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Categorization in fully connected multistate neural network models
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The categorization ability of fully connected neural network models, with either discrete or continuous
Q-state units, is studied in this work in replica symmetric mean-field theory. Hierarchically correlated multi-
state patterns in a two level structure of ancestors and descendents~examples! are embedded in the network
and the categorization task consists in recognizing the ancestors when the network is trained exclusively with
their descendents. Explicit results for the dependence of the equilibrium properties of aQ53-state model and
a Q5`-state model are obtained in the form of phase diagrams and categorization curves. A strong improve-
ment of the categorization ability is found when the network is trained with examples of low activity. The
categorization ability is found to be robust to finite threshold and synaptic noise. The Almeida-Thouless lines
that limit the validity of the replica-symmetric results, are also obtained.@S1063-651X~99!09212-0#

PACS number~s!: 87.10.1e, 64.60.2i, 05.20.2y
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I. INTRODUCTION

Multistate attractor neural networks in which the un
~neurons! can be in more than two states are, in gene
more flexible and efficient biological or artificial device
than networks of binary units. Much work has been do
over some time on the retrieval problem in multistate n
works of various architectures, with either simple or hier
chical patterns in more than two states. The retrieval prob
consists in the recognition of patterns that have been st
in a network by means of a learning~or training! rule, when
the network is set in an appropriate initial state to start
operating stage@1#. Thus, the retrieval problem deals wit
the memorization ability of a network. The networks th
have been considered are the dilute, the layered feed-forw
and the fully connected networks@2–16#.

More recently, some work has been done on the cate
rization problem in multistate attractor networks@17–21#,
following extensive studies of the problem in binary ne
works @22–31#. The categorization problem consists in t
spontaneous recognition of a level of hierarchical patte
other than those stored in the training process of a netw
@22,23#. The problem deals with the ability to create a re
resentation for concepts when the network is only expose
examples in the training stage.

Some of the questions that one may ask are the follow
First, one is interested in the minimal structure of the train
patterns, and their number, in order to achieve a satisfac
recognition of a macroscopic number of hierarchically
lated ancestors. Second, one would like to know the rec
nition rate~number of patterns per neuron! of these ancestor
and how stable they are as attractors of the network dyn
ics. The recognition quality is of primary interest and o
may also want to check on the robustness of the recogn
process to various kinds of noise.

The simplest, and most studied case of the categoriza
problem, consists in the recognition of ancestors of a tw
PRE 601063-651X/99/60~6!/7321~11!/$15.00
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level hierarchy of ancestors and descendents trained
with the latter according to a specific learning rule. The
erarchical patterns that are generated through a stoch
procedure@32# lead to correlations between patterns in d
ferent levels as well as correlations between patterns in
same level@33#. As a consequence, there is a complex str
ture of attractors in a network with hierarchical patterns
which the attractors may neither coincide with the traini
patterns nor with the ancestors, and it is of interest to st
under what conditions the latter become stable attractors

Patterns in more than two states, which represen
gradual coding, may have a low activity which is biolog
cally appealing. Moreover, ‘‘small’’ patterns, in which
number of bits have been turned off, are patterns of l
activity that can infer patterns of full size and thereby e
hance the performance of a multistate network, as dem
strated explicitly in works on both the retrieval problem@2,3#
and the categorization problem. The dynamics of the la
has been studied in an extremely dilute asymmetric thr
state network with a monotonic neuron firing function and
generalized Hebbian learning rule@18#. The extremely dilute
network requires a vanishingly small connectivity betwe
neurons in order to allow for an exact solution of the netwo
dynamics@34#, and one may ask what the behavior would
for a network with full connectivity.

The purpose of the present paper is to answer some o
questions raised above investigating the equilibrium, stat
cal mechanics behavior for the categorization problem i
fully connected multistate network with hierarchical patter
of low activity in a two-level hierarchy of ancestors and d
scendents. Our aim is to obtain the phase diagrams tha
scribe the various regimes of performance of the network
terms of the relevant parameters: the activity of the train
patterns, the dynamical activity of the firing units, the cor
lation between ancestors and descendents, the number o
scendents, the multistate threshold and the synaptic n
level, assuming a fixed activity of the ancestors. The qua
7321 © 1999 The American Physical Society
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of the performance of the network is described by so-ca
categorization curves that express the dependence of the
egorization error on some of the parameters of the mode

Since it is known from the results on the retrieval proble
in a Q-state network that the relevant phase diagrams
come increasingly complex as one goes from the three to
four-state model@8#, we consider aQ53 state model and a
Q5` state~graded response! model. We make use of a gen
eralized Hebbian learning rule that has been used be
@18,19#. The outline of the paper is the following. In Sec.
we present the generalQ Ising-state model for the categor
zation problem. The mean-field theory for that model is su
marized in Sec. III. In Sec. IV we present and discuss
results for Q53, in the absence or presence of synap
noise and in Sec. V we present the results for theQ5` state
model. We conclude in Sec. VI with a summary of the
sults.

II. MODEL

Consider a network ofN nodes,i 51, . . . ,N. At the time
step t, the state of the nodei is described by the variabl
Si(t), that can be in any one of theQ Ising states

sk5211
2~k21!

Q21
~1!

in the interval@21,1#, for k51, . . . ,Q. The task to be per-
formed by the network is the recognition of a macrosco
set of p concepts $j i

m ;m51, . . . ,p; i 51, . . . ,N%, with p
5aN, wherea is finite. During the learning stage, only a s
of s ‘‘small’’ examples $j i

mr ;m51, . . . ,p;r51, . . . ,s; i
51, . . . ,N% of each concept is presented to the network.
‘‘small’’ examples we mean that a macroscopic number
bits in each example are turned off. The concepts are
sumed to be independent identically distributed random v
ables with zero mean and varianceA. The examplesj i

mr of
the conceptj i

m are generated through a stochastic proc
based on an appropriate probability distributionP(l i

mr),
given below, such that

j i
mr5j i

ml i
mr . ~2!

The properties of the distributionP(l i
mr) will be chosen

in accordance with the states of the neurons, Eq.~1!. For
finite Q53, say, l i

mr assumes the values11, 0 or 21
depending, respectively, on the examplej i

mr being either in
agreement with the conceptj i

m , being turned off, or opposite
to the concept at the sitei. In the case of continuous neuron
i.e., Q→`, we assume thatl i

mr is a continuous variable in
the interval@21,1#. In either case, we assume thatl i

mr be-
longs to a set of independent random microscopic activi
with mean

^l i
mr&5b ~3!

and variance

^l i
mrl j

ns&5@b21~a2b2!drs#d i j dmn ~4!
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with b2<a<1. The symbold represents the Kronecke
delta. In consequence, we have the following relations:

^j i
mrj j

n&5^l i
mrj i

mj j
n&5bAd i j dmn ~5!

and

^j i
mrj j

ns&5^l i
mrl j

nsj i
mj j

n&5@b21~a2b2!drs#Ad i j dmn .
~6!

The mean activity of the examples becomes

1

N (
i

N

~j i
mr!25aA, ~7!

for every m and r. According to Eqs.~2! and ~3!, b is the
correlation between an example and the concept to whic
belongs. The pure multistate model@8# can be obtained by
taking the number of exampless51, the activitya51 and
the correlationb51. Sincea<1, the activity of the ex-
amples is not greater than the activity of the concepts. In
sense, we refer to ‘‘small’’ examples, with the effectiv
‘‘size’’ of the patterns beingNe5aN. In this model, the
view point is that the small examples are samples of
full-activity concepts to be inferred.

In this work we are interested in the capacity of the n
work to infer only large concepts of full activity from the se
of examples and restrict ourselves, therefore, to binary c
cepts,j i

m561 with equal probability, that is to say, to th
caseA51. This task is considered to be successful if t
categorizationoverlap

mm5
1

N (
i 51

N

j i
mSi ~8!

between the concept$j i
m% and the network state$Si% ap-

proaches unity after the network has reached the equilibr
state. To quantify the performance of the network, we defi
the categorization error for the conceptm as

«c
m5

1

2
~12mm!. ~9!

Thus,«c
m should be small in the categorization phase and

in the disordered phase.
Next we discuss the dynamics of the model, following t

steps of Ref.@8#, and references therein. For a given config
ration $Si% of the network, the local fieldhi on sitei is

hi~$Si%!5(
j Þ i

Ji j Sj , ~10!

where the synapsesJi j are constructed from the example
according to the modified Hebb rule

Ji j 5
1

N (
m51

p

(
s51

s

j i
msj j

ms for iÞ j , Jii 50. ~11!

The state of each site is updated asynchronously accordin
a Glauber~single spin-flip! dynamics in which the transition
probabilities are given by
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P@Sj~ t1Dt !5sku$Si~ t !%#5
exp@be j„skuhj~$Si~ t !%!…#

(
l 51

Q

exp@be j„s l uhj~$Si~ t !%!…#

,

~12!

whereb51/T is the inverse temperature and the single s
energy,e j (suh), is given by

e j~suh!52hs1us2. ~13!

Here,u is a non-negative constant that favors local states
small dynamical activity. In the absence of stochastic no
the deterministic evolution of the system is ruled by

Sj~ t1Dt !5Qdyn„hj~ t !…, ~14!

whereudyn(x) is the nondecreasing step function, for fini
Q,

Qdyn~x!5 (
k51

Q

sk@Q~u~sk111sk!2x!

2Q„u~sk1sk21!2x…# ~15!

with s052` and sQ1151`, in which Q(x)51, if x
>0 and 0 otherwise. The spin on sitej assumes the statesk
given by Eq.~1! if the local fieldhj is bound bysk1sk21
<hj /u<sk1sk11. The width of the intermediate state
with constantsk for 1,k,Q ~that is, excluding the limiting
values ofsk561), is given by 4u/(Q21). Thus, the width
of the zero state for the three-state network studied belo
2u. In the limit Q→`, the input-output function, Eq.~15!,
becomes the piecewise linear function

Qdyn~x!5sgn~x!minS U x

2uU,1D , ~16!

where min(x,y) means the minimum betweenx andy. The
slope of the linear part in here is 1/2u, which is the gain
parameter of the continuous network. The equilibrium th
modynamic properties of the fully connected infinite netwo
that follows from the above dynamics is described by
Hamiltonian

H52(
( i j )

Ji j SiSj1u(
i

Si
2 , ~17!

where the first sum is over all distinct pairs (i j ).
The relevant order parameters, when the network is in

ordered sub-space of the phase space, are theretrieval over-
laps

mmr5
1

N (
i

N

j i
mrSi ~18!

between the actual state of the network and each one o
examplesr of each conceptm. The underlying idea in study
ing the categorization performance of the network is t
when the number of correlated examples is higher tha
critical value, for a given correlation strength, single e
amples are no longer local minima of the free-energy, bu
mixed state having macroscopic symmetric overlapmmr
e
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5ms, for r51, . . . ,s, with all the examples of a given con
cept m, becomes a minimum. This state characterizes
categorization phase, and it yields a finite, macrosco
overlapmm with conceptm. Since we are interested mainl
in the categorization ability of the network, we restrict ou
selves, in what follows, to the study of configurations th
have a macroscopic overlap of orderO(1) with a mixture of
a finite numbers of examples of a given concept. Noting th
the concepts are uncorrelated, one may concentrate on
overlap with anyone of them, saym1 for m51.

III. MEAN-FIELD THEORY

The free-energy per site follows as

f ~b!52 lim
N→`

1

bN
^^ ln Z~b!&$lmr%&$jm% , ~19!

with the averages over examples and concepts in that or
as indicated, whereZ(b) is the canonical partition function

Z~b!5(
$Si %

exp~2bH !. ~20!

In order to average over the quenched disorder, we emp
the replica method, in which

^^ ln Z~b!&$lmr%&$jm%5 lim
n→0

1

n
~^^Z n~b!&$lmr%&$jm%21!.

~21!

Using the generalized Hebb learning rule, Eq.~11!, and in-
troducing a fieldh1, in order to generate an equation for th
overlapm1, the Hamiltonian Eq.~17!, for the replicaa, be-
comes

Ha52
1

2N (
iÞ j

(
mr

j i
mrj j

mrSi
aSj

a1u(
i

~Si
a!22h1(

i
j i

1Si
a .

~22!

Introducing this expression in Eq.~20!, separating the first
concept, we linearize the quadratic terms and obtain the
licated partition function

^^ ln Z~b!&$lmr%&$jm%

5E )
ar

AbNdm1r
a

A2p
expF2

bN

2 (
ar

~m1r
a !2G

3(
$Si

a%

^^exp~bpGn!&$l i
mr%&$j i

m%

3K K expH b(
ia

F(
r

m1r
a l i

1rj i
1Si

a 1

2N

3(
r

~l i
1rj i

1Si
a!22u~Si

a!21h1j i
1Si

aG J L
$l i

1r%
L

$j i
1%

,

~23!
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where

exp~nbpG!5 )
m.1 K K exp

b

2N (
iÞ j

(
a

Si
aSj

a

3(
r

l i
mrl j

mrj i
mj j

mL
$l i

mr%
L

$j i
m%

, ~24!

involves the uncondensed examples.
In the thermodynamic limit,N→` we obtain following

Ref. @35#,

nbG52
1

2
tr ln~12bg1Q̂!2

1

2
~s21!tr ln~12bg2Q̂!

2
1

2
bg1 tr Q̂2

1

2
b~s21!g2 tr Q̂, ~25!

where

g15a1~s21!b2, and g25a2b2. ~26!

Here, Q̂ is a matrix in the space of replicas with elemen
given by

Qab[
1

N (
i

Si
aSi

b5qab, if aÞb, ~27!

and

Qaa5Qa . ~28!

Thus, qab is the spin-glass order parameter andQa is the
dynamical activity of the network. Whereas for the bina
network in the replica-symmetric theoryQa51, in the case
of multistate networks one has, in general, thatqab<Qa
<1.

Introducing, as usual, the overlap parameterr ab associ-
ated to the correlation between the overlaps of the exam
and concepts that do not condense, and restricting our s
to the replica-symmetric solution, in which

mmr
a 5mmr ,

qab5q, ~29!

Qa5aD ,

r ab5r ,

we obtain that the replica-symmetric free-energy per site
be rewritten as
es
dy

n

f ~b!5
1

2 (
r51

s

m1r
2 1

a

2b F ln~12g1C!1
g1C

12g1C

1~s21!ln~12g2C!1~s21!
g2C

12g2CG
1

a

2 F g1
2qC

~12g1C!2
1~s21!

g2
2qC

~12g2C!2G
2

1

b K K E Dz ln(
$S%

ebHeffL
$l1r%

L
$j1%

, ~30!

whereDz5dzexp(2z2/2)/A2p is a Gaussian measure. Th
effective HamiltonianHeff is given by

Heff5SS (
n

m1rl1nj12u8S1h1j12AarzD , ~31!

where

u85u2
ag1

2~12g1C!
2~s21!

ag2

2~12g2C!
~32!

is an effective width of the intermediate states, as will
seen below@see Eq.~50!#. Eventually, depending on the sta
of the network specified by the dynamical activityaD and the
spin-glass order parameterq, u8 may become negative, fa
voring an order with large absolute values forS. Although
Eqs. ~30!–~32! follow from the assumption of replica sym
metry, we believe that such an order will exist, in gener
albeit in a small region of the phase space. Here,C[b(aD

2q)5b( i(^Si
2&2^Si&

2)/N represents the susceptibility o
the network. The parameterr is given by the algebraic
saddle-point equation

r 5
g1

2q

~12g1C!2
1~s21!

g2
2q

~12g2C!2
. ~33!

The remaining saddle-point equations determining the or
parameters are

m1r5K K l1rj1E Dz^S~z!&L
$l1r%

L
$j1%

, ~34!

q5K K E Dz^S~z!&2L
$l1r%

L
$j1%

, ~35!

and

C5
1

Aar
K K E Dzẑ S~z!& L

$l1r%
L

$j1%

. ~36!

In the above equations,

^Sn~z!&[
(
$S%

SnebHeff

(
$S%

ebHeff

. ~37!
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The susceptibilityC remains finite, so that at zero temper
ture, that isb→`, q→aD , while at finite temperature we
have in generalq<aD . The overlap with the first concep
which measures the categorization ability, is given by

m15
] f

]h1
5K K j1E Dz^S~z!& L

$l1r%
L

$j1%

. ~38!

Performing the configurational average in the saddle-p
equations, we obtain

ms5
bm1

12g2C
~39!

for the symmetric overlap,

q5E DzSb
2~hs ,u8!, ~40!

and

C5
1

Av
E DzzSb~hs ,u8!, ~41!

as well as the overlap with the concept

m15E DzSb~hs ,u8!. ~42!

The effective transfer functionSb(hs ,u8) is given by

Sb~hs ,u8!5
sinh~bhs!

~1/2!ebu81cosh~bhs!
~43!

in the case of the three-state network, and

Sb~hs ,u8!5
hs

2u8
1

1

Abu8p

3
exp@2f1

2 ~hs ,u8!#2exp@2f2
2 ~hs ,u8!#

erf @2f1~hs ,u8!#2erf @2f2~hs ,u8!#
,

~44!

where

f6~hs ,u8!5Abu8S 11
hs

2u8
D ~45!

for Q→`. Thus, 1/2u8 is the effective gain parameter fo
the continuous network. The effective field for the symmet
solutionhs is given by

hs5smsb1zAv, ~46!

where

v5ar 1sms
2g2 . ~47!

The first term in Eq.~46! is a signal term, while the sec
ond term is the Gaussian noise due to the macroscopic n
ber of uncondensed examples and the presence of the
t

c

m-
m-

metric mixture states. The latter, in whichg25a2b2 @see
Eq. ~26!#, is reduced in the case of examples of low activ
a,1. One should expect, thus, an enhancement of the
egorization ability of the network in that case. The abo
equations are obtained under the assumption that the num
of exampless is large, so that the average over examples
given by a Gaussian distribution@19,23#. In the following
sections we discuss the results based on the solutions o
saddle-point equations for both, the three-state and the
tinuous network.

The limit of stability of the replica-symmetric solutio
comes from the study of quadratic fluctuations of the fre
energy in the vicinity of the symmetric saddle point. Follow
ing the Almeida and Thouless~AT! analysis@36#, we obtain

S g1
2

~12g1C!2
1~s21!

g2
2

~12g2C!2D
3ab2K K E Dz@^S2~z!&2^S~z!&2#2L

$l1r%
L

$j1%

<1

~48!

as the stability condition for the replica-symmetric solutio

IV. THREE-STATE NETWORK

A. Categorization properties at zero temperature

We begin by discussing the results for the categorizat
performance in three-state networks in the absence of
trieval noise. The probability distribution in this case is giv
by

P~l i
mr!5

a1b

2
d~l i

mr21!1~12a!d~l i
mr!

1
a2b

2
d~l i

mr11!, ~49!

satisfying the conditions~3! and ~4!. Thus, the examplej i
mr

has a probability (a1b)/2 to be aligned with the concep
while it has a probability 12a to be turned off and a prob
ability (a2b)/2 to be opposed to the concept.

The effective transfer function, Eq.~43!, at zero tempera-
ture becomes

S`~hs ,u8![ lim
b→`

Sb~hs ,u8!5sgn~hs!Q~ uhsu2u8!.

~50!

From Eq.~32!, we see thatu8 may become negative. Sinc
S`(hs ,u8,0) is algebraically the same asS`(hs ,u850) the
network acts, in this case, as a binary network atT50. Ac-
cordingly, Eq.~39! remains unchanged, while Eqs.~40! and
~41! become

q512
1

2
erfS smsb1u8Q~u8!

A2v
D 1

1

2
erfS smsb2u8Q~u8!

A2v
D

~51!
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and

C5
1

A2pv
expF2

@smsb1u8Q~u8!#2

2v G
1

1

A2pv
expF2

@smsb2u8Q~u8!#2

2v G . ~52!

The overlap with the concept, Eq.~42!, is given by

m15
1

2
erfS smsb1u8Q~u8!

A2v
D 1

1

2
erfS smsb2u8Q~u8!

A2v
D .

~53!

We show in Fig. 1 the categorization phase diagram
the case wheres520, a50.25b. With the choice thata
5b, we are looking in a way for an optimal phase diagra
in the sense that the training examples either coincide w
the corresponding concepts, that isj i

mr5j i
m , for r

51, . . . ,s, or are zero, but they are never opposed to
concept. For other values of the parameters, similar diagr
are obtained, although with lower capacitya. The categori-
zation phase (C), characterized bym1Þ0 andqÞ0 is glo-
bally stable below the heavy solid line. It becomes only

FIG. 1. Phase diagram for the ratioa of recognized concepts a
a function of the thresholdu, for the three-state network. The num
ber of examples iss520, the activitya50.25b ~the correlation
parameter!. Here,C, SG, andP are the categorization, spin-glas
and paramagnetic phases, respectively. Below the heavy solid
the categorization phase is the absolute minimum of the f
energy. Solid~dash-dotted! lines indicate a discontinuous~continu-
ous! transition. The dashed line indicates the optimal value ofu. At
the left of the dotted line, the network behaves as a binary netw
with statesSi561.
r

th

e
s

-

cally stable, while the spin-glass~SG! phase is globally
stable, between the heavy solid and the light solid li
where the system always jumps discontinuously to the s
glass phase. This is in distinction with known results for t
categorization phase diagram in the dilute network@19#,
where the transition to the spin glass phase is partly cont
ous and partly discontinuous. Above the light solid line, a
at the left of the dash-dotted line, where it disappears c
tinuously, the spin-glass phase, withm150 and qÞ0, is
stable. At the right of the dash-dotted line the paramagn
(P), or zero phase, withm150 andq50, is stable. Note
that, for large thresholdu, there is a direct transition from
the categorization phase to the fully disorderedP phase, at
low a. There exists also a retrieval phase of examples, w
out categorization, not shown in the figure. Since we
dealing with a large number of examples~thus favoring the
categorization!, that phase is present in the phase diagr
only at very small values ofa andu. To the left of the dotted
line, the effective widthu8 is negative. Here, every nonzer
value of the local field is sufficient to access the neural sta
Si561 and, in consequence, the network behaves in
region as a binary network. The dashed line signals the
timal u, i.e., the value of the width parameter for which th
categorization overlapm1 reaches its maximum value. It i
interesting to note that the present phase diagram is sim
to that of Ref.@8#, for the retrieval problem, with the catego
rization phase taking the role of the retrieval phase in t
problem.

An important question addressed in this paper refers
the role played by the activity of the examples,a, on the
categorization ability of the network. In Fig. 2 the catego

e,
e-

rk

FIG. 2. Categorization error as a function of the activitya, for
the three-state network atT50, whena50.02,s520, b50.2, and
u50.0–0.3~as indicated!.
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zation error«c is shown as a function of the activity, fora
50.02, s520, b50.2, and for several values ofu. The re-
sults reveal that«c is a monotonically increasing function o
a. Since this is the general behavior for other values of
parameters, the results confirm that for the connected, as
as for the dilute@19# networks, it is better to train the ne
work with low-activity examples. This can be understo
noting that the activitya of the examples is decreased wh
a macroscopic number of bits of every example is turned
But in keeping the overlapb between examples and concep
fixed, the bits that are turned off in the examples must
those that are inverted with respect to the concepts . W
the activitya reaches its minimal, optimal value,a5b, the
only bits that are turned on in the examples are those tha
aligned with the concepts, leading to the smallest categor
tion error. In this case the categorization task of the netw
becomes similar to the reconstruction of a puzzle from lo
pieces. Finally, the figure also shows the discontinuous ju
to the spin-glass~SG! phase, at the upper phase boundary
Fig. 1.

The categorization error as a function of the number
exampless, for b50.4, u50, andu51.0 and two different
activities, namelya5b ~all wrong bits in the examples ar
turned off! and a51.0 ~all wrong bits in the examples ar
included! is shown in Fig. 3. Starting from the spin-gla
phase, with categorization error equal to 0.5, the netw
undergoes a discontinuous transition to the categoriza
phase as the number of examples increases above a cr
value. The number of examples required for the jump to
categorization phase is considerable smaller fora50.4, than

FIG. 3. Categorization error as a function of the number
exampless, for the three-state network atT50, whena50.05, b
50.4. Solid ~dotted! lines correspond tou50.0 (u51.0) and the
two lines at the left~right! correspond toa50.4 (a51.0).
e
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for a51.0. Nevertheless, the final categorization error
similar for the two activities. This means that the network
able to overcome a higher amount of errors in the examp
by a larger number of these examples. A higher value ofs is
also required for a higher thresholdu, in order to reach a
higher local field to attain the states with nonzero activity

B. Categorization properties in the presence of synaptic noise

We consider next the categorization performance obtai
from Sb(hs ,u8), Eq. ~43!, for finite b. Figure 4 illustrates
the influence of the temperature on the categorization er
for a50.01, s520, b50.25u, and activitya equal to 0.2
and 0.3. To the left of the arrow in the curve correspond
to a50.2, the categorization phase is the global minimu
while it is a local minimum to the right. In what concerns th
present set of parameters, the categorization phase foa
50.3 is a local minimum for all temperatures, whereas
spin-glass phase is the global minimum. Thus, it is also
vantageous for an enhancement of the performance of
network, in the presence of synaptic noise, to train the n
work with examples of low activity. Figure 4 also shows th
discontinuous transition to the spin-glass phase at
activity-dependent transition temperature.

The phase diagram fora vs T is presented in Fig. 5 for
u50.2, s520, anda50.25b. The categorization phase i
stable below the upper phase boundary, where it disapp
discontinuously, becoming a global minimum below t
lower phase boundary. At very smalla and T there is a
retrieval phase without categorization, not shown in the fi
ure. The dashed line on the left is the locus of the AT lin

f FIG. 4. Categorization error as a function of the temperatureT,
for the three-state network, whena50.01, s520, b50.25u, and
a50.2 ~solid line! and 0.3~dotted line!.
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The replica-symmetric solution for the categorization ph
becomes unstable to replica-symmetry-breaking fluctuat
at the left of this line. The reentrant behavior of the upp
phase boundary at lowT is associated to the instability of th
replica-symmetric solution in this region. The spin-gla
phase becomes a global minimum to the right of the he
solid, and to the left of the dotted line, where it disappe
continuously. At the right of the dotted line, the parama
netic phase is the global minimum.

V. NETWORK WITH CONTINUOUS NEURONS

In this section we discuss the categorization propertie
a network with continuous, monotonic neurons trained w
continuous or discrete examples of binary concepts. The c
tinuous limit is obtained by takingQ→` in Eqs. ~1! and
~15!. The following results are independent of the spec
form of P(l i

mr), provided that its mean and variance a
given by Eqs.~3! and ~4!, respectively. The general Eq
~39!–~42!, for the saddle points, apply also to this case.
the absence of noise, the effective transfer function, Eq.~44!,
becomes the stepwise linear function

S`~h,u8!5sgnS h

2u8
D minS U h

2u8
U ,1D , ~54!

in which 1/2u8 is the effective gain parameter. Consequen
we obtain

FIG. 5. Categorization phase diagram ofa vs. T, for the three-
state network, whenu50.2, s520, and a50.25b. Below the
heavy solid line the categorization phase is the absolute minim
of the free energy. Solid~dotted! lines indicate a discontinuou
~continuous! transition. The replica symmetry is broken at the le
of the dashed line.
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m15
1

2 S 12
smsb

2u8
D erf~M 2!1

1

2 S 11
smsb

2u8
D erf~M 1!

2
1

2u8
A v

2p
@exp~2M 2

2 !2exp~2M 1
2 !#, ~55!

q512
v

4u82Ap
@M 1exp~2M 2

2 !2M 2exp~2M 1
2 !#

1
1

2 F11
v

2u82 S 1

2
1

s2ms
2b2

2v D G @erf~M 2!2erf~M 1!#,

~56!

and

C5
1

4u8
@erf~M 1!2erf~M 2!#, ~57!

where

m

FIG. 6. Categorization phase diagram ofa vs u, for the con-
tinuous Q5` state network, atT50, when s520, a50.25b.
Here,C, SG, andP are the categorization, spin-glass, and param
netic phases, respectively. Below the heavy solid line the categ
zation phase is the absolute minimum of the free energy. S
~heavy dash-dotted! lines indicate discontinuous~continuous! tran-
sitions. The dashed line indicates the optimal value ofu. At the left
of the dotted line, the network behaves as a binary network w
statesSi561. Below the light dash-dotted line the replica symme
ric solution is stable.
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M 65
smsb62u8

A2v
. ~58!

The zero-temperature phase diagram fora vs u with s
520 anda50.25b is shown in Fig. 6. The categorizatio
phase exists below the light solid line, and it is the glob
minimum below the heavy solid line. At the left of the dotte
line, u8 is zero, and the effective gain is infinite. In th
region, the statesSi561 are the only accessible states f
nonzero local field and the network behaves as a binary
work. In there, the criticala for categorization assumes i
value in the binary network for this set of parameters, i
ac,binary'0.033. When the network enters the multista
continuous regime, the categorization capacity starts to
crease abruptly, and reaches its maximum valueac'0.047
for u'0.11. The dashed line signals the optimumu for each
a. It is worth noting that fora,ac,binary the optimalu line
coincides with the transition to the binary regime. Th
means that whenever there is a binary network capabl
perform the categorization task, it will give the best categ
rization properties for lowu. Only when a.ac,binary the
network with continuous neurons is expected to have a be
performance. Contrary to the case of finiteQ, where at zero
temperature the replica-symmetric solution is always
stable, there is here a region where it is stable, and this is
part of the phase diagram below the light dash-dotted l
The phase diagram illustrates that also the network of c
tinuous neurons is robust to low gain in the states. The e
tence of a replica-symmetric stable phase at zero tempera

FIG. 7. Categorization error as a function of the activitya, for
the Q5` state network atT50, when a50.02, s520, and
b50.2. The threshold values are 0.2, 0.3, and 0.4~curves from right
to left!.
l
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was noticed in Ref.@8#, for the retrieval problem in a net
work of continuous neurons. Finally, the heavy dash-dot
line represents the onset of the continuous spin-glass tra
tion.

In Fig. 7 we present the categorization error as a funct
of the activity of examples, fora50.02, s520, and u
50.2 to 0.4. Since we deal with a non specifiedP(l i

mr), the
only restriction imposed isa>b2. We note from the figure
that the categorization error is no longer a monotonic
creasing function of the activity for all values ofu. For u
50.4, «c is a decreasing function ofa, for small a. The
reason is that in the case of large thresholdu, the local field
hi($Si%) must be sufficiently high to overcome the thresho
and this is obtained through a moderate increase in the
tivity of the examples.

Finally, we discuss the influence of the number of e
ampless on the categorization ability of networks with con
tinuous neurons. Figure 8 shows the categorization error
function of s for a50.25b, threshold ranging from 0.2 to
0.4 anda50.02. As a result of the continuous nature of t
units, for low threshold the categorization error decrea
smoothly with the increasing number of examples. This
distinct to the previous case of discrete units, where
abrupt decrease in«c was observed even atu50 ~see Fig. 1!.
Furthermore, the decreasing in«c is no longer monotonic for
all values of the threshold. For example, foru50.2 there is a
local maximum in«c for s'30.

VI. SUMMARY AND CONCLUDING REMARKS

The categorization problem, that consists of the recog
tion of ancestors, when a network is trained only with th

FIG. 8. Categorization error as a function of the number
exampless, for theQ5` state network atT50, whena50.02 and
a50.25b. The threshold values are 0.2, 0.3, and 0.4~curves from
left to right!.
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descendents, is studied in this work for multistate fully co
nected neural network models, keeping in mind an appl
tion to either artificial or biological networks in which th
training is with sparsely coded patterns. Indeed, multis
networks offer the possibility of recognizing full-sized pa
terns in networks trained with ‘‘small’’ patterns, in which
macroscopic number of bits have been reduced or, eve
ally, set to zero reducing thereby the activity of the encod
patterns. We found that a low activity can enhance the
egorization ability of a fully connected network in a signi
cant way, by changing the threshold for firing of the uni
This confirms and extends earlier results on an extrem
dilute network ofQ53 state neurons@18#.

The way the network works for the categorization task
the following. After training with correlated examples, th
network searches for stable symmetric mixtures states
place of pure examples. If these patterns have low activit
will be less likely that they have bits with opposite sign
the corresponding concepts. The recognition of the la
from the common features of the examples will thereby
enhanced.

We derived formal expressions, within replica-symmet
mean-field theory, for the free energy and the relevant or
parameters for the categorization problem in a fully co
nected neural network model, with units in generalQ Ising-
states and multistate patterns belonging to a two-level h
archy. Training of the network was assumed to take pl
through a generalized Hebbian learning rule involving o
the descendents. These may be considered as corrupte
amples of the ancestors~concepts! with a number of turned
off or inverted bits. Explicit results for the relevant pha
diagrams and the categorization curves were then obta
for a Q53 state model with a monotonic activation functio
and for a monotonicQ5` state model. In the first case w
also checked the robustness of the network performanc
synaptic noise. Our results are restricted to binary ances
and multistate descendents, although the case of multis
ancestors has been considered in an extremely dilute net
@21#.
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The limit of validity of the replica-symmetric solution
was established in this work looking for the Almeid
Thouless lines. ForQ53, the replica-symmetric solution i
unstable in the absence of synaptic noise (T50) and there is
a reentrant behavior for the ratioa of recognized concepts, a
small synaptic noise, in accordance with earlier results on
retrieval problem@37,38# and on the categorization problem
in connected networks of binary neurons@31#. Nevertheless,
since the replica-symmetric solution stabilizes at very sm
T, we argue that replica-symmetry breaking effects should
negligible, even atT50. On the other hand, there is a fini
region of interest for the categorization performance dom
where the replica-symmetric solution is stable, even aT
50, in the case of theQ5` state network, as demonstrate
explicitly in this work.

To summarize, we succeeded in studying a fully co
nected multistate neural network model for the categori
tion problem of recognizing binary concepts when the n
work is trained withQ-state examples of low activity, in
place of the full activity patterns of a binary network o
statesS561. The work presented here can be extended
various directions. First, to infer multi-state concepts in
network with full connectivity and to study the categoriz
tion performance for sparsely coded sequential examples
order to come closer to biological networks, it would b
interesting to consider the partial dilution of synapses.
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