constraints that prohibit a rod
changing its orientation if the distance from its neighbors is
too small (i.e., in the absence of sufficient free volume). In our
model, the time spent in transit between the two orientations
is assumed to be small, and the orientation degree was taken
to be a discrete variable. It is straightforward to extend the
discussion to the case where we allow continuous orientations,
although no qualitative differences are expected.

In the presence of an external field that disfavors the
vertical position, our model may be seen as an in-layer
description of a higher-dimensional system. In a dense system,
the vertical position will be disfavored due to excluded-volume
interactions with the rods in the neighboring layers. Thus the
external field may be interpreted as an effective interaction to
take into account the remaining dimensions.

Despite its simplicity, the model presents several properties
characteristic of the glass transition, such as annealing rate
dependence and two-step relaxation. The dynamical behavior
can be understood in terms of the two microscopic reorienta-
tion processes involved.
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