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Two rubber balloons: Phase diagram of air transfer
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Two identical rubber balloons are partially inflated with @i different extentand connected by a hose
with a valve. It is found that depending on initial balloon volumes, when the valve is opened the air will flow
either from the largegfuller) balloon to the smallefemptiep balloon, or from the smaller balloon to the larger
one. The phenomenon is explained in terms of the nonideal rubber elasticity of balloons. The full phase
diagram for the air flow dynamics is constructed.
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I. INTRODUCTION that the work necessary for the transfer is bounded from
. . . low
Consider two identical rubber balloons, the same ones a%e ow by

used at children’s parties, filled with air and connected by a
hose with a valve. For simplicity, we shall approximate the
balloons by spheres. Suppose that the larger balloon, the one
that has been inflated more, has radR¥sand contains, From thermodynamics
moles of air, while the smaller one has radRfsaand contains
ns moles of air. When the valve is opened which balloon is dE =TdS - PdV; + uidn, (4)
going to grow and which will shrink? It seems almost obvi-
ous that the larger balloon should shrink, while the smalle|and
one should grow. This, however, is not what is often found. _ _
For some balloon sizes the air flows from the larger balloon dE =Td3 - PdVi + oA, ®)
to the smaller one, but for other sizes the direction of the ai(/vherev{ is the volume of rubbe; is the surface tensior,
flow is reversed. What can explain this seemingly counterinis the surface area, ang is the chemical potential of gas
tuitive behavior? inside the balloon.
As a leading order approximation we can consider rubber
to be incompressible, so thal/;=0. Substituting Eqs(4)
Il. THERMODYNAMICS and(5) into Eq.(3), we obtain

When the valve of the hose connecting the two balloons is
opened, the direction of air flow is determined by the two
laws of thermodynamic$l]. Suppose thatin=-dn,=dn
moles of air are transferred from the bigger balloon to theror a spherical balloon, the variations in the volume and in
smaller one. The work needed to accomplish this is deterthe surface area are related by
mined by the first law of thermodynamics,

dvi _R
>

dW=TdS+ > (dE +dE + PidV)), (1) dA -

i=s,b

whereS,, Po, and T are the environment entropy, pressure,Wh"e the difference between the internal and the external
and temperatures;, P;, andV; are the internal energy, pres- Pressures is governed by the law of Laplath
sure, and volume of the gas inside the two ballobnl,s;

dw> 'E (dE +dE - TdS-TdS + PodV).  (3)

i=s,b

dW> > [(Po= P)dV; + oidA + wdn]. (6)

i=s,b

()

and dE is the internal energy of the balloon rubber mem- P, - Py = 2_‘7_ (8)
branes. The second law of thermodynamics requires that R
d$+dS +dS+dg+dS =0, (2) Substituting Eqs(7) and(8) into Eq.(6), the amount of work

necessary to accomplish the transfer of air is
where § and § are the entropy of gas and of the rubber y P

membrane of balloon dW> (us— pp)dn. (9)
Since the transfer ofin moles of gas between the two . ] .
balloons with finite pressure difference is an irreversible pro- For a gas at fixed temperature, the Gibbs-Duhem equation

cess, the total entropy of the universe will increase. It followsl2] is
_VidPi+nid/.Li:0, (10)
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V.
T— F, (11

Ik
aP

JE
—| =0. (17
IAlvT

Using the ideal gas equation of state and integrating, thdhis equation should be compared to a similar equation for
chemical potential inside each balloon is found to be the ideal gas—the internal energy of an ideal gas is indepen-
dent of the volume that it occupies. Clearly, this is not cor-

P, rect for real gases, but serves as a very good approximation
Mi = po+ RTIn B/ (12)  for a gas at low density. Similarly, Eq17) holds only for
0 “ideal” rubber.

where uq is the reference chemical potential at atmospheric The Flory theory(3] allows us to calculate the change in
pressure. Inserting EGL2) into Eq. (9), the amount of work entropy of an elastic object during a deformation. Suppose

necessary to transfein moles of gas from the larger balloon that the rubber sheet has dimensidnsL,, andL, and that
to the smaller one is after the deformation the new dimensions &ge,, A\\L, and

L, then

P
dw> RT In(P—s)dn. (13) AS=-KN+ A+ N2 -3 INANAN)],  (18)
b
wherek is a constant related to the number of chains and the

require any external workdW=0. For the specific case of topological structure of the polymer network. If rubber is

two interconnected balloons this will be the case if the rowSUbj(.aC.teq to a not very high stress it is reas_onable to assume
of air is from the balloon with high internal pressure to thethat It |s_|ncompre53|ple, SO th?‘w\y}‘z'l' This me_ans_that
one with low internal pressure. Furthermore, since the therl©" 2 u_mforzm isotropic stress in the-y plane, A=A, =\
modynamics requires thau/oP >0, see Eq(11), this con- andA,=1/\". Equation(18) then simplifies to
clusion holds for nonideal gases as well. oA A(z)

Although the calculation was performed for spherical bal- AS=- k{— +— - 3] , (19

o . . . . 2
loons, it is evident that the conclusion concerning the direc- Ao A

tion of air flow, Egs.(9) and (13), does not depend on the . . . .

specific balloon shape. On the other hand, if the same ba]’-"hefr.GAiJ IS t?e surface Iar_ea_ prior to the deforrr;]atmndw}d

loons are filled with a heavy gas and are placed at differenwe Inal surtace area. It is important to note that a deforma-
tion of an elastic body results in a decrease of its entropy.

heights in the gravitational field, the flow of air will no Mi icallv. this | f the reducti fth
longer be governed simply by the difference in internal pres- Icroscopically, this IS a consequence ot the reduction of the
conformational volume accessible to a stretched polymer.

sure between the two balloons. Nevertheless, while(Es3). L . .
will lose its validity, Eq.(9) will remain correct; however, i%%sé'rtitﬁggeﬁg(w) into Eq. (16), the surface tension of a

the chemical potential of gas will have to include a gravita-
tional contribution as well.
o= K|:

Transfer of gas will occur spontaneously if it does not

AS
1- relt (20
lll. RUBBER ELASTICITY
) ) ) where k=2KT/ A,.
As air enters into the balloon, its rubber membrane e expect Eq(20) to work reasonably well up to exten-

stretches and becomes tense. The Helmholtz free energy ofsgons on the order of 100%. If the balloon is inflated beyond

rubber sheet is this “ideal” limit, deviations are to be expected. In general
then, the stress-strain relation for a rubber balloon of radius
F=E-TS (149 Rcan be written as
If the sheet is subjected to a strassits internal energ\e RS R
will vary in accordance with Eq5), and its Helmholtz free o(RRy) = «{ 1 )5 ) (21)

energy as
where R, is the balloon radius prior to inflation, and the
dF=dE-TdS-SdT=-PdV-SdT+odA. (15  scaling functionf(x) governs the crossover from the ideal
_ _ rubber regime to the nonideal one. The sdlepecifies the
The surface tension of the sheet is then balloon size at which its rubber starts to behave nonideally.
Here we use the simplest form of the crossover function,
JF
dA

JE

_ _1 95
vt OA

VT IA

o=

Vv, T

(16) {1 for O0=sx=<1
f(x) = (22

Ax-1)*+1 for x>1,
It is an experimental fad®] that up to fairly large extensions
the internal energy of a rubber sheet is independent of itehereA>0 and o> 1. Note that the functiorf(x) is con-
area, tinuous and differentiable everywhere.
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FIG. 1. Phase diagram fdR'<R_. The 45° line isR°=R".
Arrow shows the direction of the air flux. The big balloon always  F|G. 3. Phase diagram for the ideal rubber ballodis; .
inflates the smaller one.

_ . that if R <R/, then g>0 for all {1/R°<u<1}, and the
Transfer ofdn moles of air from the bigger balloon to the |arger balloon always inflates the smaller one, see Fig. 1. The
smaller one will occur spontaneously if the pressure insidenaximum value of the crossover scat® and the balloon

the bigger balloon is larger than the pressure inside thgjzeR2 for which this behavior occurs is determined by the
smaller balloon. To simplify the notation, let us measure allggt of equations

the lengths in units oR, and defineRs=uR’ with {1/RP
<u=1}. Using the law of Laplace, g'(1;R.,R A =0 (25)

20(R°) _ 20(uR’)
RO urR -’

If g>0, once the valve is open there will be a spontaneous

transfer of gas from the larger balloon to the smaller one. Onvhere the prime denotes differentiation with respeat.to
the other hand, iy<0 the transfer will proceed in the op- ~ We now distinguish two cases:<la<2 anda=2. For
posite direction. From Eqgs(21) and (22) we see that «=2 andR >R, the equation

g(1;R°,R",A)=0 while

, and
g(u;R°,R",A) = P,— Ps=

(23)
g’ (1R, R A =0, (26)

g'(L,R,R,A) =0 (27)
. b o* ZU(Rb) b b i i
lim g(u;RR,A) = —p—>0. (24)  has two rootsR} and RS and a new phase in which small
u—1/RP balloons inflate the larger ones appears, see Fig. 2. This

phase terminates at a critical point, beyond which a large
balloon with sizeR°>R? will inflate any smaller balloon.
For a given crossover function and crossover silethe

Therefore, unless the functiagn has a zero on the interval
{1/R°P<u=1} the larger balloon will always shrink, passing
its air to the smaller balloon. Indeed for a givE®), we find

A A

RS
R*

; : 5 = 1 =

Rb
FIG. 4. The shaded region indicates the parameters for which
FIG. 2. Phase diagrams f& >R, . There are two distinct re- the topology of the phase diagram is the one shown in Figs. 5 and

gimes, separated by a phase boundary terminating at a critical poir; Outside the shaded region the topology is the one presented in
beyond which a large balloon will inflate any smaller balloon. Figs. 1-3. Asa— 2 the shaded area shrinks to zero.
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FIG. 5. Possible phase diagram forly<2. AsR5— R, there Rb
is a topological change with the new phase diagram shown in Fig.
6.

RS
Rs
2

FIG. 6. Possible phase diagram foxxr<2.

location of the critical point is determined by the set of equa‘mside, one of the phases shrinks and disappears and the

tions phase diagram assumes the topology of Fig. 2. Outside the
9(u;RLR',A) =0, (2g)  shaded region, the only possible topologies are the ones pre-
sented in Figs. 1-3.
and bThebtopological change from Fig. 5 to Fig. 6 occurs as
. R;—Rg. As a— 2, the shaded area in Fig. 4 shrinks to zero
’ .pb — 3 1
9'(u;R,R,A) =0. (29 and the topology of the phase diagram reduces to the one
As the crossover scale grows, so do the valueBodind ~ Presented in Fig. 2.
RS. ForR >1,
. IV. CONCLUSION
RS =aR, (30) , ,
We have explored the thermodynamics of air transfer be-
wherea is the root of equation, tween two partially inflated rubber balloons. Surprisingly, for
A Do+l such an apparently simple system a very rich phase diagram
a= M_ (31  9overning the air transfer between the two balloons is ob-
Aa(a-1)*1 tained. We find that depending on the elasticity of balloon

If the crossover scale goes to infinif, o, so that balloon rubber and the initial balloon sizes, the air can flow either
from the larger balloon to the smaller one, or vice versa. The

: ‘ b
[ﬁg blfr;i?lmzyshgiza(;/izs rgﬁagg’sg:nég;ﬁe?gd(%qoc'rg;em t8pology of the phase diagram is controlled by the crossover
P 9 pology p &Cnction which characterizes the deviation of balloon rubber

in Fig. 3. : ;
For 1<a< 2, the phase diagram becomes even more infrom the ideal Flory behavior.
teresting. FOA andR’ inside the shaded area of Fig. 4, Eq. ACKNOWLEDGMENTS
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