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Nonlinear dynamics of periodically focused intense particle beams
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We extend a previous study@R. Pakter and F. B. Rizzato, Phys. Rev. Lett.87, 044801~2001!# and investigate
the nonlinear dynamics of periodically focused intense particle beams. We show that~i! the scenario as the
focusing field increases is not the existence of a single threshold above which stable matched~equilibrium!
solutions are absent, as believed so far, but the existence of successive regions of stability interrupted by gaps
where periodic solutions are either unstable or simply do not exist;~ii ! the beam can be focused to tighter radii
using stable matched solutions found for focusing field strengths greater than the previous threshold. A com-
prehensive analysis is carried out as a function of the relevant parameters of the system. Self-consistent
simulations validate the findings. The gaps are of crucial importance because they must be avoided if the goal
is beam confinement with matched solutions; we develop an analytical model to determine the gap structure,
which agrees well with computer simulations.
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I. INTRODUCTION

The physics of intense beams in periodically focusing s
tems is an active area of theoretical and experimental
search where one looks for external field configurations
pable of confining high-current, low-emittance ion
electron beams@1–5#. The area is crucial for the develop
ment of several advanced particle accelerator applicat
such as tritium production, spallation neutron sources, he
ion fusion, coherent radiation sources, and nuclear w
transmutation@6#, as well as for applications in basic scienc
A key aspect of periodically focused beams is their stabi
properties. Previous studies based on kinetic theory@2# and
on the analysis of the beam envelope@7–9# revealed that
within a relatively limited range of variation of the focusin
field strength, only one equilibrium solution with the bea
radius displaying the same periodicity as the external con
ing field is present; one refers to this solution as the matc
solution. Equilibrium in this case results from the balan
between defocusing forces associated with electrostatic,
mal, and rigid rotation effects, and focusing forces genera
by the confining magnetic field and the self-current effe
The matched solution was shown to present several tran
instabilities as the focusing field strength is varied@2#, and
these instabilities were found to be closely related to non
ear resonances involving the oscillatory behavior of both
focusing field and the electrostatic perturbations propaga
with the beam@9#. In particular, it was shown that above
certain threshold of the focusing field strength the matc
solution undergoes a major bifurcation and loses stab
@2,9#, which creates severe limitations on the practical use
periodic focusing as a confining tool.

In this paper we extend a previous investigation@10#, per-
forming an analysis of the nonlinear dynamics exhibited
periodically focused intense particle beams, based on
lytical estimates, on the beam envelope equation, and on
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self-consistent simulations. In particular, we consider a hi
current beam in a periodic solenoidal focusing field. First
all the analytical model is developed in order to understa
the overall nonlinear dynamics of the system. One particu
result from the model is the interplay between the vario
defocusing forces on beam dynamics. It will be seen t
relatively dense beams dominated by space-charge ef
exhibit nonlinear features, like tangent bifurcations and
corresponding appearance and disappearance of periodi
lutions, which are not observed in the absence of spa
charge effects when the beam becomes dominated by
mal and rigid rotation effects, and the dynamics becom
linear. In either of these two cases gaps may be formed a
vary the focusing strength within which no matched soluti
can be found. This makes the issue of critical relevance if
goal is to operate with stable periodic solutions.

Then the Poincare´ mapping technique allied to th
Newton-Raphson method@11# is employed to precisely lo-
cate and determine the existence and stability of matc
solutions in the phase space of the beam envelope mode
particular, we confirm that in space-charge dominated be
the matched solution undergoes a series of direct and inv
bifurcations as the parameters of the system are varied.
also shown that, although the matched solution analyze
previous work becomes unstable and eventually vanishe
the focusing field strength increases, stability is recovered
yet larger fields because other stable matched solut
emerge in the phase space. It is thus found that the gen
scenario as one increases the focusing field is not the e
tence of a single threshold above which confinement is
possible, but the existence of regions of stability interrup
by gaps where the matched solution either becomes uns
or is completely absent. We investigate the issue and s
that the periodicity pattern with which matched solutions c
be found is highly sensitive to beam density. The transve
size of the beam is also analyzed, and it is shown that
can effectively focus the beam to tighter radii using t
stable matched solutions that are found for focus
strengths greater than the previously established thresho
©2002 The American Physical Society03-1
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R. PAKTER AND F. B. RIZZATO PHYSICAL REVIEW E65 056503
As a final step we supplement the work with a number
self-consistent simulations to validate all the previous fin
ings. Here we see that there is a nice agreement betw
analytical estimates, simulations involving the envelo
equations, and the full self-consistent simulations, a fact
suggests the robustness of our results.

The work is organized as follows. In Sec. II we introdu
the model envelope equation and provide initial estimates
its bifurcations and regions of stability and on the interp
between perveance dominated beams~i.e., beams dominated
by electrostatic effects@9,10#! and emittance dominate
beams; in Sec. III we perform various simulations with t
envelope equation in order to numerically refine the previ
analytical estimates; in Sec. IV we run self-consistent be
simulations to check on the overall validity of our low
dimensional model; and in Sec. V we conclude the work

II. THE LOW-DIMENSIONAL BEAM ENVELOPE MODEL
AND INITIAL ANALYTICAL ESTIMATES

A. The envelope equation

In the paraxial approximation the envelope equation fo
particle beam in a periodic solenoidal focusing magne
field reads, in its dimensionless form,

d2r b

ds2 1kz~s!r b2
K

r b
2

1

r b
3 50. ~1!

In Eq. ~1!, s5z/S5bbct/S is the dimensionless coordina
along the beam axis,r b(s)5r b,dimensional/(Se)1/2 is the nor-
malized beam envelope radius, andK52q2NbS/egb

3bb
2mc2

is the normalized perveance of the beam, whereS is the
periodicity length of the magnetic focusing field,bbc is the
average axial velocity of the beam,c is the speed of lightin
vacuo, e is the unnormalized emittance of the beam,Nb is
the number of particles per unit axial length, andq, m, and
gb5(12bb

2)21/2 are, respectively, the charge, mass, a
relativistic factor of the beam particles. The focusing field
characterized by the normalized focusing strength param
kz(s)5kz(s11)5q2Bz

2(s)S2/4gb
2bb

2m2c4, where Bz(s) is
the magnetic focusing field on the beam axis. For the sak
simplicity, we considerkz(s) in the form kz(s)5s0

2@1
1d cos(2ps)#, with s05@*0

1kz(s)ds#1/2 representing the
vacuum phase advance in the smooth-beam approxima
and with 0<d<1 as the amplitude of the focusing fie
oscillations. The results to be presented here are indepen
of the specific form ofkz(s). At this point we note thatK
involves the ratio between two defocusing factors: elec
static forces due to beam density and thermal forces du
beam emittance. While it becomes suggestive that elec
static and thermal effects are, respectively, associated
large and smallK ’s, one purpose of the present paper is
characterize beam dynamics in these two regimes in m
detail.

B. Analytical results and estimates

Let us first make some remarks on the solutions of
~1!. We start by noticing that Eq.~1! can be entirely derived
from a ‘‘time’’ dependent one-degree-of-freedom Ham
tonian as follows:
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H5
pb

2

2
1kz~s!

r b
2

2
2K ln r b1

1

2r b
2 [H01Hp , ~2!

with

H0[
pb

2

2
1s0

2
r b

2

2
2K ln r b1

1

2r b
2 ,

Hp[
ds0

2

2
cos 2psrb

2 ,

and

r b85
]H

]pb
5pb , pb852

]H

]r b
, ~3!

where the primes denote derivatives with respect tos.
If the magnetic field is uniform withd50.0 andkz(s)

5s0
25const, solutions are generated by the autonom

one-degree-of-freedom HamiltonianH0 which is known to
be completely integrable yielding regular periodic trajec
ries only @11#. These integrable trajectories can be seen i
level plot ofH0(pb ,r b) as in Fig. 1. In this case there is on
equilibrium radius given by the solution ofs0

2r b02K/r b0

11/r b0
3 50 in the form

r b05
@2K12~K214s0

2!1/2#1/2

2s0
. ~4!

The regular periodic trajectories oscillate between maxim
and minimum values ofr b , r b,max, andr b,min , respectively,
from which one can assign a vibrational wave vector m

FIG. 1. Contour levels ofH0(pb ,r b) for s05180° and K
53.0.
3-2
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suring the periodicity of each orbit~recall that ass is a space-
like coordinate we shall use the appropriate ‘‘spatial’’ term
nology! in the formk5k(r b,max). The equilibrium radius is
dynamically stable with the wave number of small line
oscillations of wavelengthl around the equilibrium yielded
by @9#

k~r b,max5r b0![k05
2p

l

5@4s0
21K22K~4s0

21K2!1/2#1/2. ~5!

Under the condition of a constantkz5s0
2 one can also de

termine the wave number of oscillations far away from eq
librium with r b,max→`, in the form k(r b,max→`)[k`

52s0. The wave number tends to this value if for oscill
tions with large maximal values ofr b one discards the term
1/r b and 1/r b

3 in Eq. ~1! but takes into account the effect o
these ‘‘centrifugal’’ forces atr b'0; one has essentially
harmonic well blocked atr b50 and thus the factor of 2 in
k` . Let us point out here thatk` is larger thank0. This fact,
apparently not properly noticed earlier, has relevant con
quences to be discussed next. To analyze beam stabili
situations wheredÞ0 andkz(s) is not constant, we resort t
nonlinear dynamics techniques. In the present section
first develop an analytical approach to estimate what will
seen later when we move to the appropriate numerical
cedures. Let us then recall from Eq.~2! that

H5H01Hp .

Hp destroys the integrability of the full Hamiltonian whos
nonlinear integrable part isH0. Analytical calculations in
Hamiltonian systems are more easily done when action-a
variables (J,u) for the integrable component are employe
We shall study the issue now.

1. The integrable part H0

Our integrable component has a complicated structur
a function ofr b and we shall work out an approximate re
resentation forH0 in terms of the appropriate action. In ou
procedure we first determine the rotational wave vectork(J)
with which an orbit indexed by an actionJ oscillates around
the equilibriumr b0. Then we will obtainH0(J) as

H0~J!5E
J50

J

k~J8!dJ8. ~6!

Our wave vector has the known properties

k~J!→H k0 if r b→r b0~J→0!,

2s0 if r b→`~J→`!,
~7!

from which we can interpolate an expression of the form

k~J!5k01
Dk«J

11«J
, ~8!
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with Dk[2s02k0 and « as an yet undetermined quanti
measuring the rate at whichk increases with the action. From
Eqs.~6! and ~7! one findsH05H0(J) in the form

H0~J!5k0J1@«J2 ln~11«J!#
Dk

«
~9!

and the task now is to evaluate«. To do that it suffices to
compare the first order contributions of an expansion of
pression~8! in terms ofJ with the corresponding expressio
obtained from a perturbative calculation directly applied
H0 of Eq. ~2!. To expedite the argument, let us sketch wh
we do here. First we writer b5r b01r and expandH0, Eq.
~2!, around the equilibrium atr b5r b0 in powers series ofr
up to r 4:

H0'
pb

2

2
1k0

2 r 2

2
2S 2

r b0
5

1
K

2r b0
3 D r 3

1S 5

2r b0
6

1
K

4r b0
4 D r 4, ~10!

additive constants discarded. Then we introduce new can
cal coordinates (J,u) according to

r ~J,u!5A2J

k0
cosu, ~11!

pb~J,u!52A2k0J sinu, ~12!

put these expressions intoH0, and arrive at

H0'k0J1aJ3/2sin3u1bJ2 sin4u, ~13!

a[2S 2

k0
D 3/2S 2

r b0
5

1
K

2r b0
3 D ,

b[
2

k0
S 5

2r b0
6

1
K

4r b0
4 D .

The next step is to find new action-angle variables in orde
write H0 of Eq. ~13! only in terms of the new action. We
reserve the calculations for the Appendix and advance
final result:

H0'k0J1mJ2, ~14!

m[
3b

8
2

15a2

32k0
.

Now we are in a position to derive an expression for«. To do
this we expand expression~9! up to second order terms inJ,
compare the resulting expression with Eq.~14!, and conclude
that
3-3
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«5
m

Dk
. ~15!

Before we proceed we shall anticipate a fraction of the
merical work reserved for the next sections, and test exp
sions~8! and ~9! here. In Fig. 2 we compare the periodici
length of various orbits as obtained directly from the en
lope equation~1!, with the corresponding result from th
analytical approach as represented by expression~8!. With «
determined from Eq.~15!, Fig. 2 reveals excellent agreeme
between numerics and estimates; the simulation results
the analytical curve are almost completely superposed in
figure. It also becomes clear that our wave vector curve
creases monotonically up to saturation, which makes rea
able a representation in terms of a single controlling fac
like «. Given the nice accuracy of the analytical approach
now move on to those cases where perturbation is ac
with dÞ0.

2. Effect of Hp

We shall now study the resonant effects produced by
inclusion ofHp from expression~2! into the theory.Hp has
the following structure:

Hp5
ds0

2

2
~r b01r !2 cos 2ps, ~16!

which can be simplified to

Hp5ds0
2r b0r cos 2ps1

ds0
2

2
r 2cos 2ps ~17!

if one drops the purely temporal term. It is apparent that
need the appropriate canonical relation to expressr
5r (u,J). We do not have a formal way to write down th
connection so we follow the same informal way leading
the expressions~8!, ~9!, and~15!. If J is small one is close to
the central fixed point and expressions~11! and ~12! can be
safely used. When one considers orbits away from the cen
point some further reasoning must be done. One first rec
that if J is large the orbits are approximately those of a tru

FIG. 2. Analytically and computationally obtained periodici
lengthk(J) versusJ for K53.0 ands05180°.
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cated oscillator atr 50. No restriction is present forr .0
and the unperturbed dynamics develops at frequency 2s0 in
a harmonic way. We collect all the information to write

r ~J,u!'A~J!Ucos
u

2U ~J→`! ~18!

with 2p,u<p. Note that asu evolves from2p to p, the
argument of the cosine function varies from2p/2 to p/2,
which represents the fact that the oscillator can be seen
proximately as blocked atr 50. Now let us considerH0
whenJ andr b tend to infinity. From expressions~2! and~9!
we write H0'pb

2/21s0
2r b

2/2'2s0J as r b and J tend to`,
and consideru50 wherepb50, to finally obtain

A~J!5A 8J

2s0
, ~19!

which is slightly different from the pure oscillator cas
whereA(J) would be given byA2J/2s0. At this point we
shall choose which resonance is to be analyzed. Two of th
are of greater relevance for our purposes since they can
fect the stability characteristics and even the very existe
of the central fixed point: the resonance involving the fund
mental harmonic, responsible for the creation of additio
matched solutions via tangent bifurcations, and that invo
ing the second harmonic, responsible for period doubling
r 50. We shall investigate the resonance at the fundame
harmonic in this work, since, as mentioned, this resona
can provide matched solutions with which one can transp
the beam. WhenJ is small one uses expressions~11! and
~12! in Hp and collects only those harmonic terms with a
gumentu22ps:

Hp~J→0!'
1

2
ds0

2r b0A2J

k0
cos~u22ps!. ~20!

WhenJ is large, we select the more significantr 2 term and
write

Hp~J→`!'
1

2
ds0

2S 8J

2s0
D cos2~u/2!cos~2ps!

5
1

4
ds0

2S 8J

2s0
D ~11cosu!cos~2ps!

→ds0
2S J

2s0
D cos~u22ps!, ~21!

where we dropped off-resonant terms in the last step ag
Now we do not know the crossover details from express
~20! to Eq. ~21!, although the issue lacks importance he
The reason is that for smallJ the J1/2 term automatically
dominates, while forJ large it is theJ1 term that automati-
cally prevails. In any case we use the additional canon
transformationu22ps→u and H22pJ→hres to write a
final form
3-4
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hres~J,u!5H0~J!22pJ

1ds0
2F r b0

2
A2J

k0
1 f

J

2s0
Gcosu, ~22!

where we introduce a crossover factorf modeled by f
5Jj/(11Jj), with j51/2 chosen this way to refine the a
ready nice agreement with simulations. The model focus
resonances of the typeu8'2p; resonances of typeu8
'2np with n integer will be analyzed numerically late
Matched solutions are resonances at the fundamental
monic which manifest themselves as fixed points of the
namics entailed byhres . Fixed points are defined in the form
u85J850, and from Eq.~22! along with the proper canoni
cal equations this demands

u f ixed
(1) 50, u f ixed

(2) 5p, ~23!

g6[
d

dJ
hres~J,u f ixed

(6) !50. ~24!

The functionsg6(J) are parametrized by control factors lik
K, d, ands0 and their shape depends on those factors. Ta
for instance,K50.5, d50.03, ands05182.73°'1.015 p
and drawg6 as in Fig. 3~a!. We see that for this particula
parametric choice three fixed points coexist since theg1

curve intersects the horizontal axis twice whileg2 intersects
the horizontal axis once; changings0 basically shifts the
curves vertically, and so we see that fixed points of curveg1

appear or disappear in pairs via tangent bifurcations. N
consider a case with much smaller perveanceK50.01 and a
larger d50.1, at s05191.16°51.062 p, as pictured in
panel Fig. 3~b!. Here the curvesg1 andg2 are both mono-
tonic and a gap is formed which provides a region where
fixed point can be found; otherwise, ass0 is varied, one has
at most one fixed point at a time. Figure 3~c!, which uses
K53.0, d51.0, ands05180°5p, finally represents the in
termediary situation where one has a nonmonotonicg1

curve along with the presence of the gap; now one ha
most the simultaneous presence of two fixed points aris
from the solutions ofg150. We thus see that, depending o
the parameters, three regimes may be present: nonmon
nicity without gaps, gaps without nonmonotonicity, and no
monotonicity with gaps. Nonmonotonicity, which is excl
sively associated with curveg1 , can be analyzed along th
following lines. g1 tends to1` when J→0. Now per-
veance determines the ascending aspect of the curves
when it is largeg1 also increases at intermediary values ofJ;
under this condition, nonmonotonic features are present
cause one must have a minimum somewhere. On the o
hand, when perveance is too small the related ascending
havior and the resulting minimum may not be present. T
transition from one regime to the other is estimated wh
one realizes that in terms of order of magnitude the unp
turbed nonlinear frequency increases significantly in that
gion whereJ;1/«. If at this point the perturbatived/AJ
term in g1 is already very small, then perveance effe
should be noticeable; perveance effects remain unnot
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otherwise. What is needed to see nonlinearity can be t
translated into the following inequalities coming fro
]Hp /]J, with Hp defined in expression~20!, and the condi-
tion J;1/«:

ds0
2r b0

Ak0 /«
!Dk«S 1

« D⇒d!dcr[
Dk

s0
2r b0

Ak0

«
. ~25!

Whend@dcr we expect linear behavior without any tange
bifurcations, andd;dcr defines the marginal regime wher

FIG. 3. Curvesg1 and g2 superimposed on correspondin
simulations as discussed in the text. In~a! K50.5, d50.03, and
s05182.73°; in~b! K50.01, d50.1, ands05191.16°; in~c! K
53.0, d51.0, ands05180°.
3-5
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nonlinearity, if present, should be small. In the linear case
Fig. 3~b!, for instance, d50.1, dcr'2.231023, and d
@dcr , as it should be here; results based on condition~25!
are also consistent in other situations. The other distinc
effects seen in the figures are the gaps, and these get
and more prominent asd grows. Gaps are intimately con
nected with the orbital asymmetry aroundr b0. If it were not
for the asymmetry resulting in expression~18!, the linear
term in J would be absent fromhres and no gap would be
present—one also sees that the gap size grows linearly
d. Needless to say, the existence of gaps is of foremost
portance since they must be identified and avoided if on
interested in the search for matched stable solutions. W
nally note that in purely monotonic~or linear! cases the gap
is necessarily present.

Our final task here is to compare the theoretical findin
with proper simulations of the envelope equations and h
we briefly mention more of the heavier numerical work po
poned for the next sections. To provide an initial test of o
findings we launch several initial conditions atpb50, inte-
grate these conditions forward until their next return topb
50, and compute the associated length intervalS. From the
integration we obtain the approximate differential frequen
n52p/(2S)22p—which should be compared with curve
g6—and the approximate actionJ5(1/2p)rpbdrb

5(1/2p)2*0
Spb

2ds—which are then compared with resul
obtained from Eq.~24!. We superimpose the computed r
sults on the estimates in Fig. 3. It is then seen that our a
lytical model explains well what is going on in these low
dimensional simulations. The two branches of t
simulations arise as a result of initial conditions launched
the left or right hand sides of the equilibrium (r b0 ,pb50).
We point out that, as might be expected, agreement is b
for small d ’s.

III. SIMULATIONS OF THE ENVELOPE EQUATIONS

In this section, we analyze the results obtained by dir
integration of the beam envelope equation~1!. Let us then
introduce the numerical tools of analysis in a more form
fashion. We shall look at the phase space and its respe
periodic orbits from the optics of Poincare´ plots and the cor-
responding stability analysis. In the plots we record the p
(r b ,pb) at integer values ofs @11# and evaluate the stability
a of periodic orbits which appear as fixed points of the ph
space, froma5cos(kfix). kf ix is the wave number of sma
linear oscillations around the periodic trajectory, obtain
with a Newton-Raphson method. For stable orbits wherekf ix
is a real number,uau<1; if a crosses the upper bounda
a511 the orbit undergoes an inverse tangent bifurcat
with a previous unstable fixed point, and if the orbit cross
the lower boundarya521 it undergoes a period doublin
bifurcation, losing stability. According to analytical estimat
obtained in the last section, the presence of bifurcations
typical nonlinear features depends on the values of the
veanceK and of the perturbing factord. We initially address
numerically the role ofd. When d50.0, one can simply
evaluate a for the central fixed point in the forma
5cos(k0), wherek0 is defined in Eq.~5!. In this case, the
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argument of the cosine function is real,uau is always
bounded by11, and no bifurcations occur in the phas
space. On the other hand, when the perturbation is turne
with dÞ0, various bifurcations may mark their presence
the phase space. These bifurcations are analyzed in Fi
where we plot the stability indexa as a function of the
vacuum phase advances0 ~in degrees! for a uniform mag-
netic field d50.0 ~dashed line!, a perturbative case withd
52.031023!1 ~thin solid line!, and a nonperturbative cas
with d51.0 ~thick solid line!. Note that thed50.0 curve is
generally not visible because thed52.031023 curve is es-
sentially on top of it for most of the values ofs0; the only
regions where these two curves can be distinguished
close to the bifurcations, as discussed next.

A. Period doubling: The strong s0É90° instability

First of all we observe that whendÞ0 the first valley of
the curvea vs s0 drops to a position slightly below the
lower boundarya521. This is shown in detail in Fig. 4~b!,
where we see that thed51.0 matched solution clearly
crosses thea521 line. This means that at this point th
matched solution undergoes a period doubling and beco
unstable, as noticed in a series of previous works in conn
tion with the strongs0590° instability; search for stable
solutions traditionally does not go beyond this point. Ho
ever, if one continues to increases0, we see that the matche
solution crosses back over thea521 horizontal line, recov-
ering stability. The gap of instability for thed51.0 matched
solution can be estimated from Fig. 4~b! as Ds0'8°. Al-
though not clear from Fig. 4~a!, the d52.031023 matched
solution also undergoes the same sequence of direct follo
by inverse period doublings, the difference being the size
the instability gap, which is much shorter:Ds0'0.016°. In
fact, anydÞ0 would induce the sequence of bifurcation
with smallerd ’s, generating linearly shorter instability gap
The sequence is also displayed in the form of Poincare´ plots

FIG. 4. Stability diagrama vs s0 for K53.0 and d50.0
~dashed line!, d52.031023 ~thin solid line!, and d51.0 ~thick
solid line!. In ~b! and ~c! we expand~a! close to bifurcations.
3-6
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NONLINEAR DYNAMICS OF PERIODICALLY FOCUSED . . . PHYSICAL REVIEW E65 056503
in Figs. 5~a! ~before period doubling!, 5~b! ~after period dou-
bling!, and 5~c! ~after inverse period doubling! for the case
d51.0.

B. Beyond period doubling

To analyze the remaining bifurcations that take place
the phase space, one can make use of the analytical estim
derived earlier in Sec. II for guidance. As before, we foc
attention on resonances with the same periodicity of
driver since those can establish additional matched soluti
Resonances exist whereg6(J)50. If d is small one falls
into the generic case illustrated by Fig. 3~a!. Resonance ap
pears in the phase space whens0'180°, atJ→`, with the
unstable fixed point atu50 and the stable point atu5p. As
a matter of fact, the unstable point appears slightly ahea
the stable due to the asymptotic separationg1(J→`)
2g2(J→`);O(d).0. As s0 grows, theg6 curves move
upward and the resonance moves towardJ50, and when
k0'2p the unstable point undergoes an inverse tange
with the central point located at relatively smaller values
J. In terms of stability diagramsa vs s0, the mechanism is
represented by thed52.031023 curve of Fig. 4. In the dia-
gram the onset of the resonance is observed as a direct
gent bifurcation with the creation of two matche
solutions—one stable witha,1 and one unstable witha
.1. The bifurcation is indicated by the lettera in Fig. 4~c!
and occurs at 2s052p (s05180°) as expected.

As s0 keeps growing, the resonance migrates towardr b0,
andk(r b,max) approachesk0. In Fig. 5~d! a Poincare´ plot for
d52.031023 and s05207° shows the three fixed poin
corresponding to the original matched solution plus the

FIG. 5. Poincare´ plots of the r b vs drb /ds phase space.K
53.0 and ~a! d51.0, s0575.4°; ~b! d51.0, s05109°; ~c! d
51.0, s05135°; ~d! d52.031023, s05207°; and ~e! d51.0,
s05292°.
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created stable and unstable matched solutions. By fur
increasings0 one eventually meets the conditionk(r b,max)
5k0, where the original fixed point undergoes an inver
tangent bifurcation with the unstable fixed point of the res
nance, in agreement with what was explained above. At
point, indicated by letterb in Fig. 4~c!, the original matched
solution vanishes. However, one is still left with the stab
matched solution of the resonance. Ass0 increases further
the sequence is reproduced: the new stable fixed point un
goes a direct followed by inverse period doubling bifurc
tions ata521 @s0'300° in Fig. 4~a!#, and an inverse tan
gent bifurcation ata511 with an unstable fixed point of a
yet newer resonance which invades the phase space whe
new resonance condition 2s054p is met@s0'400° in Fig.
4~a!#. One is then left with a newer stable matched soluti
now associated with thek(r b,max)54p resonance. The
whole process repeats itself roughly every 180° ins0, for
increasingly larger values of the positive integern indexing
the general resonance conditionk(r b,max)52np. Therefore,
excluding some small unstable bands wherea,21, one
may always find a stable matched solution for the envel
equation, which persists and can be used to confine inte
particle beams to tighter radii even if one operates the be
much beyonds05180°.

For largerd ’s, the scenario described above presents so
changes. Ifd is large enough to create the gap mention
earlier, but not large enough to preclude the presence of
gent bifurcations similarly to Fig. 3~c!, one is left without
stable matched solutions immediately after the tangen
Only later, after the gap is cleared ass0 increases, does th
stable point of the resonance make its appearance. Within
gap, no closed orbit remains in the phase space. In term
stability diagrams, ford51.0 one sees from Fig. 4~a! that the
point remains absent in wide regions along thes0 axis
~arounds05200° and arounds05400°). These gaps are t
be avoided if the goal is beam confinement. Now, by furth
increasings0, the system indeed retrieves its closed orb
@11# and the stable fixed point appears in the phase spac
in the points marked by the lettera in Fig. 4~a!—
confinement becomes possible again then. The Poincare´ plot
of Fig. 5~e! considerss05292° to show how stable typically
is the fixed point after its reappearance; no chaotic activ
can be seen in the panel. Therefore, for larged ’s one alter-
nates windows of stability ins0 where a stable matche
solution exists, and forbidden gaps~the meaning of ‘‘forbid-
den’’ taken in the context of confinement!, where the
matched solution either exists but is unstable, or is sim
absent. The purely monotonic case exemplified by Fig. 3~b!
is similar to the previous one except for the fact that there
no tangent bifurcation. We shall not discuss this situat
here.

C. Obtaining tighter radii

A figure of merit, if one is interested in beams with th
smallest possible transverse dimensions, is the minim
value attained by the matched and stable beam envelope
oscillates as a function ofs. Analysis is thus in order of the
minimum oscillatory value ofr b , let us call itr b* , versus the
3-7
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strength of the focusing magnetic fields0. The analysis is
displayed in Fig. 6. We taked51.0 and comparer b* of the
original fixed point with that of the stable fixed point of th
k(r b,max)52p resonance. The most useful ranges in b
cases are the ones preceding the respective period doub
Even though stability is recovered, the fixed points beco
closely surrounded by an increasing number of high-or
resonances@such as in Fig. 5~c!, where one sees the third an
fourth order resonances# which may overlap leading to chao
@9#; we shall discuss the issue in more detail in the n
section. It is evident from Fig. 6 thatr b* corresponding to
k(r b,max)52p is appreciably smaller than the one corr
sponding to the original fixed point. To perform a quanti
tive comparison, we take two points—one corresponding
the original fixed point and one to the resonance stable fi
point—both preceding the respective period doublings~small
gaps in Fig. 6! and with the samea such that their stability
characteristics are similar. We take here the pointss0580°
ands05292°, both witha520.56@see Fig. 4~a!#, the latter
corresponding to the case displayed in Figs. 4~a!–4~c!. As
one moves from one point to the other, the magnetic fie
which is proportional tos0, increases 3.65 times, whereasr b*
decreases 6.0 times, as seen in Fig. 3~a!. In other words, the
decrease inr b* is almost twice the increase ins0 if one uses
the resonance stable matched solution instead of the orig
matched solution. In other words, an increase of the m
netic field within its own order of magnitude produces
noticeable reduction in the minimum oscillatory radius of t
stable matched solution. Presumably,r b* becomes even
smaller as one further increases the magnetic field and m
to stable fixed points of resonancesk(r b,max)52np with
larger values ofn.

D. Parameter-space analysis

An important issue from the experimental point of view
to determine in the parameter space the regions of stab
and of existence of the instability gaps. Therefore in t
section we construct and discuss these parameter-space

The plots are obtained by using the Newton-Raph
method to numerically determine the curves ofK as a func-
tion of s0 for which a bifurcation witha561 occurs, for a
fixed d. The results are shown in Fig. 7, ford50.5 @Fig.
7~a!# andd51.0 @Fig. 7~b!#. The white regions in the figure
correspond to parameter values for which at least one st

FIG. 6. The minimum oscillatory radius of stable matched
lutions r b* as a function ofs0 for K53.0 andd51.0.
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matched solution withuau,1 exists. The shaded regions co
respond to the existence of a single matched solution w
a,21, which is unstable because a period doubling bif
cation has taken place. The black regions correspond to
gaps where no matched solution is found. It is worth say
that, as will be discussed in detail in Sec. IV, the use
regions for beam transport are the stable~white! ones pre-
ceding the corresponding period doublings.

First of all, it is interesting to note that predictions of th
model developed in Sec. II for then51 resonance can b
extended to qualitatively understand what happens
higher-order resonances. In particular, the model pred
that for sufficiently smalld and large enoughK the instabil-
ity gaps with no matched solutions~black regions! tend to
disappear. That is seen in Fig. 7~a! for the n52 resonance
arounds05360°. There, the gap is present for pervean
lower thanK'3.3 because the inverse tangent bifurcation
the stable matched solution of thek52p resonance with the
unstable matched solution of thek54p resonance occurs
before the onset of the stable matched solution of thek
54p resonance; i.e., the stable matched solution of a pr
ous resonance bifurcates and disappears before~in terms of
increasing magnetic field! the onset of the stable matche
solution of the next resonance. According to the model,
such low perveance the process is rather linear, as in the
shown in Fig. 3~b!, where the depressiong1 is smaller than
g1(J→`)2g2(J→`), leading to the gap. AsK increases,
nonlinearity also increases and the depression ing1 also

-

FIG. 7. Parameter-space plots obtained for~a! d50.5 and~b!
d51.0. White regions correspond to parameter values for whic
least one stable matched solution exists, shaded regions to th
istence of a single matched solution which is unstable due t
period doubling bifurcation, and black regions to the gaps where
matched solution is found.
3-8
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NONLINEAR DYNAMICS OF PERIODICALLY FOCUSED . . . PHYSICAL REVIEW E65 056503
increases. AboveK'3.3 the depression ing1 becomes
larger thang1(J→`)2g2(J→`), as in the case of Fig
3~a!, the gap disappears, and three matched solutions ca
found. That is what happens in the parameter region lim
by the dashed lines~which representa511) in Fig. 7~a!.

Another interesting feature that can be understood fr
the model is that the onset of the additional stable matc
solutions, which are the bifurcations leading to the lines t
limit the black regions to the right, is essentially independ
of the perveanceK. These bifurcations occur when theg2

curve shown in Fig. 3 crosses zero. Sinceg2 is a monotoni-
cally increasing function ofJ, the bifurcation always take
place atJ→`, meaning that the stable matched solution
cillates fromr b50 to r b→`. Because in this case the pa
ticles of the beam spend most of the time far away from e
other, space-charge effects introduced byK are unimportant.

Regarding the overall beam transport stability, Fig.
shows that the perveance and the order of the resonann
play a tricky role. In particular, the size of the instability ga
caused by the period doubling bifurcation~shaded region!
tends to increase with increasingK and/orn. On the other
hand, as discussed above for the perveance, the size o
gap where matched solutions are absent~black regions! tends
to decrease asK and/orn increases. As for the amplitude o
oscillations of the magnetic field, by comparing Figs. 7~a!
and 7~b! it is clear that increasingd tends to increase the siz
of all instability gaps.

IV. FULLY SELF-CONSISTENT SIMULATIONS

We perform self-consistent simulations using up toN
52000 macroparticles undergoing Coulomb interaction
static potentials generated by the Green’s function met
@12#. Particles are launched according to a Kapchins
Vladimirskij ~KV ! distribution @1# but their finite number in
the initial condition acts as the seed for any possible in
bility to develop. As the beam propagates along the focus
channel we compute the self-consistently obtained KV be
radius

r̄[A2^r 2&, ^Q&[
1

N (
j 51

N

Qj , ~26!

which is A2 times the rms radius@9#, and the~transverse!
emittances

ez[4A^z2&^z82&2^zz8&2, z[x,y. ~27!

Let us takeK53.0, d51.0, ands05292° to investigate one
of the just found stable matched solutions as suggeste
the envelope simulations pictured in Fig. 4. From the fig
the envelope simulations tells us that at this point there
stable matched solution and we want to check this inform
tion against this more general self-consistent particle sim
tion with Coulomb interaction. We first compare both ra
r b and r̄ in their final 10 periods, in a run ofsmax5100. This
is done in Fig. 8~a!, which indicates that the envelope mod
is extremely accurate and that in fact the stable matc
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solution persists within the context of the fully sel
consistent simulation. Figure 8~b!, in its turn, shows that
emittance is not increasing, which is a fact signaling th
good beam quality is preserved.

In Fig. 8~c! we display the initial/final particle distribution
over the (X,Px) cross section, and in Fig. 8~d! we display the
initial/final distribution over an (X,Y) cross section,X
[x/ r̄ , Px[ r̄ px2x(dr̄/ds), Y[y/ r̄ @9#. These panels show
again that the beam does not undergo macroscopic cha
along the focusing channel. The small dispersion is due
discrete particle effects and it is reduced as more and m
particles are used, but the important feature to be noti
here is that the bulk of the particle distribution remains co
fined within the limits (21,11) along all the normalized
axesX, Y, andPx , even after this long computer run.

Now consider a point right inside one of the gaps, such
for instance, the one with the same values ofK and d as
above, but withs05203°, in Fig. 9; we refer the reader onc
more to Fig. 4. Self-consistent simulations and beam en
lope simulations are in total agreement again, as indicate
Fig. 9~a!. However, this very same panel shows that t
mean radius increases within a short period of time—n
that this run is only up tosmax53. The unbounded radiu
growth is a direct result of the fact that within the gaps the
is no trapping fixed point which would be able to genera
closed orbits and the resulting limits on the oscillations or̄
or r b . The initial/final cross sections now reveal the follow
ing: a noticeable distortion in the (X,Px) space as seen in
Fig. 9~d!, which is in fact related to theex growth as shown
in Fig. 9~b!. For a short run like this the beam preserves
circular shape of Fig. 9~c!.

The final analysis of this section is devoted to the match
solution when it comes back from its own period doublin
such as, for instance, the points05135° of Fig. 10, again
with K53.0, d51.0, andsmax5100. The results are quite
similar to the ones displayed in Fig. 8, with the noticeab
exception of Fig. 10~b! where it becomes clear that a stea
emittance growth is present, as opposed to the correspon
Fig. 8~b!. There is a belief that emittance growth under su
circumstances can be caused by the nearby presenc
higher-order resonances, as seen in Fig. 5~c!, which can act
upon discrete aspects of particle distributions@9#. As men-
tioned earlier, if one were working with a genuinely contin
ous and homogeneous KV distribution, emittance would
constant since in this case the envelope equation and
associated constant emittance become exact results.

All in all, and considering a series of similar analyses n
shown here, we can state that the matched solutions cre
here can be used to confine beams as long as one ope
before the corresponding period doubling. Afterward, the s
bility curve becomes too steep, as can be observed in Fig
and this allows for a close packing of higher-order res
nances in general, as seen in Fig. 5~c!.

V. FINAL CONCLUSIONS

To summarize, in the present paper we extend previ
work @10# and perform a stability analysis of periodical
focused intense particle beams based on analytical estim
3-9
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FIG. 8. Self-consistent simulations for a matched solution withK53.0, d51.0, s05292°, andsmax5100. In ~a! r̄ and r b versuss; in

~b! «x and«y versuss; in ~c! initial and final cross sections (X,Y); and in ~d! initial and final cross sections (X,Px). r b(s50)5 r̄ (s50)

50.1673,pb(s50)5dr̄/ds(s50)50.
056503-10
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FIG. 9. The same kind of panels as in Fig. 8, but now within a gap. Parameters and initial conditions are the same excepts05203° and
smax53.0 now.
056503-11
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FIG. 10. The same kind of panels as in Fig. 8, but now right after an inverse period doubling. Parameters and initial condition

same except thats05135° andr b(s50)5 r̄ (s50)51.157 now.
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on the beam envelope equation, and on fully self-consis
simulations. An analytical model is developed in order
understand the overall nonlinear dynamics of the syst
One particular result from the model is the interplay betwe
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the various defocusing forces on beam dynamics. De
beams dominated by space-charge effects exhibit nonlin
features, like tangent bifurcations, which are not observed
the absence of space-charge effects, when the beam bec
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NONLINEAR DYNAMICS OF PERIODICALLY FOCUSED . . . PHYSICAL REVIEW E65 056503
dominated by thermal and rigid rotation effects, with t
dynamics becoming linear. Gaps may be formed as we v
the focusing strength, within which no matched solution c
be found. This makes the issue of critical relevance if
goal is to operate with stable periodic solutions. We sh
that matched solutions undergo a series of direct and inv
bifurcations as the parameters of the system are varied,
that, although the original matched solution analyzed in p
vious works becomes unstable and eventually vanishes a
focusing field strength increases, stability is recovered for
larger fields.

Then the Poincare´ mapping technique allied to th
Newton-Raphson method@11# is employed to precisely lo
cate and determine the existence and stability of matc
solutions in the phase space of the beam envelope mode
the results based on analytical calculations and approxi
tions are confirmed here. We also show how can one ef
tively focus beams to tighter radii using the stable match
solutions found for focusing strengths greater than the pr
ously established threshold.

The results are finally validated with self-consistent sim
lations. The general conclusion is that the beam mode
good enough apart from emittance growth detected only
the full simulations. Emittance growth is small in the case
matched solutions, but can become relatively large within
gaps.

In our investigationkz(s) is a harmonic function of the
distances, but we also found that bifurcations for othe
forms ofkz(s) have the same qualitative behavior as long
the periodicity conditionkz(s11)5kz(s) holds. In addition,
our investigation of stability zones in theK vs s0 parameter
space reveals that even for much larger values ofK, such as
K5100, these stability zones are still present.

What we see from the overall investigation is that t
scenario as one increases the focusing field is not the e
tence of a single threshold above which confinement is
possible, as believed so far, but the existence of region
stability interrupted by gaps where the matched solution
ther becomes unstable or is completely absent.

As a very final comment we note that the approximat
of constant longitudinal momentum is used throughout t
paper. It has been shown in general terms that the appr
mation is accurate in the case of paraxial beams with non
ativistic transverse motion@9# investigated here. Further
more, in our specific case the additional degree of freed
associated with small longitudinal corrections would have
equally small effect on the very stable and robust type
matched phase space detected here—see Fig. 5~e! where one
observes enhanced stability arising from the complete
sence of resonant islands around the matched solution. If
rs

el.
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wishes to describe end effects associated with short par
bunches, corrections to the paraxial approximation will
needed.
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APPENDIX

Suppose one has an action-angle represented Hamilto
in the form of Eq.~13!:

H05k0J1aJ3/2sin3u1bJ2 sin4u. ~A1!

SupposeJ!1 and define a generating functionF(J,u) with
which to get rid of theu dependence above. Suppose a
that F(J,u)5uJ1F11F21•••, Fn;O(J (n12)/2). Then
we write

H0S J1
]F

]u
,u D5h~J!. ~A2!

To first order

k0

]F1

]u
1aJ 3/2sin3u50

⇒h~J!

5k0J1O~J 2!. ~A3!

To second order

k0

]F2

]u
1F3a

2

]F1

]u
J 1/2sin3u1bJ 2 sin4uG

f

50

⇒h~J!

5k0J1mJ 2, ~A4!

with

m5
3b

8
2

15a2

32k0
~A5!

as in Eq.~14!, and where the subscriptf denotes the fluctua
tional part of the bracketed expression.
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