
PHYSICAL REVIEW E 87, 062121 (2013)

Glassy behavior of two-dimensional stripe-forming systems
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We study two-dimensional frustrated but nondisordered systems applying a replica approach to a stripe-forming
model with competing interactions. The phenomenology of the model is representative of several well-known
systems, like high-Tc superconductors and ultrathin ferromagnetic films, which have been the subject of intense
research. We establish the existence of a glass transition to a nonergodic regime accompanied by an exponential
number of long-lived metastable states, responsible for slow dynamics and nonequilibrium effects.
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I. INTRODUCTION

Many systems exhibit competition between different inter-
actions. Competing interactions are frequently responsible for
complex behavior, leading to slow dynamics, metastability,
and energy landscapes characterized by a multiplicity of
local minima, similar to spin and molecular glasses and
other frustrated systems. Competing interactions are also
responsible for the appearance of complex patterns, like
stripes, lamellae, bubbles, and others [1]. Examples range from
solid-state systems, like ultrathin ferromagnetic films [2,3] and
strongly correlated electron liquids [4,5], to soft matter systems
like Langmuir monolayers [6], block copolymers [7,8], and
colloids [9–11].

Although many characteristics of their phase diagrams
and low temperature phases have been widely investigated,
there are still several important points which remain to be
understood. Due to strong frustration effects it is very difficult
to probe the equilibrium dynamics at low temperatures, and
usually long-lived metastable states rule the physical behavior.
This is particularly dramatic in experiments, which often
report effects of metastable phases and structures, although
this is not always properly recognized. A few experimental
results quantifying the low temperature dynamics of quasi-
two-dimensional stripe-forming systems have been reported
[3,7]. Experimental and also computer simulation results
[12,13] point to the presence of slow dynamics associated
with the pinning of topological defects, which are the relevant
excitations at low temperatures.

There is a fascinating phenomenology in a family of
compounds that present high-Tc superconductivity. In addition
to superconductivity, typical ingredients found in systems with
competing interactions, such as inhomogeneity, anisotropy,
disorder, and glassiness, coexist. The deep understanding of
the interplay between all these complex phases is a huge chal-
lenge form a theoretical, as well as from an experimental point
of view [14]. The importance of frustrated phase separation
in cuprates was early recognized [15]. The intermediate state
between the Mott insulator and the superconducting phase is
usually understood as a spin glass with local striped order,
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called “cluster glass.” Although the electronic cluster glass
state exhibits no known long-range order, some electronic
order is always detected by local probes [16–18]. Recently,
using atomic-resolution tunneling-asymmetry imaging, the
cluster glass was studied in detail for chemically different
compounds [19,20]. One of the main conclusions is that the
origin of this phase is the intrinsic electronic structure of the
CuO2 planes, and not an extrinsic effect such as chemical
doping or random impurities. In the same direction, recent
measurements [21] of the Nernst effect in YBa2Cu3Oy, showed
that the pseudogap temperature coincides with the appearance
of a strong in-plane anisotropy of electronic origin, compatible
with the electronic nematic phase [4,22]. Also, fluctuating
stripes have been measured [23] at the onset of the pseudogap
state of Bi2Sr2CaCu2O8+x, using spectroscopic mapping with
a scanning tunneling microscope. Therefore, it seems that local
inhomogeneity and/or anisotropy with slow dynamics is a rule
in a wide sector of the cuprates phase diagram.

From the theoretical point of view, self-generated glassiness
should be a relevant mechanism in any stripe-forming system,
independently of the presence of quenched disorder [24,25].
In Ref. [26], by means of a recently developed replica method
for dealing with frustrated systems without quenched disorder,
the existence of a glass transition in three-dimensional stripe-
forming systems was predicted. In this work we extend those
calculations to a similar model in two spatial dimensions.
There are several motivations to face this calculation. Firstly,
the essential physics in the cuprates seems to be bi-dimensional
and the same is true in ultrathin ferromagnets with perpendicu-
lar anisotropy, and many soft matter systems as cited above. On
the other hand, there is a fundamental difference between two-
and three-dimensional models with competing interactions.
While in three dimensions the stripe order is quasi-long-
ranged, due to logarithmically growing fluctuations, in the
homogeneous two-dimensional case there is no possible stripe
order, since long distance fluctuations grow linearly. We have
found that these types of systems develop quasi-long-ranged
orientational order [27,28] with nematic symmetry, a classical
version of the same phase observed in the pseudogap regime
of cuprates. Thus, the equilibrium state in two- and three-
dimensional frustrated models are quite different. Therefore, a
natural question is about the dynamics to approach equilibrium
in these systems. To our knowledge, from a technical point of
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view, this is the first application of the replica technique to
a uniformly frustrated two-dimensional stripe-forming model.
Our results show, despite that the ordered phase is only locally
striped or nematic, the existence of a dynamical transition
to a nonergodic regime at low temperatures. The calculation
presented here complements other efforts to get a complete
phase diagram of two-dimensional systems with competing
interactions at different scales [28,29].

In Sec. II we introduce the model and the essential technical
background for the calculations, i.e., the replica approach to
uniformly frustrated systems together with the self-consistent
screening approximation (SCSA). The details of the replica
technique for uniformly frustrated systems and the SCSA are
well documented in the literature, so we decided not to give
a detailed derivation of it. Instead we include Supplemental
Material [30] where the main steps leading to the SCSA in
replica space are summarized. In Sec. III we show the main
results related with the existence of a dynamical transition to
a glassy state. In Sec. IV we make a discussion of the present
status of the phase diagram of these models and close with
some conclusions.

II. MODEL AND METHODS

Usually, competing interactions at different scales lead to
the appearance of a momentum scale k0 that dominates the
low energy physics. The simplest two-dimensional effective
Hamiltonian that is possible to write down with this behavior
can be split into a quadratic and an interaction part, H =
H0 + Hi . The quadratic or “free” component can be written
(in momentum space) as [27]

H0 =
∫

d2k

(2π )2
φ(�k)

(
r0 + J

(
k2 − k2

0

)2)
φ(−�k), (1)

where r0(T ) ∝ (T − T ∗) and T ∗ is the mean field critical
temperature of the model, φ(�k) is a scalar field, and the scale
k0 comes from the competition between interaction terms at
different scales [1]. Note that we are considering systems
with nearly isotropic interactions and then the kernel depends
on k = |�k|. The simplest interaction term is given by a local
quartic term of the form,

Hi = v

∫ (
4∏

i=1

d2ki

(2π )2

)
φ(�k1) . . . φ(�k4)δ2(�k1 + �k2 + �k3 + �k4),

(2)

where v measures the interaction intensity. The correlation
function of the free part is given by

G−1
0 (k) = r0 + J

(
k2 − k2

0

)2
. (3)

The free correlation is renormalized by the interaction term (2).
The simplest correction is given by the self-consistent field
approximation in which the quartic term is approximated in the
form φ4(�x) � 〈φ2(�x)〉φ2(�x). In this way the original effective
theory is approximated by one which is quadratic in the fields
φ and can be solved exactly. This amounts to renormalize the
temperature dependence of the parameter r0 giving [31]

r(T ) = r0(T ) + vT

∫
d2k

(2π )2
G0(�k), (4)

where the (renormalized) free correlation function in the
disordered phase is

G−1
0 (k) = r + J

(
k2 − k2

0

)2
(5)

= J (k2 − α2)(k2 − (α∗)2), (6)

with roots given by α = k0

√
1 + i

k2
0

√
r
J

.

The free correlation (5) can be Fourier transformed exactly,
yielding in two dimensions:

G0(x) = 1

8πiJαRαI

{K0(−iαx) − K0(iα∗x)}, (7)

where x = |�x|, αR and αI are, respectively, the real and imagi-
nary parts of α and K0(z) is a Hankel function. Asymptotically,
for large x, it behaves as

G0(x � 1) = 1√
32πJαRαI

(
α2

R + α2
I

)1/4

× e−αI x

x1/2
sin

[
αRx − 1

2
arg(x) + π

4

]
. (8)

From this expression one easily identify αI = 1/ξ as the
inverse of the correlation length and αR = km as a modulation
wave vector. These are the two natural characteristic scales
in the high temperature phase of the system. αR is weakly
dependent on temperature. To leading order in the small
parameter r/Jk4

0 one finds

α ≈ k0

(
1 + i

1

2k2
0

√
r

J

)
. (9)

We see that, to leading order, the modulation wave vector
is constant αR ≈ k0 and the correlation length is large, αI ≈
(1/2k0)

√
r/J � 1.

A. Replica technique for uniformly frustrated systems

As discussed in the introduction, systems with competing
interactions at different scales, like low-dimensional elec-
tronic liquids and ultrathin ferromagnetic films with strong
perpendicular anisotropy, have many metastable states as
a consequence of frustration induced by competition of
interactions. There are many reports in the literature showing
metastable patterns and slow dynamics at low temperatures,
which may be related with glassy physics [3,7,12,13,19,20].
Then it is important to assess the relevance of metastable states
for the behavior of thermodynamic and dynamic functions.
One way to do this is to compute the possible existence
of persistent long-time correlations by means of a replica
approach especially devised to deal with systems without
quenched disorder, but which nevertheless show signatures
of glassy physics, like the ones we are interested in. This
technique, introduced and developed in Refs. [32,33] has been
applied to a three-dimensional Coulomb frustrated system in
Refs. [24,26]. The essential idea of the method is to introduce a
kind of “pinning field” ψ(�x), which selects the local metastable
(disordered) configurations by enhancing the weight of these
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configurations in the partition function:

Z[ψ,β] = g−1/2
∫

Dφ

× exp

{
−H[φ]

T
− g

2

∫
ddx [ψ(�x) − φ(�x)]2

}
(10)

where the coupling g → 0+ should be taken after the ther-
modynamic limit. In order to take into account the (possibly)
many metastable configurations, one has to scan for all the
configurations of the field ψ . This can be done by introducing
replicas, which leads to a replicated free energy:

Fψ (m,β) = lim
g→0+

− 1

βm
ln

(∫
dψ Zm[ψ,β]

)
. (11)

In the end, the limit m → 1 must be taken. Details of the
method have been extensively described in the literature
[26,32,33], so we refer the reader interested in the details
of the method to consult those references. The essential point
here is that, if the system has an exponentially large number
of metastable states in the thermodynamic limit, then the
replicated free energy will show the usual contribution plus
a new one, of entropic nature, which allows one to define a
configurational entropy as

Sc(β) = β[f − Fψ (m = 1,β)], (12)

where f is the equilibrium free energy of the system. A
finite configurational entropy is then associated with glassy
behavior, which can be inferred from the long-time behavior
of dynamical correlation functions. The correlation functions
in the replicated theory obey a Dyson equation:

G−1
ab (�k) = G−1

0 (�k)δab + 	ab(�k) − g

βm
, (13)

where a,b are replica indices. Here, glassy physics is associ-
ated with the existence of finite off-diagonal elements in the
replica self-energy matrix 	ab. Following Westfahl et al. [26],
we use for Gab(�k) the following ansatz:

Gab(�k) = [G(�k) − F(�k)]δab + F(�k), (14)

in such a way that F(�k) parametrizes the off-diagonal
elements of Gab(�k). The diagonal elements in replica space
correspond to static correlations G(�x − �x ′) = β〈φ(�x)φ(�x ′)〉.
The meaning of the off-diagonal elements in replica space
can be elucidated comparing the long-time stationary solution
of the Langevin dynamics of the system with its canonical
equilibrium properties [26,34]. Off-diagonal elements cor-
respond to the long time limit of dynamical correlations
F(�x − �x ′) = limt→∞ β〈φ(�x,t)φ(�x ′,0)〉. It can be shown that in
a disordered system with thermodynamic equilibrium solution
with one step of replica symmetry breaking (1RSB), the same
theory leads to the long time limit of dynamical correlations
by taking the limit of the replica parameter m → 1 [34].
Inserting (14) into (13) one gets for the diagonal elements
in the limit m → 1,

G−1(�k) = G−1
0 (�k) + 	G(�k), (15)

and for the off-diagonal elements,

F(�k) = G(�k) − G(�k)

1 − 	F (�k)G(�k)
≡ G(�k) − K(�k), (16)

in which a new functionK(�k) has been defined which measures
the depart from liquid or disordered behavior. In Eqs. (15)
and (16), 	G and 	F are the diagonal and off-diagonal self-
energies, respectively.

At this point it is important to note that a linear, perturbative
approach for the self-energy matrix 	ab is unable to give
any glassy physics, leading to zero off-diagonal elements
in the limit g → 0. Then, it is necessary to go beyond the
linear (Hartree) approximation in order to test for a possible
glassy phase. It turns out that a self-consistent screening
approximation (SCSA), which amounts to sum an infinite
class of diagrams exactly, can do the job (see Refs. [26,30]).
In the following we briefly describe the steps for computing
the off-diagonal elements of the correlation matrix within the
SCSA for the system described by static correlations given
by (7).

B. The self-consistent screening approximation

The set of self-consistent equations for the two-point
correlation function from the replica approach in the SCSA
is given by (see Supplemental Material [30])

G−1
ab (�k) = (

G−1
0 (�k) + 	G(�k)

)
δab + 	F (�k)(1 − δab), (17)(

G−1
0 (�k)

)
ab

= [
r + J

(
k2 − k2

0

)2]
δab, (18)

	ab(�k) = 1

2

∫
d2p

(2π )2
Dab( �p)Gab( �p + �k), (19)

Dab(�k) = v

1 + v
(�k)

∣∣∣∣
ab

, (20)


ab(�k) =
∫

d2p

(2π )2
Gab( �p)Gba( �p + �k). (21)

The aim of the calculation is to compute the off-diagonal
self-energy 	F (�k). A nonzero value of this function in some
temperature interval then signals the presence of a regime
with ergodicity breaking and glasslike characteristics. As a by-
product of the calculation, if an ergodic-nonergodic transition
is found, the configurational entropy can be computed, which
gives information on the multiplicity of metastatble states in
the free energy of the system.

The diagonal part of the polarization function is


G(�k) =
∫

d2p

(2π )2
G( �p)G( �p + �k). (22)

With G(�k) given by (6) the diagonal polarization can be
calculated exactly, giving


G(k) = 1

πJ 2[α2 − (α∗)2]

[
sinh−1

(
ik
2α

)
k
√

k2 − 4α2
+ sinh−1

(−ik
2α∗

)
k
√

k2 − 4(α∗)2

− 2
sinh−1

[
1

2|α|
√

k2 − (α + α∗)2
]

√
[k2 − (α + α∗)2][k2 − (α − α∗)2]

]
. (23)
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Expanding in real and imaginary parts to leading order in αI ,
one arrives (for x = k/2k0 < 1) at the simple expression:


G(k) = 1

16πJ 2k4
0α

2
I

sin−1
√

1 − x2

x
√

1 − x2
. (24)

The off-diagonal polarization is defined as


F (�k) =
∫

d2p

(2π )2
F( �p)F( �p + �k). (25)

As discussed in Ref. [26], 	F is weakly dependent on wave
vector. Then, from the form of Eq. (16) it follows that the
functionK(�k) has essentially the same functional form ofG(�k),
i.e., K−1(�k) = z + J (k2 − k2

0)2 with a different correlation
length. This implies that

	F = r − z. (26)

With these definitions we find at leading order,


F (k) = 1

16πJ 2k4
0

(
1

αI

− 1

βI

)2 sin−1
√

1 − x2

x
√

1 − x2
, (27)

where βI = (1/2k0)
√

z/J is the inverse correlation length of
the function K. In the polarization functions (24) and (27) the
variable x is limited from below by a small cutoff of order
ε = αI − βI . Also note that the function sin−1

√
1−x2√

1−x2 is always
of order one for 0 � x � 1. With these reasonable simpli-
fications, the expressions for the diagonal and off-diagonal
polarization functions get the same form as those found in
the three-dimensional model [26]. This is a consequence of
the form in which the bare correlation (6) depends on wave
vector �k, i.e., for αI ,βI � 1 the integrals are dominated
by the scale k0 and then the dimension-full integration
measure only modifies a constant pre-factor, but not the αI ,βI

dependence. Then, approximating the off-diagonal self-energy
by its value at the modulation wave vector k0, Eq. (19)
gives

	F (k0) ≈ −πJk3
0α

2
I

(
1 − αI

βI

)2

1 − (
1 − αI

βI

)2

(
1

αI

− 1

βI

)
. (28)

Together with (26) this allows one to close the self-consistent
equations for the off-diagonal self-energy function, a relation
which encodes a possible ergodicity breaking transition.

III. RESULTS

A. Ergodicity breaking transition

From (26) and remembering that αI = (1/2k0)
√

r/J and
a similar expression for βI = (1/2k0)

√
z/J , we can rewrite

	F = 4Jk2
0(α2

I − β2
I ), which combined with expression (28)

gives the following algebraic equation in the parameters αI

and βI :

β2
I − α2

I = πk0α
2
I

4

(
1 − αI

βI

)2

1 − (
1 − αI

βI

)2

(
1

αI

− 1

βI

)
. (29)

 24

 26

 28

 30

 32

 0.49  0.5  0.51  0.52  0.53

λ

102 αI

TK T*

FIG. 1. (Color online) The wandering length as a function of the
inverse correlation length for k0 = 0.1, J = 1/k2

0 and v = 0.001.

Factorizing the trivial (liquid) solution β∗
I = α∗

I and defining
δ = 4αI

πk0
� 1 one finds another, nontrivial solution β∗

I ≈ 3α∗
I .

This solution implies the existence of a transition to a
nonergodic regime, in the sense that the dynamic correlations
F have a persistent part in the long time limit. This is the
main result of this work. At the transition temperature, the
correlation length is

ξ ∗ = 1/α∗
I = 60/πk0. (30)

With the modulation length given by lm = 2π/k0, the ratio
between the correlation and modulation lengths at the tran-
sition is approximately ξ ∗/lm ≈ 3. One can also define a
third characteristic length, associated with the onset of long
time correlations. Noting that the off-diagonal self-energy has
dimensions of wave vector squared, it is possible to introduce
a wandering length λ defined by [26]

	F = −λ−2 = 4Jk2
0

(
α2

I − β2
I

)
. (31)

This new quantity can be interpreted as the length scale
up to which topological defects of the stripe structure can
move. It is expected that in the high temperature phase
the system is in a fluidlike phase and defects can wander
without limit. In this regime βI = αI and then λ = ∞.
If a transition to a nonergodic regime happens at some temper-
ature, then λ will be finite. As shown in Fig. 1, λ increases
with temperature and attains a finite value at the ergodic-
nonergodic transition, where it jumps to infinity in the fluid
phase. In our model, we find at the transition a value λglass ≈
10/(πJ 1/2k2

0).

B. Configurational entropy

Provided the existence of a transition to a nonergodic
regime has been established, we address the calculation of
the number of metastable configurations, or configurational
entropy. From (11) and (12) the configurational entropy can
be obtained as

Sc = β
∂Fψ (m)

∂m

∣∣∣∣
m=1

. (32)
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Within the SCSA the replicated free energy is given by

2mβFψ = Tr lnG−1 + Tr lnD−1 − Tr(	G). (33)

Deriving with respect to m and taking m = 1 at the end, Sc

can be written as Sc = s(1)
c + s(2)

c with

s(1)
c = −1

2

∫
d2k

(2π )2

{
ln

(
1 − F(�k)

G(�k)

)
+ F(�k)

G(�k)

}
, (34)

and

s(2)
c = 1

2

∫
d2k

(2π )2

{
ln

(
1 − v
F (�k)

1 + v
G(�k)

)

+ v
F (�k)

1 + v
G(�k)

}
. (35)

Performing the integrals we obtain

s(1)
c = k0βI

4

(
1 − αI

βI

)2

, (36)

and

s(2)
c = 1(

16πJ 2k4
0

)2

v2k2
0

2πα4
I

×
{(

1 − αI

βI

)2

+ ln

[
1 −

(
1 − αI

βI

)2]}
. (37)

The first term is always positive but the second can be
negative as the temperature decreases from the transition
point. At some point the second negative term dominates
over the first term and the configurational entropy becomes
negative. As the entropy cannot be negative, this second
characteristic temperature has been interpreted as signaling a
transition to an ideal glass state. Below this temperature, called
Kauzmann temperature (TK ) in the glass transition literature,
the configurational entropy is zero and the system freezes into
an amorphous state, which is, from this temperature down, a
thermodynamically stable state. Then there is a temperature
window, between TK and Tglass, in which the system has an
exponentially large number of metastable states, as reflected
in a finite value of Sc. In Fig. 2 we show the behavior of Sc with
the inverse correlation length αI . As in Fig. 1 the numerical
values of the constants were fixed to k0 = 0.1, J = 1/k2

0 and
v = 0.001.

 0

 0.02

 0.04

 0.06

 0.49  0.5  0.51  0.52  0.53

10
3  S

c

102 αI

T*TK

FIG. 2. (Color online) Configurational entropy as a function of
the inverse correlation length. The parameters were fixed to k0 = 0.1,
J = 1/k2

0 , and v = 0.001.

IV. DISCUSSION AND CONCLUSIONS

We have applied a replica approach for frustrated but
nondisordered systems to a two-dimensional stripe-forming
model with competing interactions. The model is represen-
tative of several well-known systems, like high-Tc supercon-
ductors and ultrathin ferromagnetic films, which have been the
subject of intense research. We have established the existence
of a glass transition to a nonergodic regime accompanied
by an exponential number of long-lived metastable states,
responsible for slow dynamics and nonequilibrium effects.
From a technical point of view, these results may come as no
surprise since they are very similar to those already known
in the three-dimensional version of the model. Nevertheless,
as stated in Sec. I, the possible existence of glassy behavior
in two dimensions is especially interesting due to the very
different nature of the equilibrium phases of the systems in
d = 2 and d = 3. From an equilibrium point of view, the
existence of a continuous symmetry in d = 2 associated with
the isotropic nature of interactions implies that no long-range
order can survive. Instead of the stripe phase found in three
dimensions, the relevant phase in two dimensions is a nematic
one [27,28], with quasi-long-range orientational order and
only short-range translational order down to zero temperature.
The nematic phase in a stripe-forming system is characterized
by a proliferation of topological defects which can naturally
lead to an arrest of the dynamics as the temperature is lowered.
In Refs. [27,28] we showed that symmetry considerations
allow the existence of other interaction terms in the Landau-
Ginzburg expansion of the model defined in (1) and (2), leading
to possible anisotropic phases of nematic character. The tem-
perature at which the isotropic-nematic transition takes place
was found to be proportional to the nematic order parameter
couplings in the Landau expansion. These terms, although
essential for the equilibrium behavior of the system, are not
relevant for searching a possible freezing of the isotropic, high
temperature correlations, as pursued in the present work. Thus,
there are at least two characteristic temperatures determining,
on one hand, the equilibrium isotropic/nematic phase transition
and, on the other hand, a glassy nonequilibrium behavior of
the system. A natural question now is to know the relation
between both temperatures, which implies determining the
dependence of the phenomenological nematic coupling con-
stant on more microscopic parameters of the model, like J

and k0. Some work in this direction has already been done
[29] but the question is still not completely settled. Having
a more microscopic model to begin with would allow one
to make quantitative predictions which could be in principle
contrasted with experiments. Nevertheless the very existence
and relevance of the nematic phase is still controversial and
the existence of a glasslike transition adds a new ingredient
to the theoretical understanding of low-dimensional stripe-
forming systems.
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