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Kinetic model for a polymer in one dimension
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We consider a model for a directed polymer on a one-dimensional lattice of width 2, with
attractive interactions between monomers that occupy first-neighbor sites on the lattice and are not
consecutive along the chain. We show that this model is equivalent to the one-dimensional Ising
model with first- and second-neighbor interactions. We study the kinetic behavior of the model in
the region of the phase diagram where the ground state is not frustrated, using a Glauber ansatz
for the time evolution of the configurations. In order to decouple the dynamical equations, we use
the pair approximation. In this approximation, we show that the dynamical exponent of the model
is a function of the ratio between second- and first-neighbor interaction strengths.

PACS number(s): 61.41.+e, 05.50.+q, 64.60.Ht

I. INTRODUCTION

Among the studies of the time evolution of statisti-
cal mechanical models, the classical work of Glauber [1]
about the kinetic one-dimensional Ising model is one of
the few examples where a closed solution could be ob-
tained. On the other side, the time-dependent behavior
of flexible long chain molecules (polymers) has attracted
attention, &om both the experimental and theoretical
points of view for quite a long time, and the bead-and-
spring model formulated by Rouse [2] should be men-
tioned in this context. The Rouse process seems to be
one of the basic dynamical processes in polymer melts,
besides reptation [3] and double reptation [4]. In the dy-
namical processes cited above, it is supposed that the
con6guration of the polymer chains changes in time, but
no monomers are added or subtracted from the chain.
An alternative theory has been proposed of chains that
may break apart and reconnect [5], as happens for living
polymers [6] and equilibrium polymerization [7]. Most
of the models for the kinetic behavior of polymers have
not been solved analytically, since they are too complex.
Therefore, approximate solutions are one of the possible
ways to study these models.

One may ask wether the Glauber model could be ap-
plied to describe a polymer model, in a rather simple situ-
ation. One possibility already studied in the literature is
to consider a random walk in one dimension. Once a site
of the lattice has been reached, there are two possibilities
for the next step (left or right), and therefore a random
walk may be mapped on a configuration of Ising spins,
and the time evolution of such a model can be studied
through a Glauber ansatz for the change of the configu-
rations as a function of time [8]. In this paper we estab-
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lish a mapping between a one-dimensional Ising model
and a model for a polymer with excluded volume inter-
actions. The polymer is modeled by a self-avoiding walk
on a one-dimensional lattice of width two (see Fig. 1).
Periodic boundary conditions are assumed in the trans-
verse direction. It is supposed that a single walk crosses
the whole lattice, starting &om the left and ending on
the right. Each monomer incorporated into the polymer
will have an activity x associated with it, and we sup-
pose the existence of an attractive interaction between
monomers that are located on erst-neighbor sites but are
not consecutive monomers of the chain. So, to each pair
of interacting monomers an energy e is associated, corre-
sponding to a Boltzmann weight ur = exp[ —e/k~T]. For
attractive interactions w ) 1.

The model we consider is a one-dimensional version
of the model often used to study the collapse transition
in poor solvents (SASAW: self-attracting self-avoiding
walk) [9]. Actually, by solving a sequence of such mod-
els on strips of increasing widths I and using finite-size
scaling methods to extrapolate the results to the two-
dimensional limit I ~ oo, estimates for the location and
exponents of the tricritical 0 point for the model on the
square lattice were obtained [10]. One important differ-
ence between the SASAW model and the one we consider
here is that we do not include the empty lattice config-
uration in our model, so that a nonpolymerized phase is
excluded.

One experimental realization of the SASAW model
may be found in sulfur solutions [7]. An appropriate
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FIG. 1. A walk with 10 sites and statistical weigth x w .
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model for this case should consider the solvent explic-
itly, as was done in the equilibrium polymerization model
proposed by Scott [ll] and solved in the mean-field ap-
proximation [12] and on the Bethe lattice [13]. However,
it was shown that a model where the solvent-monomer
system is treated as an Ising lattice gas reduces to the
SASAW model in an appropriate lixnit [14]. Therefore,
the particular model we study here may be suited to de-
scribe a situation of equilibrium polymerization in a sol-
vent when the solvent-monomer system is confined inside
a thin pore. The static and dynamic properties of similar
models were studied some time ago using scaling argu-
ments [15].

For the model defined above, the proper partition func-
tion is

y (&, ~) = ) ~" *"r(~„,nb , N),.
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be in four diferent configurations, depicted in Fig. 2.
The element of the transfer matrix between two states
may be calculated considering the bonds of the polymer
incident on each of the four sites involved, as well as the
multiplicity of configurations ~3) and ~4). One should no-
tice that the activity of each monomer is considered two
times in sucessive steps of the transfer process. If the
configurations of the two states are not compatible (such
as configurations 1 and 2, for example), the correspond-
ing transfer matrix element zero. Some examples may be
found in Fig. 2.

The transfer matrix is then given by

where nz is the number of monomer pairs on first-
neighbor sites that are not consecutive monomers along
the chain, ng is the number of bonds in the monomer,
and I'(n„, nb, N) is the number of configurations of the
polymer that share the same values of n„and np, on a
one-dimensional lattice of width 2 and a total number of
sites N.

In Sec. II we calculate the partition function of the
model, and show that it corresponds to a one-dimensional
Ising model with first- and second-neighbor interactions
(a one-dimensional version of the axial next-nearest-
neighbor Ising model), which was solved some time ago
[16]. In Sec. III we present the tixne evolution equations of
the model, supposing that the evolution occurs through
Glauber-like transitions of the configuration. For non-
vanishing attractive interactions e, which corresponds to
nonvanishing second-neighbor interactions in the equiv-
alent Ising model, we find out that the differential equa-
tions for the n-spin correlation functions are coupled, and
we were not able to find an exact solution for them. For
e = 0, Glauber's exact solution describes the kinetic be-
havior of the polymer model we consider. In order to de-
couple the equations, we use the pair approximation [17].
We then compare the stationary solution of the equations
with the exact equilibrium solution of the model and cal-
culate the dynamical critical exponent z. As might be
expected, z is nonuniversal within the pair approxima-
tion, being a function of the the ratio between first- and
second-neighbor interaction strengths in the equivalent
Ising model. Finally, we discuss the results and present
our conclusions in Sec. IV.

and the partition function of the model is

V~ = r.(T"~') = ~"x",

where Aq is the largest eigenvalue of T,

x[/4(u x' —42:(ur —2) + 1 + 2u)x —1]
Ai ——
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The model will exhibit a phase transition when the
largest eigenvalue is degenerated, and we will discuss this
possibility later.

Next, we show that the polymer model defined above
is described by an effective one-dimensional Ising Hamil-
tonian. I et us associate an Ising spin 0., = +1 to each
vertically aligned pair of horizontal bonds in the origi-
nal lattice. Since the polymer spans the whole lattice, a

II. EQUILIBRIUM SOLUTION AND
CORRESPONDENCE WITH THE ISING MODEL

JL JE1F 1F

To solve the one-dimensional polymer model intro-
duced above in equilibrium, we point out that the par-
tition function Eq. (1) may be easily calculated through
the transfer matrix method. We consider a pair of ver-
tically aligned sites. The bonds incident on these sites
(two vertical bonds and four horizontal half bonds) may

FIG. 2. (a) Configurations corresponding to the states of
the transfer matrix for the polyxner model. (b) Diagraxns
corresponding to some elements of the transfer matrix.
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polymer bond will be located either on the upper or on
the lower bond, and we associate the values o; = +1 and
o.; = —1 to these cases, respectively. Thus the locations
of all horizontal polymer bonds are fixed if the values of
the 1V/2 Ising spins are given. Now let us suppose that
there are first- and second-neighbor interactions between
the spins, defining the Hamiltonian

N/2
1H(o.) = ) (cr;o;+g+ cr;+go;+2)

2.00

120~

Nj2.~'~,+2 —Jp —,

with periodic boundary conditions (oar+&
——oz). The2+

last term in the Hamiltonian, which was included to allow
us to establish the correspondence between both models,
is constant, thus having no influence on the thermody-
namic properties.

The transfer matrix for this Ising model can be calcu-
lated defining a state by the configurations of two neigh-
boring spins Io;.o;+~); there are then four possible states,
namely,

I» = I++& I» =
I

——
&

0.00

0.00 0.50 1.00 1.50 2.00

FIG. 3. Signs of the interactions Jq and J2 of the Ising
model for different values of the parameters x and u of the
polymer. In regions A and B we have J& ) 0 and in regions
A an C J2 ) 0 in the corresponding Ising model. In regions
8 and D of the diagram the ground state is frustrated.

I» =
I
+ —

& 14& =
I
—+&.

So, the element Mqq of the transfer matrix will be given
by

Kg
M» = (ill) = exp (&*&'+~ + ~'+~&'+2)

2

+K2o.,o.;+2 + Kp

where K, —:J'/kJBT', T' being the temperature of the
magnet, and o; = o-,+q ——o,+2 ——1, with the result

My] = QJP&yCd2,

with ~; = exp K;. M;~ vanishes if the common spin of
states i and j does not have the same value. The transfer
matrix is given by

tions Jq and J2 in the Ising model are shown, as func-
tions of the polymer variables x and w. It should be
stressed that we will restrict ourselves to the case where
the interactions among monomers in first-neighbor sites
are attractive (u & 1), and therefore consider J2 & 0,
which ensures that the ground state of the Ising model is
not &ustrated.

The correlation lenghth ( may be calculated through

( = [ln(Ag/A2)]

where Aq and A2 are the largest and second-largest eigen-
values of the transfer matrix, respectively. If we define
the parameter n through ~2 ——uP, so that n = J2/J~ in
the Ising model, we can write the correlation length as

Cdp&y(d2

0
0

(dp CO2

(dp(dye)2
—1

Q)P&2
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—1
GdP&2
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o )
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ln 1
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Comparing the transfer matrix for the polymer model
Eq. (2) with the transfer matrix for the Ising model
Eq. (9) we notice that they are identical if

where

1 /

2 (d 4
i Cdp = X(d 4 +2XCtJ; (lo)

and

G = 2' —(dG = C0g —(dg — Cdg 7

so that the thermodynamic properties of both models are
the same if conditions in Eq. (10) are met.

In Fig. 3 the regions of difFerent signs of the interac-
2 + —4 4

—2(2cx+1)



52 KINETIC MODEL FOR A POLYMER IN ONE DIMENSION 6511

When T' ~ 0 we notice that III. TIME EVOLUTION OF THE MODEL

( + I~I) (»)
Considering the mapping given by Eq. (10), between

the equilibrium polymerization model and the Ising
model, we may discuss the phase transition in the poly-
mer model which corresponds to the transition at T' ~
0 in the Ising model. The nature of the transition
may be ferromagnetic or antiferromagnetic, depending
on the sign of Jq. For Jq & 0 and Jq ) 0, a para-
antiferromagnetic transition occurs when uq ~ 0 and

oo. In the polymer model, this corresponds to
u -+ oo and x P 0. The antiferromagnetic ground state
in the Ising model corresponds to a configuration in the
polymer model where every site of the lattice is incorpo-
rated into the polymer. Thus, the transition we are con-
sidering here is between two polymerized phases. It may
be recalled that exact calculations on the n ~ 0 model
with two- and four-spin interations on the square lat-
tice, which is related to a two-dimensional version of the
model we are considering, also lead to a phase diagram
with two di8'erent polymerized phases and a transition
between them [18].

We now study the time evolution of the model, start-
ing with an arbitrary configuration of the spin variables
and letting it evolve to equilibrium. Thus we suppose
the N/2 Ising spins to be stochastic variables of time
o'; (t), i = 1, 2, ..., N/2. Therefore, the configuration of the
model evolves in time through the flipping of individual
spins. It should be noted that the flipping of a spin cor-
responds to changing the horizontal bond through which
the polymer chain passes, thus polymer bonds are bro-
ken and others are formed in this process and the config-
uration of the polymer evolves through reversible chain-
scission reactions, as in the process proposed by Cates [5].
Also, since we consider that the polymer chain crosses the
whole lattice, our formalism does not take into account
the dynamics of the longitudinal motion of the chain in
the pore [19]. The transition probabilities of individual
spins are functions of the spin values, of the values of
first- and second-neighbor spins, and of the temperature
T' of the heat bath. Defining iU(0;) as the probability,
per time unit, that spin i changes its value &om o; to
—o, , we obtain

(14)

which is the master equation of the process.
When the system reaches equilibrium, at a given temperature T, the probability of any configuration should be

proportional to the Boltzmann factor P((0 )) oc exp[—H((o j)/k~T'], where H((0 )) is the Hamiltonian of the system
and (0) denotes a configuration of the spins. Substitution of the Hamiltonian, Eq. (5) into Eq. (14) leads to

P( 0;) 1 —cr—; tanh[Ki(0; i / cr;/i) / Kg(0,. g / tT;/p)]

P(0, ) 1+0; tanh[Ki(o. ; i + 0.;~i) + Kq(o; q + 0.;~q)]
(15)

If all spins, with the exception of o, , are considered fixed,
and if the stochastic model is to approach the equilibrium
distribution as t ~ oo (stationary state), the transition
rates in Eq. (14) should obey detailed balance

~tanhKg(0. ; g 4- o';~g)]
P(—cr;) m;(0;)
P(0;) m;( —o;) '

and this will be the case if we choose

(16)
and this transition rate, although being linear in the spins
and therefore allowing an exact solution of the time evo-
lution of the model, does not lead to an equilibrium dis-
tribution in the stationary state [20].

The transition rate, Eq. (17), may be rewritten as

~Kg(o.; g+ o;~g)]). xv;(cr;) = — 1 — '[A(o, i—+ o,~i) y B(0; ~+ o;~g)
2 2

The parameter p fixes the time scale of the transitions.
It should be remarked that if we consider the tran-

sition rate proposed by Glauber [Eq. (115) of Ref. [1]]
for the one-dimensional Ising model with interactions be-
yond first neighbors, we get where

+&~;-i~;+i(~;—.+ ~~+*j]) (i9)
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and

& = (p+ ~+2~)/4
B = (p —p+ 2b)/4,
& = (p+~ —2~)/4
D = (p —p —2b)/4, (20)

We now define the mean values

(' ' ){t)=) ' P(( ) t).
(e)

(22)

p = tanh(2K1 + 2K2),

p = tanh(2K1 —2K2),
g = tanh(2K1),
8 = tanh(2K2). (21)

Through the master equation we can then Find the evo-
lution equations of the mean values. Let us concentrate
on one- and two-spin terms, restricting the latter case
to erst- and second-neighbor pairs. The results for the
mean values are

1 d A B—
dt (0') = —(o') +

2
(o'-1+ o'+1) + —(o'-2+ o'+2)

D+—(.—.'"( '-. + '.))+ —,( '-. '+.( '-. + '+.))2
1 d D
ddt 2

(oioi+1) 2(oil+1) + (oi—2oi 1+ 2oi —loi—+2 + oi+2oi+3)

C+ (O —20 ' —1O'+1O'+2 + & —2O +2 + O —10 +3 + O —1& O'+2O'+3)
2
A B+ (O' 10' ~1 + 0 '0 +2) + A + —(0 ' 20''+1 + CT'+10' +2 + 0 10 ' + 0 0 ~3)

2
(24)

1 d D
ddt

OiOi+2 Oil+2 + Oi 2Oi —1oi+—1&i+2 + &i 1&i+1 + &i+lO—i+3 + &i &'+1O'+3O +4)
2

'a t z

C+ (Oi 2Oi 1+ O—i—2O—i+1 + Oi+1Oi+4 + Oi+3Oi+4)
2
A B+—(o.; 10;+2 + o;+,o;+2 + o.,o;+1 + cr;o,+3) + —(o; 2a;+2 + o,o;+4) + B.
2

We notice that for J2 ——0, when A = (1/2) tanh(2K1) = g/2, B = C = D = 0, the equations reduce to

1—
d

(o') = —(o') + 2(o' —1+o'+1)
ddt

1d
ddt 2

(0 '0 '+1) = —2(0''0 '+1) + —{2+ 0 ' 10 +1 + 0''0 '+2),

(26)

(27)

1 d 77

ddt 2
&'&~+2 2 o o'+2 + o' —1&'+2 + &'+1o'+2 + o'0 '+1 + & & +3). (28)

These equations were solved exactly by Glauber [1]. Also,
as expected, similar equations are obtained when Jq ——0,
since in this limit the model decouples into two interpen-
etrating chains.

The coupling of the time evolution equations in the
general case (the equation for the time evolution of the
mean value of one spin has mean values of three spins
in the right-hand side and so on), does not allow us to
solve them by the same technique used by Glauber for
the J2 ——0 case. To find approximate solutions, we define
two sublattices 1 and 2 in such a way that first-neighbor
spins belong to difFerent sublattices and restrict ourselves
to solutions where the mean value of any spin belonging

p(cr~'l) = (1+mlo;~'l)/2, (29)

and similar expressions are found for other probabilities
of one and two spins. The results are

to sublattice 1 (2) is equal to ml ~2l, the mean value of
a product of any two first-neighbor spins is equal to r3
and the mean value of any pair of second-neighbor spins
belonging to sublattice 1 (2) is equal to rl i2l. If we call

P(o, ) the probability that the spin o.,~ l, located at a
site i of sublattice 1, has the specified value, then
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P(,'") = (1+ ~,'")/2
P(o, , cr,.+1) = (1+mio; y m2cr, +.1

(1) (2) (1) (2)

+r,o,. o,.+,)/4;(1) (2)

P(o, , cr,.+2) = (1 g mio. , + mio, +2
(1) (1) (1) (1)

+r,o, cr,.+2)/4;(1) (1)

P(o, , cr,.+2) = (1+m2o, + m2o';+2(2) (2) (2) (2)

(3O)

(31)

(32)

(2) (1) (2) (2)
(1) (2) (2) P( oi —1 i —2) ( i—1& i+1)

( i 2—& i—1 & i+1) (2)P(o, ,)

Now this result may be applied to calculate a term that
appears in Eq. (23). Writing

(1) (2) (2) ~ ~ (1) (2) (2) (1) (2) (2)
(Oi —2Oi —1 i+1) 7 Oi 2—i 1—i+1 ( i—2 i—1 i+1) ~

(33)

Now, using the pair approximation [17], we re-
duce con6guration probabilities of larger clusters to
the ones indicated above, decoupling the time evolu-
tion equations (23)—(25). Let us illustrate these cal-
culations with a speci6c example, considering the ap-
proximate calculation of P(o, 2, o, .

1, o,+1). Using the

pair approximation, we may write P(o, 2, o, 1, o;+1) =~ ~

P(cr( )1)P(o.,(+)1!o,( ),)P(o,( )2!cr( ),), where P(cr;!cr,.) is the
conditional probability of 0; for a 6xed value of o~. Using
the identity P(o, , o~) = P(cr~) P(o;!oz), we get the result

and performing the sum using the approximate expres-
sion for the cluster probability, we may express the result
in terms of the probabilities expressed in Eqs. (29)—(33).
The result is

r2 (m2rs —mi) —m2 (rs —mim2)
(o'—2o' —io'+1) = m2—

2

(34)

Performing similar approximations on the other mean
values of products of spins appearing in Eqs. (23)—(25)
we 6nally get the following dynamical equations

1 (r2(m2rs —mi) —m2(rs —mim2) )——mi ———mi + Am2 + Bmi + Cmirs + D
!

p dt
)m2

—1

1d f' ri (mirs —m2) —mi (rs —mim2) )——m2 ———m2 + Ami + Bm2 + Cm2rs y D
!ddt m1 1 r

(36)

1d D 2mi(m2 —r2) —4rsmim2(mz —r2) —2rs(mz(r2 —2) + 1)——r1 ———2r1 + —2r2-
pdt 2 (1 —m2) 2

A+ C m2m1+ r2r3 —m2r3 —m1m2r2 m2m1+ r1r3 —m1r3 —m1m2r22 2

+ 3+
1 —m2 +

1 —m2
2 1

B 2m1 + 2r1 —4r1m1+ 2 +
1

1 d D 2m2 (mi —ri) —4rsmim2 (mi —ri) —2rs [mi (ri —2) + 1]——r2 ———2r2 + —2r1-
pdt 2 (1 —m', )2

A + C m2m1 + r1r3 —m1r3 m1m2r1 m2m1 + r2r3 —m2r3 —m1m2r12 2

+ 2r3+ +
2 1 m 1 1 —m2

B 2m2 + 2r2 —4r2m2

2
(38)

1d D m2m1 + r2r3 —m2r3 —m1m2r2 m2m1 + r1r3 —m1r3 m]m2r12 2

r3 ——2r3 + —2r3 + +
pdf 2 1 —m2 1 m1

C mi + ri —2rimi m2(mi —ri) —2rsmim2(mi —ri) —rs[mi(ri —2) + 1]
2 1 m1 (1 —m21) 2

m2 + r2 —2r2m2 mi(m2 —r2) —2rsmim2(m2 —r2) —r [ 2m(r 222) + 1]
1 —m2 (1 —m', )2

B m1m2 + r2r3 —m2r3 —m1m2r2 m1m2 + r1r3 —m1r3 m1m2r12 2

+—2r3 +
1 —m2 + 1—1 1

A+ (r, +r, )+ A. —
2



6514 JOSE ARTHUR MARTINS AND JURGEN F. STILCK 52

The solution of these coupled equations for given ini-
tial values of mi, m2, ri, r2, and r3 determines the time
evolution of the densities, within the pair approximation.
Let us consider the steady state at t ~ oo, where all time
derivatives in Eqs. (35)—(39) vanish. As expected, we ob-
tain &om Eqs. (35) and (36) that m~ = limt~ mq(t) =
0 and mz ——0 in this state. Using this result in the
remaining three equations we find that ri ——rz and

Proceeding with the calculation up to first order in o. we
notice that

A= tanh(2K'),
B [2 —tanh (2K')]Kqcr,
C=0,
D= —kz tanh (2K, )cr,

2r2 + [r2 + ( 3)'] + (A + &)(r3 + r2rs)

+B[1+(r;)']=0; (40)
1.00

-2"*+(B+D) ("*+"*:)+ &[(:)'+("*)'] 0.80

+A(1+ r') = 0. (41)

The numerical solution of this pair of equations for r2
and r3 may be compared with the exact expression for
the correlations found by Stephenson [16]. One exam-
ple of this comparison is shown in Fig. 4. It should be
stressed that for o. = 0 the correlations obtained through
Eqs. (40) and (41) are exact.

The dynamical critical exponent z is defined in the
vicinity of the critical temperature T = 0 through the
relation

O.BO—

0.40—

0.20—

0.00
r =A(', (42) 0.00 8.00 12.00 1B.OO 20.00

where A is a constant and v is the relaxation time that
characterizes the evolution of the system towards equi-
librium. For the one-dimensional Ising model with first-
neighbor interactions only it was shown that z = 2. Some
generalizations of this model, such as a model with alter-
nating first-neighbor interactions Ji and J2, may present
a value for z that is a function of the ratio Jq/J2, and
therefore nonuniversal behavior of the dynamical criti-
cal exponent is observed [21]. So, we studied the value
of z as a function of o;, for small values of the second-
neighbor interaction, that is, for o. —0. We consider
Eqs. (35)—(39) and linearize them in the deviations of
mi 2 and r] 2 3 &om their steady-state values, that is,
bmq 2(t) = mq 2(t) and br/ 2 3(t) = rg 2 s(t) —r~ 2 3 The
result for the sublattice magnetizations is

1.00

0.80—

O.BO—

0.40—

(a)

1——bmg 2 ——(B —1+Crs + Dr2, )bmg 2

+(A —Dr2 mrs + Drs)bmz z,
0.20—

and up to first order in the deviations of the steady-
state values the equations for the magnetizations do not
depend on br/ 2 3 Defining the relaxation time w through

0.00

0.00
I

4.00 8.00 12.00 16.00 20.00

bmq 2
——Aq 2 exp( —t/r),

= 1 —A —B —Cr s + D(r2rs —r2 —rs). (44)

we may substitute this expression into Eq. (43) and find
that there is a nontrivial solution if we choose FIG. 4. (a) First- and (b) second-neighbor correlations as

functions of T'—:ksT/Jq for n = 0.25 (1) and cr = 1.5 (2).
Exact results (thick lines) and results obtained through the
pair approximation (thin lines) are shown.
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so that only the zeroth-order terms in o. are needed for
the pair correlations

tanh Kg)

r3 tanh Kg.

QJg
p,~ = (1+SKici)

2

Finally, recalling the asymptotic expression for the corre-
lation length from Eq. (13), as well as the definition of the
dynainical critical exponent z in Eq. (42), we conclude
that

z = 2+ 4]a]; (46)

so that, at least within the pair approximation used to
decouple the time evolution equations, the dynamical ex-
ponent is a function of the ratio o. between Grst- and
second-neighbor interactions.

IV. CONCLUSION

So we can calculate pv to first order in n. Since for
the calculation of the dynamical exponent all we need is
the behavior of the relaxation time w in the vicinity of
T' = T' = 0 we expand the hyperbolic tangents above
and get

tion we are considering here no non-polymerized phase
is present. The paramagnetic state of the Ising model
corresponds to a disordered state of the polymer, in the
sense that the bonds of the polymer are not ordered with
respect of the two possibilities (upper or lower bond) of
their configuration at each horizontal step. The ferro-
magnetic or antiferromagnetic ground states correspond
to ordered configurations of the polymer also. In partic-
ular, as was indicated above, the para-antiferromagnetic
transition in the Ising model may be physically under-
stood in the polymer model as an efFect of the attractive
interactions between the monomers.

The dependence of the dynamical critical exponent z
upon the details of the Hamiltonian is not surprising.
It seems that the universality of this exponent is much
weaker than the one observed usually for the static criti-
cal exponents. It may be recalled that a one-dimensional
kinetic Ising model with alternating interaction strengths
Jq and J2 is exactly solvable and its dynamical critical
exponent is a function of the ratio J2/Ji [21].

Finally, the calculations presented here could be gen-
eralized for a directed polymer model on a lattice with
arbitrary width L. In this case the corresponding mag-
netic model should be related to a I-state Potts model.
The two-dimensional static model of directed polymers,
corresponding to L m oo is exactly solvable [23], but the
corresponding kinetic model seems to be much harder to
handle.

It should be stressed that the phase transition in the
original polymer model that corresponds to the transi-
tion at T' ~ 0 in the corresponding one-dimensional
Ising model has no relation to the usual equilibrium poly-
merization transition, which is a erst-order transition
in one-dimensional lattices [22]. The equilibrium poly-
merization transition occurs between a nonpolymerized
phase and a polymerized phase, whereas in the transi-
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