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Two identical rubber balloons are partially inflated with air(to different extent) and connected by a hose
with a valve. It is found that depending on initial balloon volumes, when the valve is opened the air will flow
either from the larger(fuller) balloon to the smaller(emptier) balloon, or from the smaller balloon to the larger
one. The phenomenon is explained in terms of the nonideal rubber elasticity of balloons. The full phase
diagram for the air flow dynamics is constructed.
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I. INTRODUCTION

Consider two identical rubber balloons, the same ones as
used at children’s parties, filled with air and connected by a
hose with a valve. For simplicity, we shall approximate the
balloons by spheres. Suppose that the larger balloon, the one
that has been inflated more, has radiusRb and containsnb
moles of air, while the smaller one has radiusRs and contains
ns moles of air. When the valve is opened which balloon is
going to grow and which will shrink? It seems almost obvi-
ous that the larger balloon should shrink, while the smaller
one should grow. This, however, is not what is often found.
For some balloon sizes the air flows from the larger balloon
to the smaller one, but for other sizes the direction of the air
flow is reversed. What can explain this seemingly counterin-
tuitive behavior?

II. THERMODYNAMICS

When the valve of the hose connecting the two balloons is
opened, the direction of air flow is determined by the two
laws of thermodynamics[1]. Suppose thatdn=−dnb=dns
moles of air are transferred from the bigger balloon to the
smaller one. The work needed to accomplish this is deter-
mined by the first law of thermodynamics,

dW= TdS0 + o
i=s,b

sdEi + dEi
r + P0dVid, s1d

whereS0, P0, andT are the environment entropy, pressure,
and temperature;Ei, Pi, andVi are the internal energy, pres-
sure, and volume of the gas inside the two balloonsi =b,s;
and dEi

r is the internal energy of the balloon rubber mem-
branes. The second law of thermodynamics requires that

dS0 + dSb + dSs + dSb
r + dSs

r ù 0, s2d

where Si and Si
r are the entropy of gas and of the rubber

membrane of ballooni.
Since the transfer ofdn moles of gas between the two

balloons with finite pressure difference is an irreversible pro-
cess, the total entropy of the universe will increase. It follows

that the work necessary for the transfer is bounded from
below by

dW. o
i=s,b

sdEi + dEi
r − TdSi − TdSi

r + P0dVid. s3d

From thermodynamics

dEi = TdSi − PidVi + midni s4d

and

dEi
r = TdSi

r − PidVi
r + sidAi , s5d

whereVi
r is the volume of rubber,si is the surface tension,Ai

is the surface area, andmi is the chemical potential of gas
inside the ballooni.

As a leading order approximation we can consider rubber
to be incompressible, so thatdVi

r =0. Substituting Eqs.(4)
and (5) into Eq. (3), we obtain

dW. o
i=s,b

fsP0 − PiddVi + sidAi + midnig. s6d

For a spherical balloon, the variations in the volume and in
the surface area are related by

dVi

dAi
=

Ri

2
, s7d

while the difference between the internal and the external
pressures is governed by the law of Laplace[1],

Pi − P0 =
2s

Ri
. s8d

Substituting Eqs.(7) and(8) into Eq.(6), the amount of work
necessary to accomplish the transfer of air is

dW. sms − mbddn. s9d

For a gas at fixed temperature, the Gibbs-Duhem equation
[2] is

− VidPi + nidmi = 0, s10d
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U ] mi

] Pi
U

T

=
Vi

ni
. s11d

Using the ideal gas equation of state and integrating, the
chemical potential inside each balloon is found to be

mi = m0 + RT lnS Pi

P0
D , s12d

wherem0 is the reference chemical potential at atmospheric
pressure. Inserting Eq.(12) into Eq. (9), the amount of work
necessary to transferdn moles of gas from the larger balloon
to the smaller one is

dW. RT lnSPs

Pb
Ddn. s13d

Transfer of gas will occur spontaneously if it does not
require any external work,dW=0. For the specific case of
two interconnected balloons this will be the case if the flow
of air is from the balloon with high internal pressure to the
one with low internal pressure. Furthermore, since the ther-
modynamics requires that]m /]P.0, see Eq.(11), this con-
clusion holds for nonideal gases as well.

Although the calculation was performed for spherical bal-
loons, it is evident that the conclusion concerning the direc-
tion of air flow, Eqs.(9) and (13), does not depend on the
specific balloon shape. On the other hand, if the same bal-
loons are filled with a heavy gas and are placed at different
heights in the gravitational field, the flow of air will no
longer be governed simply by the difference in internal pres-
sure between the two balloons. Nevertheless, while Eq.(13)
will lose its validity, Eq. (9) will remain correct; however,
the chemical potential of gas will have to include a gravita-
tional contribution as well.

III. RUBBER ELASTICITY

As air enters into the balloon, its rubber membrane
stretches and becomes tense. The Helmholtz free energy of a
rubber sheet is

F = E − TS. s14d

If the sheet is subjected to a stresss, its internal energyE
will vary in accordance with Eq.(5), and its Helmholtz free
energy as

dF = dE− TdS− SdT= − PdV− SdT+ sdA. s15d

The surface tension of the sheet is then

s = U ] F

] A
U

V,T
= U ] E

] A
U

V,T
− TU ] S

] A
U

V,T
. s16d

It is an experimental fact[3] that up to fairly large extensions
the internal energy of a rubber sheet is independent of its
area,

U ] E

] A
U

V,T
= 0. s17d

This equation should be compared to a similar equation for
the ideal gas—the internal energy of an ideal gas is indepen-
dent of the volume that it occupies. Clearly, this is not cor-
rect for real gases, but serves as a very good approximation
for a gas at low density. Similarly, Eq.(17) holds only for
“ideal” rubber.

The Flory theory[3] allows us to calculate the change in
entropy of an elastic object during a deformation. Suppose
that the rubber sheet has dimensionsLx, Ly, andLz and that
after the deformation the new dimensions arelxLx, lyLy, and
lzLz, then

DS= − kflx
2 + ly

2 + lz
2 − 3 − lnslxlylzdg, s18d

wherek is a constant related to the number of chains and the
topological structure of the polymer network. If rubber is
subjected to a not very high stress it is reasonable to assume
that it is incompressible, so thatlxlylz=1. This means that
for a uniform isotropic stress in thex−y plane,lx=ly;l
andlz=1/l2. Equation(18) then simplifies to

DS= − kF2A

A0
+

A0
2

A2 − 3G , s19d

whereA0 is the surface area prior to the deformation andA is
the final surface area. It is important to note that a deforma-
tion of an elastic body results in a decrease of its entropy.
Microscopically, this is a consequence of the reduction of the
conformational volume accessible to a stretched polymer.
Substituting Eq.(19) into Eq. (16), the surface tension of a
rubber sheet is

s = kF1 −
A0

3

A3G , s20d

wherek=2kT/A0.
We expect Eq.(20) to work reasonably well up to exten-

sions on the order of 100%. If the balloon is inflated beyond
this “ideal” limit, deviations are to be expected. In general
then, the stress-strain relation for a rubber balloon of radius
R can be written as

ssR,R0d . kS1 −
R0

6

R6D fS R

R* D , s21d

where R0 is the balloon radius prior to inflation, and the
scaling functionfsxd governs the crossover from the ideal
rubber regime to the nonideal one. The scaleR* specifies the
balloon size at which its rubber starts to behave nonideally.
Here we use the simplest form of the crossover function,

fsxd = H1 for 0 ø x ø 1

Asx − 1da + 1 for x . 1,
s22d

whereA.0 anda.1. Note that the functionfsxd is con-
tinuous and differentiable everywhere.
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Transfer ofdn moles of air from the bigger balloon to the
smaller one will occur spontaneously if the pressure inside
the bigger balloon is larger than the pressure inside the
smaller balloon. To simplify the notation, let us measure all
the lengths in units ofR0 and defineRs=uRb with h1/Rb

øuø1j. Using the law of Laplace,

gsu;Rb,R* ,Ad ; Pb − Ps =
2ssRbd

Rb −
2ssuRbd

uRb . s23d

If g.0, once the valve is open there will be a spontaneous
transfer of gas from the larger balloon to the smaller one. On
the other hand, ifg,0 the transfer will proceed in the op-
posite direction. From Eqs.(21) and (22) we see that
gs1;Rb,R* ,Ad=0 while

lim
u→1/Rb

gsu;Rb,R* ,Ad =
2ssRbd

Rb . 0. s24d

Therefore, unless the functiong has a zero on the interval
h1/Rbøuø1j the larger balloon will always shrink, passing
its air to the smaller balloon. Indeed for a givenfsxd, we find

that if R* ,Rm
* then g.0 for all h1/Rbøuø1j, and the

larger balloon always inflates the smaller one, see Fig. 1. The
maximum value of the crossover scaleRm

* and the balloon
sizeRm

b for which this behavior occurs is determined by the
set of equations

g8s1;Rm
b ,Rm

* ,Ad = 0 s25d

and

g9s1;Rm
b ,Rm

* ,Ad = 0, s26d

where the prime denotes differentiation with respect tou.
We now distinguish two cases: 1,a,2 andaù2. For

aù2 andR* .Rm
* , the equation

g8s1;Rb,R* ,Ad = 0 s27d

has two rootsR1
b and R2

b and a new phase in which small
balloons inflate the larger ones appears, see Fig. 2. This
phase terminates at a critical point, beyond which a large
balloon with sizeRb.Rc

b will inflate any smaller balloon.
For a given crossover function and crossover scaleR* , the

FIG. 1. Phase diagram forR* ,Rm
* . The 45° line isRb=Rs.

Arrow shows the direction of the air flux. The big balloon always
inflates the smaller one.

FIG. 2. Phase diagrams forR* .Rm
* . There are two distinct re-

gimes, separated by a phase boundary terminating at a critical point,
beyond which a large balloon will inflate any smaller balloon.

FIG. 3. Phase diagram for the ideal rubber balloons,R* →`.

FIG. 4. The shaded region indicates the parameters for which
the topology of the phase diagram is the one shown in Figs. 5 and
6. Outside the shaded region the topology is the one presented in
Figs. 1–3. Asa→2 the shaded area shrinks to zero.
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location of the critical point is determined by the set of equa-
tions

gsuc;Rc
b,R* ,Ad = 0, s28d

and

g8suc;Rc
b,R* ,Ad = 0. s29d

As the crossover scale grows, so do the values ofR2
b and

Rc
b. For R* .1,

R2
b . aR* , s30d

wherea is the root of equation,

a =
Asa − 1da + 1

Aasa − 1da−1 . s31d

If the crossover scale goes to infinity,R* →`, so that balloon
rubber always behaves ideally, thenR2

b→` and Rc
b→`. In

this limit the phase diagram assumes the topology presented
in Fig. 3.

For 1,a,2, the phase diagram becomes even more in-
teresting. ForA andR* inside the shaded area of Fig. 4, Eq.
(27) has four solutionsR1

b, R2
b, R3

b, andR4
b, and the possible

topologies of the phase diagram are shown in Figs. 5 and 6.
As the boundary of the shaded region is approached from

inside, one of the phases shrinks and disappears and the
phase diagram assumes the topology of Fig. 2. Outside the
shaded region, the only possible topologies are the ones pre-
sented in Figs. 1–3.

The topological change from Fig. 5 to Fig. 6 occurs as
R3

b→Rc1
b . As a→2, the shaded area in Fig. 4 shrinks to zero

and the topology of the phase diagram reduces to the one
presented in Fig. 2.

IV. CONCLUSION

We have explored the thermodynamics of air transfer be-
tween two partially inflated rubber balloons. Surprisingly, for
such an apparently simple system a very rich phase diagram
governing the air transfer between the two balloons is ob-
tained. We find that depending on the elasticity of balloon
rubber and the initial balloon sizes, the air can flow either
from the larger balloon to the smaller one, or vice versa. The
topology of the phase diagram is controlled by the crossover
function which characterizes the deviation of balloon rubber
from the ideal Flory behavior.
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FIG. 5. Possible phase diagram for 1,a,2. As R3
b→Rc1

b there
is a topological change with the new phase diagram shown in Fig.
6.

FIG. 6. Possible phase diagram for 1,a,2.

Y. LEVIN AND F. L. DA SILVEIRA PHYSICAL REVIEW E 69, 051108(2004)

051108-4


