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Coarsening of three-dimensional grains in crystals, or bubbles in dry foams, tends

towards a universal, statistically scale-invariant regime
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We perform extensive Potts model simulations of three-dimensional dry foam coarsening. Starting with 2.25
million bubbles, we have enough statistics to fulfill the three constraints required for the study of statistical
scale invariance: first, enough time for the transient to end and reach the scaling state; then, enough time in the
scaling state itself to characterize its properties; and finally, enough bubbles at the end to avoid spurious finite
size effects. In the scaling state, we find that the average surface area of the bubbles increases linearly with
time. The geometry (bubble shape and size) and topology (number of faces and edges), as well as their
correlations, become constant in time. Their distributions agree with the data of the literature. We present an
analytical model (universal, up to parameters extracted from the simulations) for a disordered foam minimizing
its free energy, which agrees with the simulations. We discuss the limitations of the simulations and of the

model.
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I. INTRODUCTION

The coarsening of dry foams is a model of grain growth in
crystals [1,2], and is a fascinating process in itself [3—5]. The
mechanical equilibration of the soap film separating the
bubbles in a foam requires that three walls meet at each
bubble edge, forming equal angles of 120°, and four edges
meet at each vertex, forming symmetrical solid angles. In a
foam made of bubbles with different numbers of faces, this
geometry is possible due to the fast rearrangement of edges
and vertices that produce differences in gas pressure of
neighboring bubbles. These pressure differences, on their
turn, cause the bending of walls and edges such that bubbles
in a foam resemble polyhedra with curved faces. The internal
angles between faces of a polyhedron with a large number of
faces f are, in average, larger than 120°, and hence a large f
bubble in a foam will have its walls rearranged to present
concave curvatures reducing the angles between faces.

In a much slower time scale when compared to walls and
edges movement, the pressure difference between neighbor-
ing bubbles drives gas diffusion across the curved walls,
such that bubbles with a large number f of faces, concave
walls, and filled with gas at a lower pressure, grow at the
expense of small f bubbles, which are at a higher pressure
and present convexly curved walls. A small-f bubble thus
shrinks, loses faces, and shrinks even more quickly, until it
disappears. At that instant, its neighbors lose a face: those
which were expanding start expanding more slowly, and
those which were steady begin to shrink. Thus there is a
constant decrease in the number N of bubbles with the con-
seqluent increase in the average bubble size, which goes as
N~
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In two-dimensional (2D) experiments, the evolution of an
individual bubble is simple: the von Neumann law, both lin-
ear and exact, states that the growth rate of a n-sided bubble
is proportional to 6-n [2,4,6]. The global evolution of the
foam is more complicated, but both simulations and theory
agree that a statistically “scale invariant” state exists. At long
times, the distributions of number of faces (whose average is
fixed at 6 by Euler theorem [5]) and of normalized bubble
area [A/(A(r))] remain invariant during the coarsening
[4,6,7]. In this regime, the number of bubbles, the average
bubble size, and average area vary, respectively, as 1, 03,
and ¢, as required by dimensional analysis [6,8].

In three dimensions the situation is much more compli-
cated than in two dimensions [9]. First, there is an additional
free parameter: in three dimensions, the average number of
faces (f) is not determined by the Euler relation between the
total number of edges, faces, and vertices in foam [5], and
depends on the distribution of the number epf of edges per
face: (f)=12/(6—{epf)). Second, the individual growth rate
of a 3D bubble found by Mullins [10] and confirmed by
numerous others [11-18] is not related to f as simply as in its
2D counterpart, the von Neumann law. In fact, a direct proof
of the existence of a 3D scaling state is still lacking.

The only strictly exact 3D theoretical result is a necessary
but not sufficient condition. If a scaling state exists, the av-
erage bubble size /, surface area s, and volume v must grow
with time with exponents 0.5, 1, and 1.5, respectively. Mul-
lins has demonstrated it in detail for both foams and grains in
his 1986 paper [19]. Glazier later showed that it results in
fact from a short dimensional argument [8].

Since Glazier’s pioneering paper [20], 3D experiments
[8,21-24] and simulations [12,15,20,25,26] are making quick
progress; for reviews, see Refs. [8,15]. There is a growing
consensus that, starting from different disordered initial con-
ditions, the distributions of normalized bubble volumes
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v/{v(r)) and numbers of faces f relax towards an asymptotic
state [15,25,26].

However, these studies do not yet manipulate enough
bubbles to satisfy the following three requirements: (i)
enough time for the transient to end and reach the scaling
state, (ii) then enough time to characterize the properties of
the scaling state itself, and finally (iii) enough bubbles at the
end to avoid spurious finite size effects. The largest simula-
tion up to now [12] starts with 1000 bubbles, and ends with
100. It indicates that after a transient the grain distribution
apparently reaches a scaling state with (f)=13.5, decreasing
from 14 in the initial condition. The evolution of the average
bubble size is also compatible with the expected exponent
0.5. However, a direct observation of the scaling state is still
missing.

The plan of the present paper is as follows. We first
present the Potts model, with which we simulate millions of
coarsening bubbles (Sec. IT). We then collect a catalog of our
measurements: geometry (bubble shape and size) and topol-
ogy (bubble number of faces and edges), as well as their
correlations, at different times during the coarsening (Sec.
III). We present an analytical model for a disordered foam,
based on free energy minimization, with only one free pa-
rameter, which agrees with the simulations (Sec. IV). Finally,
we discuss the limitations of the Potts simulations and ana-
lytical model (Sec. V).

II. METHODS OF POTTS MODEL SIMULATIONS

A. Potts model parameters

We use the Potts model [27,28] (reviewed in Ref. [29]) to
simulate the coarsening of a foam or of grains in crystals, as
in Refs. [6,20,25]. In what follows, we do not distinguish
between grains (which is, strictly speaking, what the Potts
model simulates) and bubbles. For discussions of some com-
mon points and differences, see, for instance, Ref. [15].

The foam consists of N bubbles, described as follows. We
consider a 3D cubic lattice with periodic boundary condi-
tions. Each lattice site in this 3D network is represented by
an integer i=1, ...,p, where p=L,XL,XL, is the size of the
lattice. Each site also has a label, an integer number S;
=1,...,N. A bubble is defined as a connected set of equally
labeled sites, with their label S being used to refer to that
bubble. The lattice is then tiled by N bubbles.

The energy of the foam is proportional to the area of the
walls between neighboring bubbles; the coefficient of pro-
portionality is the surface energy J [5]. On a lattice, the ex-
pression for this energy (or, in fact, a Hamiltonian) takes a
discrete form

E= 23 Sl al5,- 5). )]
25

where (j); indicates the sum over every site j that is neighbor
to site i, the factor 1/2 avoids counting twice each bubble
wall, and & is the Kronecker symbol: &(S;-S;)=1 if §;=S;
(sites belonging to the same bubble, thus no energy cost) and
a(S;=S,)=0 if §;#S; (different bubbles, thus an energy cost
J). In what follows, we take J=1, without loss of generality,
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FIG. 1. Volume distributions used as initial conditions after re-
laxing the system for 300 MCSs using target volume energy term.
Observe that this relaxation slightly broadens the bidisperse initial
condition.

and we consider first, second, and third neighbors (summing
up 26 neighbors) to reduce lattice anisotropy effects [30].

To let the foam evolve, at each time step we randomly
choose a site i. Among its six first neighbors, we randomly
select a site j. If j belongs to a different bubble (S;#S;), we
move the bubble wall by changing the value S; to §; when-
ever this represents a decrease in energy. When energy re-
mains the same we change the value S; to §; with 50% of
probability. Finally, when energy would increase, we leave
the configuration as is. One Monte Carlo step (MCS) is de-
fined as p random choices (where p is the number of lattice
sites); thus, in average, each lattice site is visited at each
MCS. Hereafter, for simplicity, we call “time” the number of
MCS:s.

This evolution procedure simulates the coarsening due to
curvature-driven wall movement. Once a set of lattice site is
connected, it remains connected. We thus only need to ensure
that all bubbles are connected at r=0. Initial conditions are
produced according to a prescribed distribution of bubble
volumes, as follows.

B. Initial conditions

To avoid unnecessary long transients [31], we use three
simple initial volume distributions, as shown in Fig. 1. To
obtain the froth initial configuration we first randomly
choose N, sites on the cubic lattice. To each of these chosen
sites we randomly assign a target volume v™$¢ taken from a
given, well defined target volume distribution. We enforce
each bubble volume by temporarily adding to Eq. (1) a vol-
ume constraint energy term: E,,., =S (v;—v¢)% we
then let this system evolve as described above for 300 MCSs
to obtain the desired initial state: N, bubbles filling all lattice
with a predefined volume distribution. The three target vol-
ume distributions are listed in what follows:

(i) Normal: initially, bubbles have an average volume of
36 voxels, with a standard deviation of 5 voxels. There are
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FIG. 2. Relative number of bubbles N(z)/N, as function of time
in log-log plot for normal, lognormal, and bidisperse initial condi-
tions (see text), for large and medium size systems.

2.25 X 10% bubbles on a 450 X 450 X 400 voxels lattice.

(ii) Log normal: in order to produce an initial state as
close as possible to the scale invariant regime, we measure
the volume distribution of the preceding normal distribution
after 5000 MCSs of coarsening, by building a histogram
ranging from 0.0 to 6.5 average volume, using 260 bins. We
rescale this distribution to obtain 2.25X 10° bubbles on a
450 X 450 X 400 voxels lattice, such that the rescaled volume
average is 36 pixels. We thus obtain an approximately log-
normal distribution peaked at 24 voxels with a standard de-
viation in the corresponding normal distribution in log(v) of
1.8 voxels. The periodic peaks in the rescaled volume distri-
bution (see Fig. 1) are numerical artifacts of this procedure.
Although these peaks represent a deviation from a pure log-
normal distribution, the use of this initial condition shortened
the transient, as we show in what follows.

(iii) Bidisperse: initially, half the bubbles have 18 voxels,
the other half have 72 voxels. There are 2.025 X 10° bubbles
on a 450 X450 X 450 voxels lattice.

After building one of these initial conditions, the addi-
tional volume constraint is switched off and the foam coars-
ens freely. All runs take typically six weeks on a non-
exclusively-dedicated AMD Athlon MP 2400+ computer, to
evolve from the order of 2 million down to about 1000
bubbles. To investigate the effects of system size, we also
perform medium size simulations with initially 2 X 10°
bubbles, with the same three initial volume distributions.

Figure 2 presents the evolution of N(7)/N, for different
initial conditions and system sizes, where different transients
may be observed. To test whether these systems attain a scal-
ing state, we plot in Fig. 3 the evolution of (v)*3, (s), and
(I)?, where v, s, and [ are, respectively, volume, surface area,
and edge length of the bubbles. By Mullins results [10],
these quantities are expected to depend linearly on time in
the scaling regime. The plots in the left column present (s)
versus time for two different system sizes for the three dif-
ferent initial conditions, and in the right column, we compare
the effect of initial conditions for large systems by monitor-
ing different quantities.

Both Figs. 2 and 3 show that the relaxation towards the
scaling regime is very long; the initial number of bubbles
must then be large enough to guarantee that when the scaling
regime is attained there are still enough bubbles to yield

PHYSICAL REVIEW E 74, 021407 (2006)

) Medium "
121 o Large . 15
<s>= 1.54 t - 1496 _o o <> ',' c_:;
8 R=0.9996 QQOOOOOO . . , / 10 Af\’
~ . ’ <
4 Oooooggg“ L Normal 5 VQ
e Normal > - - - Lognomal &
g e Bidisperse
0 O Medium (1]
12/ 0 Large & <g> " 112
A <s>= 1358 +511 Pt
R=0.9996 B8 o
n 8 7L 8 2
mv s . A Aw
) ¢
= - i 2 49
o Lognormal
O Medium 0
12) O Large <p? L
<g>= 1.171+W e 6 -
8 R=0.9991 . L 3
C>d\:)l(3888 ey A
4 o w7 3 v,
gv@aaa Bidisperse |
Q® 0
0 3 6 90 3 6 9

time { 10°MCS)

FIG. 3. Left column: Evolution of the average surface area (s)
for different initial conditions and system sizes, together with linear
fits. In the legends the linear fit and its R-square value. Right col-
umn: Evolution of {(v)*?, (s), and {/)? for large systems with differ-
ent initial conditions.

good statistics and to allow a reliable coarsening exponent
measurement. We thus present below only large simulations,
with N, of the order of 2 X 10° bubbles. They also indicate
that the systems tend towards a unique scaling state, al-
though initial conditions with normal volume distributions
seem to present longer transients.

C. Geometrical measurements

Geometrical quantities are defined as and measured by
assigning a lattice site to an elementary cube. The volume of
a bubble is the number of cubes it contains. Its surface area is
the number of cube faces shared by cubes belonging to two
different bubbles. Finally, its edge length is the number of
edges that are shared by four cubes belonging to at least
three different bubbles.

As is well known [32] in simulations or experiments us-
ing pixellized images, geometrical measurements (curva-
tures, lengths, areas, and in a lesser extent volumes) deviate
from the Euclidean measure. As an example, consider the
distance d between the site located at the origin of a Carte-
sian reference frame, (0,0,0), and another site located at
(x,y,z). The Euclidean distance is dg=/(x*+y*+z), while
following the recipe given above drp=x+y+z. An alternative
way of measuring distances and surfaces in a three-
dimensional lattice would be counting the number of sites
belonging to an edge or to a surface such that sites with one
or many external neighbors contribute equally to the surface
measure. This alternative recipe also differs from the Euclid-
ean measure. For a straight line between the two points
(0,0,0) and (x,y,z), this other recipe yields d,=max(x,y,z).
We chose the first definition because it respects the elemen-
tary volumes, surfaces, and lengths.
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FIG. 4. Measured volume and surface area of a sphere on a
cubic lattice, relative to the standard volume and surface. Note the
break in the vertical axes.

For instance, we have measured the surface of a sphere on
a cubic lattice, for different radii R. Since all bubbles are
closed, simply connected, three-dimensional bodies, all
bubbles have the topology of a sphere. In Fig. 4 we present
both v/(47R3/3) and s/(47R?). As required to validate our
measurements, they tend towards a constant. Since this con-
stant is 1 for the first ratio, but 1.5 for the second one, we
need to define a distortion measure suitable for a cubic lat-
tice.

To quantify the bubble deviation from spherical form,
Kraynik er al. [33] have introduced the distortion measure 3;
for the ith bubble:

Si
= B6m))"’

Bi 2)

where s; and v; are, respectively, surface area and volume of
the ith bubble. Foam bubbles, besides filling a three-
dimensional space, must also obey Plateau equilibrium rules:
e.g., walls meet at 120° angles, and walls have a constant
mean curvature [5]. In practice, a consequence of Plateau
rules in three dimensions (exactly as in two dimensions [34])
is that B for all bubbles in a disordered foam is weakly
dependent on the number of faces (within 1 or 2 %). This
value is just above the value of regular ones [17], namely
1.097 for the 14-faced Kelvin polyhedra, or 1.095 for the
(probably optimal) Weaire-Phelan structure [5].
Similarly, for a cubic lattice, we introduce S3; as

b Si

LS T (1215w ®)
With this surface measure, bubbles with 8°<1 are possible.
These are bubbles that minimize surface energy when de-
fined over a cubic lattice, which is the case of Potts model
simulations.

In Fig. 5 we present B, for all bubbles at r=6500 MCSs
for the large, bidisperse run, when the system is deep in the
scaling regime and there are still over 2400 cells left, to-
gether with the plot of 8 for isotropic Plateau polyhedra
(IPP) and convex, isotropic polyhedra (CIP), as obtained in
Ref. [13]. IPPs are curved faces bubbles that obey Plateau
rules, while the CIP curve is obtained from interpolation for
isotropic, convex polyhedra with flat faces. Our simulations
results are much more scattered than those obtained by
Kraynik et al. [33] in Surface Evolver simulations for ran-
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FIG. 5. Cubic lattice surface ratio 8. for all 2480 bubbles
present at 6500 MCSs of the large, bidisperse run, together with
calculated values of B for isotropic Plateau polyhedra (IPP) and
convex isotropic polyhedra (CIP) [13].

dom foams. This probably reflects the fact that we simulate
coarsening foams or grains [ 15], rather than quasistatic struc-
tures.

The deviations introduced by the measure recipe are not
important when considering quantities given relatively to
their average values in the froths. However, they should be
taken into account when comparing absolute values obtained
from Potts model simulations with analytical or numerical
results using continuous representations, such as, for ex-
ample, the Surface Evolver [35].

A more specific feature of the Potts model is that, to simu-
late soap froths, one calculates energy terms proportional to
the bubble’s surface area. One should especially keep in
mind that the lattice creates a small but unavoidable aniso-
tropy in the surface energy [30].

Figure 6 checks that in the simulations, measurements of
energy (up to third neighbors), and surface (up to first neigh-
bors only) are exactly proportional to each other. In Fig. 6 we
present the plot of energy versus surface area for all bubbles
in the systems for r=1000 MCSs and t=4000 MCSs, before
and at the scaling regime of an extensive run beginning with
lognormal volume distribution. The linear fit is almost per-
fect and yields (E)=5.94(s)+81.87.
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FIG. 6. Average energy versus average surface area of indi-
vidual bubbles at two specific times of an extensive run beginning
with 2.25 million bubbles with lognormal volume distribution. T’
=1000 MCSs (open squares), before the system has attained the
scaling regime, and 7=4000 MCSs (solid squares), already in the
scaling regime. The solid, gray line is a linear fit (correlation coef-
ficient R=0.998 65), (E)=5.94(s)+81.87.
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FIG. 7. Evolution of the average number of faces (f) (lower
plot) and higher order moments (upper plot) for different system
sizes (open circles: medium; solid lines: large simulations) and ini-
tial conditions (normal, lognormal, and bidisperse). Observe the
difference in the scales of the plots, and the vertical log scale in the
upper plot.

III. RESULTS

A. Evolution of disorder

We have monitored different physical parameters, charac-
terizing the disorder or dispersion of the system. We begin
discussing the evolution of topological measures, represented
by the first moments of the distribution in number of faces,
as shown in Fig. 7, for different system sizes and different
initial conditions, built as explained above. Observe that
even the fourth order moment (a quantity very sensitive to
details of the distribution) presents reasonably small fluctua-
tions, thanks to the large number of bubbles.

The average number of faces stabilizes around 13.7. The
second moment u,={(f—(f))?), however, stabilizes at values
higher than reported in the literature; we find u, ~37. At late
times the higher moments, wu;={((f—{f))?) and u,=((f
—(f))*, typically stabilize at, respectively, 500 and 15 000
for the large bidisperse and normal initial condition and 350
and 9000 for the lognormal run.

The evolution of the systems may also be plotted using
the time as an implicit parameter. In Fig. 8§ we have plotted,
as a function of w,, the average number of faces (f) and a
conventional measure of volume polydispersity, ox/R, de-
fined as

o WR=(R)D " - "))
R ® @
)1/3

(4)

where we have defined for each cell R=(37v/4)">. Observe
that this polydispersity measure does not use surface or
length measures, thus not being affected by the underlying
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FIG. 8. Trajectories of the large simulations in the ({f),u,)
plane and in the (okx/R, u,) plane for different runs (zoomed ver-
sion in the right columns). Thick, black solid line stands for theo-
retical predictions as explained in Sec. IV.

lattice. Different initial conditions imply very different initial
states, represented by points far apart in the plots, but all tend
to a small region centered around (f)=13.7 or ox/R=0.43,
and u,=37. This suggests that there is an asymptotic state
independent of initial conditions. The thick, solid line in the
upper plot on the right stands for predictions of the model
discussed in Sec. IV, that has one free parameter, determined
by the average number of faces.

For the lower plots in Fig. 8 we do not present the theo-
retical predictions, which are typically of the order of 0.6,
about 25% larger than the values obtained in the simulations.
We discuss this point further in what follows. These trajec-
tories show a correlation between o/R and u,, indicating
higher volume dispersions for higher topological disorders.

Several other dispersion parameters are usually defined
as, for example, the ratio u,/{f)> and polydispersity p, de-
fined as suggested in Ref. [17]:

2/3
p=§ZZ—,3>—1. (5)

Evolution of these three parameters, namely ok/R, p, and
o/ {f)?, are shown to approach a constant value in Fig. 9,
consistently with a scaling regime.

Figure 10 present 2D cuts and 3D images for the different
extensive simulations. The 2D cuts (Fig. 10 left and central
columns) correspond to a plane parallel to two principal axes
of the lattice and are taken at two different times: 1000
MCSs and in the scaling regime, 9000 MCSs. The 3D im-
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FIG. 9. ax/R, u,/{f)?, and polydispersity p as functions of time
for large systems and different initial conditions.

ages are cubes representing 1/8 of the whole system. Ob-
serve that even starting with different initial conditions, the
final structure of all foams is pretty much the same.

In summary, the simulations presented here seem to indi-
cate that they reach a unique scaling regime, starting from
very different initial conditions. The relaxation times are
very long and extensive simulations are required to guaran-
tee that when the scaling regime is finally reached, the sys-
tem still presents a large number of cells to avoid finite size
effects and to yield reasonable statistics. In the sections that
follow we present the results concerning different distribu-
tion functions for the scaling regime.

B. Evolution of geometrical distributions functions

By geometrical distribution functions we mean distribu-
tions in dimensional variables as, for example, volume, sur-

FIG. 10. 2D and 3D extensive simulation images for different
initial volume distributions: row (A) normal, row (B) lognormal,
and row (C) bidisperse. Left and central columns show 2D cuts for
T=1000 MCSs and T=9000 MCSs, respectively. Right column
shows a portion of the froth at 7=9000 MCSs.
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FIG. 11. Evolution of the average values of volume v, v'/3,
surface area s, and edge length [ for the lognormal large run. The
error bars represent standard deviation of a normal distribution in
the logarithm of the corresponding variable, or 67% of the data
points assuming the distributions are lognormal.

face area, edge length, and bubble size, here defined as v!3.

The evolution of the spread of these distributions may be
followed in the plot of the average values as a function of
time in Fig. 11 with lognormal error bars, given as the stan-
dard deviation of a normal distribution for the logarithm of
the corresponding variable. The validity of such an assump-
tion is checked in the next section.

We now show the evolution of various distributions. In
order to estimate when the scaling state is reached, in Fig. 12
we plot the probability distributions P of nondimensional
quantities at different times for three different initial condi-
tions of extensive runs. The nondimensional quantities we
followed are the relative volumes v/{v), v'3/{v'®) (more
sensitive than v to details in the distributions [12]), surface
area s/(s), and edge length //{I). All distributions are invari-
ant after 5000 MCSs, consistent with a scaling regime. Also
in Fig. 12 we present a plot of the scaling regime distribution
functions for different initial conditions, which indicates that
the same regime can be reached starting from different con-
figurations.

In order to investigate further the scaling state, we have
performed an average of distribution functions over different
times in the scaling regime: we considered configurations
every 25 MCSs in the time interval between 6000 and 9000
MCSs for normal, lognormal, and bidisperse initial condi-
tions. This procedure reduced fluctuations and allowed some
conclusions. In Fig. 13 we present the scaling regime aver-
ages for the v/(v) distribution in linear and log-log (inset)
plots, together with the theoretical prediction and a parabolic
fit in the log-log plot. The collapse of the simulation data of
different runs is perfect, consistent with a unique scaling
regime, regardless of initial conditions. The theory agrees
with simulations and the fit evidences the lognormal charac-
ter of the relative volume distribution in the scaling regime.
Relative surface area and relative size distribution functions
are more sensitive to details in modeling. Their scaling re-
gime averages are shown in Fig. 14, showing a reasonable
agreement with theory.
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FIG. 12. Successive distributions for different initial conditions of nondimensional (relative) geometrical quantities: (a) volume, (b)
equivalent radius v'3, (c) surface area, and (d) edge length of the bubbles. Each curve corresponds to a different time, as indicated in the
legends. For clarity, each figure is split in 4, one for each different initial condition and a fourth one containing the scaling regime

distributions reached from the three different initial configurations.

We present in Fig. 15 the results for the distribution for
A/{A) of the relative areas of cells in 2D cross sections of the
three-dimensional simulations, together with experimental

1.5 1E
i 0.1
0.01
1.0 .
o
s o Normal
05+ & A Bidisperse Theory _
ib —
0 1 2 3 4 5

FIG. 13. Scaling regime average of relative volume distribution
function for three different initial conditions together with the the-
oretical prediction and a parabolic fit in log-log plot (inset).

and other simulations data as presented in Ref. [12]. To ob-
tain these distributions we have considered, at a given in-
stant, 15 slices in each one of the three principal axes of the
lattice, calculated the average area of the cell 2D cross sec-
tion, and then obtained the distribution in relative areas. In
Fig. 15 we present the results for r=9000 MCSs for the bid-
isperse and normal extensive runs, together with the histo-

T T T

o Normal
O Lognormal
Bidisperse |
Theory

0.8}

04

1 2 30 1 2 3
1/3 1/3
v /<y > s/<s>

FIG. 14. Scaling regime average of relative size (v'’?) and sur-
face area distribution functions for three different initial conditions
together with the theoretical prediction.
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FIG. 15. Distribution of relative area A/{A) in 2D sections of

different three-dimensional structures.

gram as obtained in Al-0.01% Mg as obtained by Fradkov et
al. [36], in Potts model 3D simulation by Anderson er al.
[25], and in 3D surface evolver simulation by Wakai ef al.
[12]. The solid line is the transformation of Louat’s predic-
tion for these distributions, which gives an exponential.
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C. Evolution of topological distributions functions

Since topological quantities are dimensionless, we plot
raw data without rescaling. In Fig. 16 we present the results
for f-dependent quantities: relative number of f-faced cells
P(f), average relative volume (v),/{v), surface area (s),/(s),
and edge length (l)//(l) of f-faced bubbles. Again, we ob-
serve that the functions become time independent for late
times, in agreement with a scaling regime.

We now address Fig. 17 where we have plotted the scal-
ing averages for the relative surface area and edge length of
f-faced cells. The edge length is fairly linear in f. For a
single, cell Euler relation states that e+2=v +f, where e, v,
and f are, respectively, the number of edges, vertices, and
faces of the cell. Since 2¢=3v, then e=3f—-6, that is, the
number of edges of the cells depends linearly on the number
of faces. The linear relation in the plot indicates then that the
average length of a given edge is uniform in the foam. This
is consistent with the fact that bubbles with different f share
edges.

Faces are also shared by neighboring cells and one should
expect that the average surface area per face should not
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500 e 5000 . . ", Vv - -'!'-l )
""" 1000 B I AT A
101 SRE 72
- memene 5000 A ge 2,
R O . " 8000 o » Normal 2
e, L \4 0 _z//ﬂ
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FIG. 16. Successive distributions of f-dependent quantities: (a) relative proportion, (b) average volume, (c) average surface area, and (d)
average edge length of f-faced bubbles. Each curve corresponds to a different time, as indicated by the legends. For clarity, each figure is
split in 4, one for each different initial condition and a fourth one containing the scaling regime distributions reached from the three different

initial configurations.
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FIG. 17. (s);/(s) and (I);/(l) as functions of f, averaged over
successive configurations in the scaling regime.

strongly depend on f, yielding a relation between f and
(s)¢/(s) not very far from linear. Figure 17 shows that this is
true for f>15 (the deviation for f>50 is probably not sig-
nificant, given the small number of bubbles concerned). In
Fig. 17 we also show a fit to (s),/(s), where we have aver-
aged over the simulation data up to f=45. We have extrapo-
lated to f>45 using a straight line, to be used as input data
for the theoretical model presented in Sec. IV, consistent
with the assumption of uniform face areas for large f.

Figure 18 presents (v),/{v) averaged over scaling regime
configurations, as explained above, together with theoretical
predictions. Consistently with the fit for (s)//(s) used as in-
put to the model, the deviation from the experimental data
happens for f>45. In the inset, we present a log-log plot of
the same data. Both a fit using a f** power law, and the
theory (which does not go as f”'*) describe well the simula-
tion data for f<<55. This data is in good agreement with
Surface Evolver simulation data by Kraynik and collabora-
tors [33] for random foams.

Figure 19 shows the scaling average of the probability of
f-faced cells. Theoretical predictions agree well with simu-
lation data. The deviations for small f are probably due to

25 o Al
20 | -
10t
A 151 J
v | 2257942 61 |
’;w 20 40 60 80
g 10r 0 .
—0O— Normal
5L —O— Lognormal J
—A— Bidisperse
Theory
0 1 L 1 N i
0 20 ; 40 60

FIG. 18. {v),/{v) as function of f averaged over successive con-
figurations in the scaling regime, together with theoretical predic-
tions. In the inset we present the log-log plot, including a power law

1,
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FIG. 19. P(f) averaged over successive configurations in the
scaling regime, together with the theoretical prediction. In the inset
we present the log-log plot.

lattice effects that are more important for cells with few
faces. Observe that the long time distribution presents a long
tail and is not peaked at the average face number 13.7, but
rather around 10.5, consistently with a high value of u,.

Another dimensionless characterization is the topology of
the faces themselves: a bubble may present faces with differ-
ent numbers of edges. We have thus monitored the spread in
the number of edges of the faces of a given bubble. For each
bubble, we calculate the average number of edges per face
epf and the standard deviation o,,, of the distribution of
edges for the cell. We then may obtain the distribution in the
average number of edges and the average standard deviation,
presented in Figs. 20.

The average number of edges per bubble for f-faced
bubbles is fixed by the Euler theorem [5]), and is thus a
straight line [Fig. 21(a)]. Conversely, the standard deviation
of number of edges per bubble [Fig. 21(b)] is not con-
strained, and tends to saturate at large f; it does not depend
much on time, even at the beginning.

D. Evolution of correlations

Since we are dealing with arbitrary units for surface ten-
sion and MCSs (assimilated to the time, for the sake of sim-
plicity), we define the growth rate of f-faced bubbles up to a
prefactor as

G(f) o (™" P (dvrdr))y, (6)

where dt=1 MCS. We perform the average over the f-faced
bubbles that do not undergo a change in their number of
neighbors during this MCS.

We present in Fig. 22 the plot of the average growth rate
of f-faced cells for different times for each run with different
initial conditions and a fourth plot with the scaling configu-
rations for the different runs. Again all runs indicate a con-
vergence to a unique scaling state. However, prior to the
scaling regime, the growth rate may present different shapes.
There is a minimum in the growth rate for low f-faced
bubbles. In the scaling regime this minimum happens exactly
for f=4, but before scaling this minimum may happen for
/=5 or 3. Bubbles with f<<4 are not in equilibrium, do not
obey Plateau’s rules, and are absent in the scaling regime, in
agreement with the right lower plot in Fig. 22.
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FIG. 20. Distributions of relative number of edges per face, and
its relative standard deviation. For clarity, each figure is split in 4,
one for each different initial condition and a fourth one containing
the scaling regime distributions reached from the three different
initial configurations.

In Fig. 23 we present growth rate scaling averages for the
three different initial conditions. To estimate the spread of
growth rates at the scaling regime, we have also plotted
points representing all individual bubbles for 7=8000 MCSs
for the three initial conditions. The inset shows a zoom
around f,, the point at which the growth rate scaling aver-
ages cross the abscissa axis. We observe that 16 <<f,<<17,
close to our value of {f2)/{f)=(u,+{f)*)/{f)=16.4. This is
reminiscent of Glazier’s suggestion that f=(f>)/{f) [20],
even though our simulations do not obey his assumption that
(v)f goes as f°.

We also address the possibility of the growth rate depend-
ing on volume rather than on number of faces only. In Fig.
24 we plot the growth rate of f-faced bubbles as a function of
v/ <U>f for different values of f. These data are taken from a
large simulation with initially bidisperse volume distribution,
already in the scaling state. The growth rates are averaged
taking the system configuration every 500 MCSs from ¢
=6000 MCSs to t=9500 MCSs. Figure 24 shows that there is
not a marked tendency, indicating a volume independent
growth rate for fixed values of f.

Finally, we present in Fig. 25 the first neighbor correlation
in number of faces, that is the 3D equivalent of Aboav-
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FIG. 21. Relative average number (e); (a) and its standard de-
viation (o), (b) of edges per bubble of f-faced bubbles. Each figure
is split in 4, one for each different initial condition and a fourth one
containing the scaling regime distributions reached from the three
different initial configurations. The lower, right hand side plot in (a)
also shows the Euler relation ([5]), e=3f—6 as a gray dashed line.

Weaire law, here given as the plot of the scaling average of
Hm); vs f, where (m); is the average number of faces of
neighbors of a f-faced cell. In the same figure we have also
plotted f{m); vs f, where (m) for individual bubbles of nor-
mal, lognormal, and bidisperse runs at 8000 MCSs. A linear
fit of the averages is given as f(m);=14.47f+26.45. The
agreement is almost perfect.

Following Jurine et al. [15] we check whether we can
generalize the 2D formula proposed by Weaire [37] for the
first neighbor correlation in number of faces:

fm)p=((f) = a)f + (a{f) + wo), (7)
where a is a parameter. To independently estimate a we have
used the formula proposed by Kraynik [38]:

2 2
m)p = )
a=(f)- (8)
M2

in the following configurations: lognormal, 7=3500, 4000,
and 4500 MCSs, and finally bidisperse, 7=6500, 8000, and
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FIG. 22. Average growth rate of f-faced bubbles [Eq. (6)] at
different instants, in arbitrary units. Each figure is split in 4, one for
each different initial condition and a fourth one containing the scal-
ing regime distributions reached from the three different initial
configurations.

9500 MCSs. They all produced values of a varying from
—-0.93 to —0.73, yielding angular and linear coefficients for
the linear plots, respectively, in the intervals (14.44, 14.71)
and (24.35, 27.15). These linear plots are shown in the inset
of Fig. 25, together with the scaling averages.

IV. THEORY
A. Model

1. Motivations

The preceding section shows that a foam which has coars-
ened long enough attains a universal regime regardless of its
initial condition. In what follows, we assume that it is fully
disordered, that is, it maximizes its entropy within the con-
straints due to geometry and topology.

In two dimensions, the maximum entropy hypothesis led
to strict predictions regarding topological distributions, in
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FIG. 23. Growth rate scaling averages of f-faced bubbles for
three different initial conditions (solid lines) in arbitrary units and
the plot of growth rate for all bubbles at 7=8000 MCSs for each
run. The inset shows a zoom around f, for the scaling averages.
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FIG. 24. Growth rate scaling averages as function of v/(v) for
different values of f. Larger fluctuations happen for lower probabil-

ity of f.

good agreement with well known experimental observations,
such as the 2D Aboav-Weaire law [39-44].

Since the structure of foams is determined by energy
minimization [3,5,34], it is natural to refine this approach by
including energy as well as entropy [45]. This is in fact a
requirement if we want to determine not only the topological
but also the geometrical distributions. This task had been
performed by de Almeida et al., in two dimensions [46], then
in three dimensions [47]. The results agreed well with the
available data from 2D [48,49] and 3D experiments and
simulations [12].

Accounting for both energy minimization and entropy
maximization means minimizing free energy. Competition
between energy and entropy is tuned by one free parameter,
formally an effective temperature. This parameter, noted Tz
is a free parameter not physically related to room tempera-
ture (see Sec. V B) in the sense that it is related to the aver-

Normal

Lognormal
750 [=— Bidisperse
Linear fit =
14471+ 2645

FIG. 25. Correlation between the number of faces of a cell and
of its neighbors in the scaling regime. Solid lines: scaling averages
for normal, lognormal, and bidisperse initial conditions, and for a
linear fit. Asterisks: individual bubbles at 7=8000 MCSs for nor-
mal, lognormal, and bidisperse. Inset presents solid lines as scaling
averages for normal, lognormal, and bidisperse, and other line
styles represent fits using a as calculated by Eq. (8) for different
configurations in the scaling regime (see text).
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age energy of the bubbles instead to their molecular compo-
nents. If we also add an assumption regarding size-topology
correlation, we have enough constraints to fully determine
the structure of the foam.

Here, we refine de Almeida et al’s theory to compare
with simulations. Our main improvement is that the simula-
tion results provide the theoretical model with a precise cor-
relation between (s), and f (that is, how the surface area of
the bubbles increases with their number of faces), making an
arbitrary guess unneeded.

2. Ingredients of the model

We start by considering a collection of N bubbles, which
are characterized by their number of faces f, surface area s
and volume v. Although volume, surface area, and number of
faces are independent variables, they must respect a nonholo-
nomic constraint which can be expressed by the maximum
volume v,,,(f,s) that a f-faced bubble of surface area s may
present, which is given by

Umarlf8) = k(f)s*?, )

where k(f) is a form factor, that depends on the number of
faces of the bubble.

As bubbles in a soap froth are supposed to obey Plateau
rules, in this model we obtain k(f) from isotropic Plateau
polyhedra (IPP) which minimizes surface for a given volume
subject to the constraint of obeying Plateau rules. In this
case, Hilgenfeldt et al. [13] estimated the ratio S
=s/(36mv?)'"> as

0.01743 0.002 28

B(f) ~ 1.0813 + I (10)
yielding a form factor k(f) as
1
k(f) = eyt (11)
V3673

Since geometry, and not only topology, plays an essential
role in the froth structure and evolution, we have chosen to
minimize a free energy, rather than a pure entropy ([42,43]).
This choice is based on at least two reasons.

The first reason is purely geometrical. Neighboring
bubbles (even with different number of faces) share a face,
as well as its corresponding edges. This trivial correlation
between neighbors induces nontrivial constraints on the pos-
sible functions that might describe the average surface area
of f-faced bubbles.

The second reason regards energy, which drives the foam
evolution, and is fully correlated with geometry. By defini-
tion, surface energy is proportional to the surface area of the
bubbles, the prefactor being the surface tension o of a wall
(i.e., two air-water interfaces in the case of soap films):

N
g
=_2 S;. (12)
2i=l

Simulations indicate that the asymptotic regime is statis-
tically invariant under transformations due to the coarsening.
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That is, all dimensionless quantities are left invariant under
both basic topological processes: “T1” neighbor swapping
and “T2” bubble disappearance. In the calculation that fol-
lows, we thus use an equilibrium statistical mechanics for-
malism.

We use a single bubble approximation that allows com-
puting the partition function. This is equivalent to assuming
the bubbles do not interact: this is an “ideal foam” model. As
a consequence, in order to make it possible to build a con-
nected froth, and not just a collection of loose bubbles, we
must introduce some correlation between bubbles [Eq. (16)]
[42,43]. In two dimensions, it is natural to use the correlation
between bubble number of sides and side size (the so-called
empirical “Feltham law” [46,50]. In three dimensions, there
are two possible choices, the correlation between f and either
s [Fig. 16(c)] or [ [Fig. 16(d)]. Both are acceptable, espe-
cially since simulations show that both are independent of
time, even well before reaching the asymptotic state [Figs.
16(c) and 16(d)] moreover, assuming one of these relations
will lead to predicting the other [47]. We choose s because it
makes the calculation much simpler [47], since we can hence
disregard edge length as a relevant variable of the model,
that is, a variable that enters in the dynamical equations.

Euler relation enforces another relation between the aver-
age numbers of edges, of faces, and of vertices [5,6], but
leaves free one parameter, for instance (f). We include in the
model the data from our simulation, that is (f)=13.7 in the
asymptotic regime (Fig. 7). We thus eliminate the number of
edges in what follows.

3. Basic equations

The probability density function of a froth of N bubbles is
defined as a function py, of all variables of the system, that is,

> -

,UN;r[,rz, rn)s
(13)

PN = PN 125 o s SN3S 15525 <o SNV, -

where f;, s;, v;, and 7; are, respectively, the number of faces,
surface area, volume, and center of mass position of the ith
bubble.

We define the following sum operator over the phase

space:
b= fd;l fder E f dSl
Vv

hi=f
f dUN, (14)

f dSNf

where v =k(f;)s3"* is the maximum volume for a f,-faced
bubble of surface area s;, and f is the minimum number of
faces of a bubble. Assuming that the bubbles are undistin-
guishable objects, the entropy is defined as

Ao
S=—kBq)pln(ﬁ>, (15)
where \ has units of [length]®, that is, a power 2 for surface,

3 for volume, and 3 for the center of mass position of each
bubble.
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The probability density p should maximize entropy sub-
jected to the following constraints:

Dp=1,

N
dp, f;=2F
i=1
N
®p2; 8- f)lsi— ()] =0. (16)
i=1

Here the first constraint is related to normalization. The sec-
ond expresses the energy E of the system. The third fixes the
total number of faces in the froth as F, hence fixing the
average number of faces of a bubble as (f)=2F/N. Finally,
the last equation fixes the average surface area of f-faced
bubbles to an input function (s)//(s), that should be taken
from simulation or experimental data, as discussed above.

In order to find the probability density function that re-
spects the constraints represented by Egs. (16), we must
build the thermodynamical potential ¥ which we have to
maximize. It is

N N
p
¥ =—kzPp ln< ) nPp - 77@92 .~ m®Pp2 fi
i=1

- 7/3(f)<1>p2 8(fi= Plsi= ()1, (17)
f i=1

where the 7;’s are Lagrange multipliers associated to the
constraint equations. The resulting probability density func-
tion is

() m) mos
p= (N)\> exp(— 1- ks X exp(— ks 2; s,-)
i—<S>f,.)>

(18)

Xexp(— —Ef,) X ex ( E ()
Bz 1 i=1 kB

with the restriction that v, <k(f;)s?">. Here we have assumed
that the integrals over the center of mass positions is V and
also that N! o NV. The values of the Lagrange multipliers are
determined through the constraint equations (16).

In what follows we simplify the form of the equations by
introducing the simpler notation:

a;=—. (19)

As usual, « is associated to the partition function Z, which
is given by
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QV) , (20)

1+ Z=
et a2

where Q is a reduced partition function, defined as follows:

2 (Oalfs)
0=, j ds f dv
fJo 0

Xexp(— %Us —arf — a3(f)(s - <S>f))

a o

— +tas(f)

_ 3V’7T§1 k(f)
f
E

J5/2 exp[— aof + as(f){s)/].

21

B. Theoretical results

1. Resolution of the equations

Since N=X7 Ny, where Ng is the number of f-faced
bubbles, from Eq (21) we can deduce that the probability
P(f) of a f-faced bubble is

37 k()
4Q \‘0[10' + a3(f

P(f) = J5/2 eXP[— af+ a3U)<s>f]‘

(22)

We can also calculate the average surface area of the
bubbles:

(s)= E{ it
f

Jm exp[— aof + a5(f){s)/].

(23)

Knowing that <s>=E}°P(f)<s>f, and comparing Egs. (22) and
(23), we can determine a3(f):

al(f
2( o 2

That leaves us with two parameters to determine: «; and «,.
We do it by numerically solving the following equations:

* \52
> k(f)(%) exp(— af - %"@f)

as(f) = (24)

712 a o
—Ek(f)( - >) exp(— af - §<s>f),

52
D k(f)( o | exp(— af - %’@f)

> 572 a o
Eﬂcu( s >) exp(— ayf—f@f). (25)

At this point, to solve Egs. (25), we introduce the correlation
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FIG. 26. Functions g and h vs F/N=(f), obtained as numerical
solutions of Egs. (25), from which a; and «, are determined. Also
shown in the figure is the theoretical prediction for wu,.

between (s); and f. More precisely, since the equations use
nondimensional quantities, we inject the relation between f
and (s),/(s), obtained from a fit to the simulation results
(Fig. 17), in the argument of the exponential function. We
then solve numerically Egs. (25) and obtain two monotonic
functions of F/N=(f) (Fig. 26), namely

(E) -
N 2

F

— | =a. 26

8 ( N) 2 (26)
Since, furthermore, o{s)/2=(E)/N, we can write «, and

a, as functions of only the extensive variables E, F, and N.

In principle, the problem is thus solved. The reduced density

function p, is

Olk(£)s3? - 5 s
o= S0 ol )51
Ss
- 2<S>f:|’ 27

where ©(x) is the Heaviside step function. We can now cal-
culate the entropy as

S=kyInZ+k Nh(—F>+2k F (—F> Niky 1 (—V)
= n = n
B BN 578\ N BN

N ( {E) ) kN In| 2T ( )5/25
+— +
2 "B M N2 ) TIEY T gy 5 ) oo

+k Nh(i) + 2kgF (E> (28)
B N Bl'8 N/

where we have used the fact that (E)=0(s)N/2, and that the

functions / and g are functions of F/N only. Here S5, is a
dimensionless function and is defined as

Soanigha
Ssp gexp( ) k(f) o) (29)

Observe that Eq. (28) has the same form as the fundamental
equation of the diatomic ideal gas model in respect to the
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internal energy (E) and volume V. This is a direct conse-
quence of having assumed only surface area energy (neglect-
ing phase energy) and, of the implicit assumption present in
taking the value of the center of mass integrals equal to V
when obtaining the form of the partition function Z as given
in Eq. (20).

Similarly, we also define S, as

oo

4
s4=2exp( of - h”) ZU><@f) (30)
: @ KO\

and S; as

S3=> exp(—gf—h@f>k4/3(f <<s> ) (31)
f (s)

2. Predictions: Energy and geometry

Now that we have determined all Lagrange multipliers,
we can calculate quantities that may be compared with re-
sults obtained from experiments and/or simulations. Since
these equations describe a scale invariant regime, distribu-
tions are expressed in dimensionless units which do not vary
in time, while dimensional quantities as volume, for ex-
ample, are given in units of average surface area (s) taken to
the adequate power.

We start by calculating the average volume of the froth:

812 S,

5\5mSsn

(v)= (s)"2, (32)

where S5/, and S, are given by Egs. (29) and (30). The av-

erage value of the cubic root of volume, (v'/3) is given by
2\2 S
("= ", (33)
57 502

where S is given by Eq. (31).
We now discuss the effective temperature of the froth 7,
which is defined as

1 as 5 Nkp
— =\ =——. (34)
Ty \OE/yp 2(E)
This gives the following equation of state:
5
(E)y= NkB eff> (35)

where the factor 5/2 originates in the five linear dimensions
of the phase space (surface area X volume) of a bubble [Eq.
(15)]. Such an equation of state corresponds to an “ideal
foam,” and simply defines 7,4 as the average energy per
bubble.

This effective temperature is macroscopic and its order of
magnitude is not related to a usual molecular kinetic energy.
As an example, a usual soap froth with bubble diameter of,
say, | mm and a surface energy of 107> N/m has an energy
per bubble of around 1072 X (1073)?=107% J, a small but cer-
tainly macroscopic value. The corresponding effective tem-
perature is around 10" K, not related to the room tempera-
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ture. This is expected, since in a noninteracting system like
the present ideal foam the temperature is not an independent
parameter, and physically corresponds only to the energy.
Observe, also, that as the model has been proposed, bubbles
energy comes only from their surface, regardless of its vol-
ume. So, in practice, even T,z can be extracted from the
simulations.

3. Predictions: Topology distributions

We now present the results for f-dependent quantities. We
start by rewriting the probability of finding a f-faced bubble
as

~ 3565/2 2_,“. X @Z) ((_s>f>5/2
P(f)= 250 Vs <s>i’zexp<—gf—h<s> k(f) )

(36)

where e=2.718 28..., and Q, the reduced partition function,
is given by

3% 2a
s ?<S>5/255/2- (37)

Q:

Figure 19 shows the plot of Eq. (36) for (f)=13.72 and the
corresponding value for u,=37.1 (our numerical results are
not limited in precision) together with the average of simu-
lation data for successive times in the scaling regime for
three different initial conditions. This value of (f) corre-
sponds to h=-1.85 and g=0.69, which we shall take as the
representative values for the scaling state. In what follows
these are the values we shall use to compare with the scaling
regime quantities we have obtained from the simulations.
The agreement is very good, although the peak in the theo-
retical curve is a bit lower.
The relative average volume of f-faced bubbles is

@) _ (@z)mh
w N s (38)

and in Fig. 18 we show the plot of the above equation to-
gether with simulations scaling regime relative volumes of
f-faced bubbles. Finally, it is also possible to calculate the
distributions function in the relative quantities as v/{(v),
s/{s), and v'3/{(v'73):

Pv( ° )—EﬁE <—S>fexp[—gf—/fz@f

W) 3w, T () (s)
é <v>2/3 <L>2/3}
VTRV (39)
s)V_25 (5 to, s )" ( o
F ~‘<<s>>‘ 3 2wss,2§k(f)<<s>) AR
S5s
_2<s>f> (40)

and
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vl/3 <vl/3> v 2/3 v
ol )l )

In Fig. 13 we compare the theoretical prediction for the
relative volume distribution with the simulation data for the
scaling regime. This figure shows a good agreement between
simulation data and theory for large volumes, presenting
some deviations for intermediate and small volumes. In fact,
theory predicts a higher relative number of very small
bubbles. This characteristic is even more evident in Fig. 14
where we have plotted the theoretical prediction for the dis-
tribution of relative size (v'3/{(v'3)) and relative surface
area (s/(s). The conclusion is that the model predicts a
higher dispersion in the size for the bubbles than that ob-
served in the simulations.

In fact we have calculated the average values for all four
polydispersity measures. Not surprisingly, wu,/{(f)>*=0.197
corresponds rather well to the simulation data: the model
correctly predicts the value of u, for a given (f). However,
other predictions for polydispersity measures are p=0.33 and
or/R=0.62 that significantly deviates from simulations re-
sults (compare with the values in Fig. 9 where p=0.20 and
og/R=0.45). Deviations for B are even more dramatic. In
fact, analytical calculations for the average values for f-faced
bubbles yield

3
(B)r= Bem2(N]" - 3B(), (42)

where k(f) is the form factor defined in Eq. (11), and B(f)
refers to the isotropic Plateau polyhedra, corresponding to
the solid line in Fig. 9 and given in Eq. (10). Theoretical
predictions are hence three times higher than the lower limit
for soap bubbles as predicted by Surface Evolver simulations
[33].

This larger size dispersion predicted by the model is a
consequence of the lack of an energy term that would pre-
vent f-faced bubbles with a given surface area s from pre-
senting volumes much smaller than that of an IPP, corre-
sponding to elongated anisotropic cells. This is prevented in
real foams due to the gas phase energy, that resists to a de-
crease in volume due to the corresponding increase in the
bubble internal pressure. A possible solution is to consider a
volume energy term for the bubbles as considered in Ref.
[47]. This may enhance polydispersity predictions but will be
presented elsewhere.

V. DISCUSSION

The agreement between simulation and theory results re-
inforces the confidence on the two models. These two mod-
els, however, have different basic assumptions whose valid-
ity deserves further discussions: while simulation results
stem from questions on the growth rate of individual
bubbles, the theoretical model arbitrarily assumes ergodicity
and specific energy terms. In the subsections that follow we
discuss these items.
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FIG. 27. Comparison between growth rates as obtained in Potts
model simulations here and by Glazier [20], and analytical calcula-
tion by Mullins [10].

A. Discussion of the simulations

We begin by comparing the growth rate of individual
f-faced bubbles (Fig. 27) with the data available in the lit-
erature, up to a prefactor. In Fig. 27(a) we present the plot of
Potts model simulations by Glazier [20] (uncorrected data),
together with our results for early times and for the scaling
regime. This suggests that Glazier’s simulations were not
quite yet at the scaling regime. On the other hand, Mullins’
law for the growth rate of regular 3D bubbles [10] displays a
smoother curve, closer to a G~ \f tendency, that has been
confirmed by analytical or numerical methods for regular
and quasiregular bubbles, [11-16,51] (for reviews, see Refs.
[8.15]). Figure 27(b) shows our results both at an early time
as well as at the scaling regime, rescaled by a multiplicative
constant to fit Mullins curve. Mullins’ predictions agree bet-
ter with our early time results than with our scaling regime.
It is important to understand the causes and consequences of
this difference.

A first step is to compare the two different softwares that
have been used to produce the curves: the Potts model on
one hand, and Surface Evolver [35] for (quasi) regular
bubbles on the other. It is thus natural to examine whether
one model can have artifacts. Since Surface Evolver is very
close to analytical results, the suspicion falls on the Potts
model.

The Potts model has been widely used and validated on
equilibrium or quasistatic simulations of foams. It is less
precise than Surface Evolver for individual bubbles, but pro-
vides better statistics by allowing the manipulation of a
larger number of bubbles. We emphasize that the discrepancy
between different results is larger than the incertitude coming
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from discretization effects in surface area measurements or
from statistical dispersion.

In fact, as discussed in Sec. II, there is an important dif-
ference between the Potts model and Surface Evolver which,
in fact, also exists between grains and foams: surface tension
is anisotropic in grains (as in Potts), while being isotropic in
foams (as in models using Surface Evolver or the theoretical
model presented here). Furthermore, together with discreti-
zation effects on the surface measure, this anisotropy leads to
a peculiar surface area minimization that does not yield a
sphere as the 3D figure with the least surface area for a given
volume. If we are interested in foams rather than in grains,
Surface Evolver is thus more adapted.

A more fundamental difference could originate in the fact
that in 3D Mullins’ law the growth rate of individual bubbles
is not a function of f only: although weakly, it does depend
on the detailed properties of the bubbles being slightly dif-
ferent for ideally regular bubbles as compared to irregular
real ones. In fact, there is a distribution of growth rates: a
cloud of points and not a simple line (see Refs. [13—15] and
Fig. 23).

Consequently, to obtain a realistic plot for the average
growth rate of f-faced bubbles, it is necessary to have both a
very large number of bubbles and a long coarsening time
requirement which are both fulfilled in the present work.
Moreover, as any other simulation of a whole disordered
foam [12,15], our simulations automatically satisfy the ex-
perimental constraint that the total volume is conserved dur-
ing the coarsening. In analytical models this is a difficult
point to check, although Mullins [10] finds a good agree-
ment, using experimental distributions of the number of
faces. On the other hand, when the growth rate is determined
from instantaneous pressure differences on regular or quasi-
regular bubbles [11,14,16,51], there is not a way to enforce
or check total volume conservation.

Nevertheless, this whole discussion might become use-
less. In fact, the main question might be the following: If
there was an artifact affecting the individual growth rate in
the Potts model, how would it change the results presented
here? Would they be meaningless, or just marginally af-
fected? Rigorously answering this question would require to
us simulate a foam, starting with a single initial condition,
but coarsening with different enforced individual growth
rates. Experiments with large bubble numbers [24] might
also contribute the answer to this question in the future.
However, the fact that different initial conditions tend to-
wards the same state, that this state agrees with our model of
a disordered foam, and that our results are compatible with
the ones available on the literature, make us confident that
there is no major surprise to expect.

B. Discussion of the model

We analytically model a disordered foam and verify that
the results agree with those of the simulations of a scaling
state. With respect to Refs. [46,47], we have considered
fewer constraints. Especially, in the present version of the
model we follow what happens in the Potts model simula-
tions and do not include any volume energy term. We also
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use simulation results to feed the model with all parameter
values, paying special attention to the geometrical correla-
tion between variables: the average relative surface area of
f-faced bubbles, (s)/(s), the maximal volume v,,,,(s,f), and
the minimal number of faces f,,;,. Even the effective tem-
perature T, can finally be taken from the simulations, so
that there is no free parameter left. These are a small con-
ceptual change, but in practice they imply completely recal-
culating the distribution functions.

We also reinterpret the role played by Lagrange multipli-
ers a; and a,, giving a correct definition for effective tem-
perature, allowing negative values for «;. This is so because,
as opposed to usual statistical mechanics models, here tem-
perature (as thermodynamically defined through the partial
derivative of entropy in respect to energy) is not simply the
inverse of the Lagrange multiplier associated to the energy
constraint. From Eqgs. (16) and (34) we can write

2 o(s)
eff — SkB 2 ’ (43)
which, during the coarsening, is always increasing. Further-
more, observe that functions & and g [Egs. (26)] are func-
tions of F/N only, and are fully determined by imposing a
defined value for (f).

In fact, bubbles with different numbers of faces have dif-
ferent average surface area, and hence different average en-
ergy. The whole froth acts as a mixture of different kinds of
particles, one kind for each number of faces. In this case, the
exponent h(s),/(s) plays the role in Egs. (20) or (21) of the
ratio of a chemical potential to the temperature. Chemical
potentials can be negative, provided they do not cause any
unphysical divergence.

We believe these modifications yield significant improve-
ments. First we have one less parameter to deal with. Sec-
ond, we can obtain higher values of w,, consistent with simu-
lation values, yielding more adequate distribution functions.

The present “ideal foam” model might be used as a sound
basis over which we could design future refinements. These
refinements should consider the introduction of a volume
energy term, aiming at decreasing the probability of finding
high B cells, that is, bubbles with high surface area for a
given volume and number of faces.

VI. CONCLUSION

A. Summary

Our simulations establish a coherent picture, consistent
with the literature, and with an analytical model of a disor-
dered foam which accounts for energy, entropy, and a param-
eter tuning the balance between them. Starting from different
initial conditions and coarsening during a long transient,
foams or grains tend towards the same universal state. This
state has a unique distribution of topological and geometrical
quantities, as well as of their correlations. The distribution
includes a significant number of bubbles up to 60 faces, and
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an almost linear correlation between the number of faces and
edge lengths of the bubbles. In this state, bubbles with 16
faces or less shrink, bubbles with 17 faces or more tend to
grow, resulting in stationary distributions and presenting, as
expected, an overall increase in the average bubble size as
12, due to bubble disappearances.

Such studies require enough bubbles in the initial foam,
and enough CPU time, to satisfy three constraints: enough
time for the transient to end and reach the scaling state, then
enough time in the scaling state itself to characterize its
properties, and enough bubbles at the end to avoid spurious
finite size effects. In the case of the Potts model, we satisfy
the three constraints simultaneously, if we manage to have
around 5000 bubbles when the foam enters the asymptotic,
statistically scale-invariant state (this is 450 times less than at
the beginning). It is not clear whether this number will be
smaller for other simulation techniques, or for experiments,
which up to now still do not reach the scaling regime [24].

B. Perspectives

This work might open different perspectives. We do not
study in detail the effect of initial conditions on the coarsen-
ing. Numerically, the transient should be as short as possible;
even by starting from an already well-coarsened foam, the
transient is just short enough for us to proceed. Starting from
an unfavorable case (especially from an ordered state) could
be untractable with our present tools. Analytically, we as-
sume from the beginning that the system is already in the
scaling state, and do not touch the point of how the distribu-
tions relax towards this state. Can we prove the scaling state
exists and is reached whatever the initial conditions? This
would require us to develop a formalism equivalent to non-
equilibrium thermodynamics. An interesting alternative
would be to extend the 2D master equation derived by
Marder [52] to the 3D case.

It could also be interesting to see whether we can find in
three-dimensions an equivalent of the 2D “Lemaitre law,”
which states that entropy minimization [42-44] predicts a
strong correlation between the second moment u,(n) of the
side number distribution, and the probability P(6) of hexa-
gons: for 0.34<P(6)<0.66, w,(n)+P(6)=1; for 0.66
<P(6)<1, 2mu,(n)P(6)*=1.

In the future, we could perform experiments or simula-
tions on moderately wet foams. We might determine whether
there exists a scaling state for systems intermediate between
the present scaling state, for completely dry foams, and the
scaling state known in the other end, the completely wet
bubbles (Ostwald ripening [53]). More generally, it would be
interesting to replace the present study in the more general
frame of coarsening systems [54].
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