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Evidence of Homoclinic Chaos in the Plasma of a Glow Discharge

Thomas Braun, " Jorge A. Lisboa, " and Jason A. C. Gallas @ ®.@

Winstituto de Fisica da Universidad Federal do Rio Grande do Sul, 90000 Porto Alegre, Rio Grande do Sul, Brazil
@ Departamento de Engenharia Elétrica da Universidad Federal do Rio Grande do Sul,
90000 Porto Alegre, Rio Grande do Sul, Brazil
O Laboratério de Optica Quantica da Universidade Federal de Santa Catarina,
Departamento de Fisica, 88049 Florianopolis, Santa Catarina, Brazil
@WHechstleistungsrechenzentrum (HLRZ), Kernforschungsanlage Jiilich, W-5170 Jilich, Germany
(Received 16 December 1991)

Homoclinic chaos is shown to occur in the electric current measured on an electrical discharge in ar-
gon. We report a clear sequence of four hesitations followed by a reverse period doubling. The experi-
mental signals are used to construct return-time and time-of-flight maps that evidence a Shilnikov

scenario in the system.
PACS numbers: 52.35.Py, 52.80.Hc

Apart from the most known routes to chaos like period
doubling, intermittency, quasiperiodicity, etc. [1], dif-
ferent transition sequences from periodic to chaotic pat-
terns have also been observed. An example of such are
the so-called alternating periodic-chaotic (APC) se-
quences [2]. As the name indicates, these sequences con-
sist of an alternation of periodic-chaotic states of large-
and small-amplitude oscillations (mixed-mode oscilla-
tions) obtained when there is a change of a control pa-
rameter of the system. Typically, a periodic state is com-
posed of one large-amplitude peak followed by n small-
amplitude peaks per period, referred to as a P " pattern.
Periodic states in an APC sequence are a succession of
P™ patterns where n=0,1,2,... (but finite). Between
two P and P“*! periodic states there is always a
chaotic state C™ formed by a nonperiodic (random)
mixture of states having P and P"*" patterns (oc-
casionally, but with much less frequency, having Py
and P *? patterns in the mixture as well). The system
is then said to “hesitate” between P and PU"*D. A
chaotic C™ pattern is normally reached from a periodic
P ™ pattern through a period doubling cascade. Much of
the behavior concerning APC sequences is understood in
terms of a homoclinic chaos scenario. A key point in this
scenario is the presence of a homoclinic orbit in the phase
space. Assuming the presence of an invariant set in phase
space (e.g., a fixed point or a periodic orbit), if there is an
orbit approaching the invariant set asymptotically for
t — = oo, this orbit is said to be homoclinic to the invari-
ant set [3]. Here we concentrate on invariant sets of sad-
dle type so that trajectories in phase space approach the
invariant set along its stable manifold and leave it along
the unstable manifold.

Homoclinic orbits are associated with erratic behavior
(chaos) in a dynamical system [3,4]. Experimentally it is
quite difficult to exactly reach homoclinic orbits because
of unavoidable small fluctuations (noise). Close to them
chaotic behavior might be expected. This elusive behav-
ior was previously experimentally observed in at least two
situations: in the Belousov-Zhabotinskii reaction [5] and,
shortly later, in the intensity of a laser with a saturable
absorber [6] and of a laser with an electro-optic modula-
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tor [7]. The theoretical background for these observa-
tions is provided by works developed by Shilnikov and
co-workers in which the homoclinicity to a saddle focus
[8] and to a saddle cycle [9] was analyzed. Within the
scenario described by Shilnikov, homoclinic orbits might
not only be at the origin of chaotic behavior but can also
generate regular bifurcation sequences such as, for in-
stance, the APC sequence. This was theoretically seen in
both cases, i.e., when the invariant set to which the orbit
is homoclinic is either a saddle focus [10] or a saddle cy-
cle [11].

We report experimental observations of mixed-mode
oscillations displaying APC sequences which are ex-
plained in terms of homoclinic chaos. Our experimental
signals are obtained from a dc-excited glow discharge
similar to the one where deterministic chaos was first ob-
served in plasmas [12]. Recall that definitive observa-
tions of deterministic chaos in plasmas are rare [12,13].
The evidences reported in this paper enable us to identify
the erratic behavior of the discharge current as due to
homoclinic chaos related to the Shilnikov scenario. It is
worth mentioning that although the Shilnikov scenario
has a solid mathematical background [3,4], it has only
been previously observed in chemical reactions like the
Belousov-Zhabotinskii reaction [5] and in some lasers
with saturable absorbers [14].

The experiment consists of measuring the current
through the glow discharge in Fig. 1. Convenient control
parameters are either the source voltage Vs or the gas
pressure. We describe here what happens when keeping
the pressure constant (2 mbar) while changing Vs. For
Vs <500 V the discharge is off. Above this threshold one
sees current spikes with the form of a relaxation oscilla-
tion [15]). Initially the peaks are widely spread and errat-
ically distributed in time (i.e., there is a jitter). Their
amplitude is of the order of 285 uA while between peaks
the current is essentially zero. By further increasing Vg
the time separation between successive peaks decreases
and the oscillation assumes a perfectly regular shape in
time. This occurs with the oscillations showing little
change in their peak amplitudes as Vs was increased. A
typically observed pattern for the oscillation in this re-

© 1992 The American Physical Society



VOLUME 68, NUMBER 18

PHYSICAL REVIEW LETTERS

4 MAY 1992

v SIGNAL

FIG. 1. Schematic view of the experiment. R, =10 mQ,
R =900 k@, Ri=2 kQ, C,=180 pF, and C>=5600 pF. The
cylindrical brass electrodes are 11 mm apart, having diameters
12 mm (cathode) and 19.2 mm (anode). They are enclosed in a
glass cell of 23.8 mm internal diameter with a flow of commer-
cial grade argon at 2 mbar. The current is measured by the
voltage drop through R;.

gime is shown in Fig. 2(a), where we present the time
evolution of the oscillations (left) together with the corre-
sponding phase portrait (right). The phase portraits are
obtained from phase-space trajectories reconstructed us-
ing the time-delay method from signals digitalized with a
sampling time of 4.3 us and 16000 data points storage
area. A projection in the 3D space X=I(t), Y=I(t
+1), Z=I(t+2t) with =129 us is shown in the
figure. There are several criteria [16] for an adequate
choice of the delay time 7. Here we took empirically
as ~ ¢ or ¥ of the period of a small-amplitude oscilla-
tion in the observed signal.

Raising Vs one sees the bifurcation sequence illustrat-
ed in Fig. 2. First, the initial P© oscillation [Fig. 2(a)]
bifurcates into a P pattern [Fig. 2(b)]. By increasing
Vs the amplitude of the small-amplitude oscillation di-
minished continuously [Fig. 2(c)] until the occurrence of
the second bifurcation: a period doubling of P ™ into
2P ™, as shown in Fig. 2(d). Further period doublings
were not observed due to limitations on the resolution of
changes in Vg. Thus, after 2P we see the first chaotic
window C ‘", illustrated in Fig. 2(e). Increasing Vs, the
chaotic oscillation C"? suddenly stabilizes into a periodic
P @ pattern [Fig. 2(f)]. The next few bifurcations [Figs.
2(g)-2(m)] follow the same aforementioned sequence of
events. Raising Vs the amphtude of the n small-
amplitude oscillations in the P pattern decreases until
a 2P period doublmg occurs. After that, the oscillation
turns into a C™ chaotic one until it suddenly jumps into

a P“*V periodic pattern, and so on. We have repeatedly
observed this sequence up to the P pattern [Fig. 2(m)].
After that, a chaotic pattern followed [Fig. 2(n)] and
thereafter the oscillation drastically changed its shape,
“phase transition™; i.e., there is a change from a mixed-
mode oscillation to a nearly 2P sinusoidal oscillation [Fig.
2(0)]). This oscillation underwent a reverse period dou-
bling [Fig. 2(p)] and by further raising Vs the resulting P
oscillation only diminished its amplitude until Vs =673 V
where it disappeared, remaining just a pure dc current.

The bifurcation sequence of Fig. 2 fits very well the
APC sequence of a homoclinic chaos scenario [10,11].
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FIG. 2. Time evolution and reconstructed phase space of the
current /(¢) flowing a dc-excited glow discharge in argon (see
text). The current and time intervals shown correspond to 100
uA and 500 ps, respectively. In (a), P=P©,
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Further, the widths of periodic P windows get smaller
as n increases. This fact is also in close agreement with
the homoclinic chaos scenario [14] and explains why ex-
perimentally it is not possible to observe higher n’s in an
APC sequence: The width of the P window and of the
experimental noise may be of the same order. Hence,
only a chaotic pattern is observable.

Additional evidence of homoclinic chaos is obtained
from the reconstructed phase-space portraits displayed on
the right of Fig. 2. The general feature of the dynamics
in phase space consists of trajectories reaching a small re-
gion, from where they begin to spiral away until escaping
eventually by doing a large loop in the phase space, being
finally reinjected very near to the spiraling region again.
Such evolution corresponds to a scenario where a homo-
clinic system displays a bounded domain (the saddle in-
variant set) in phase space connected to a homoclinic or-
bit [8-11]. According to this scheme [11], the trajec-
tories approach the invariant set (either a fixed point or a
periodic orbit) along the stable manifold, stay in its
neighborhood for a while, and then escape along the un-
stable manifold. But nonlinearities present in the system
bend the outgoing trajectories as they approach the
homoclinic orbit such that they are reinjected back into
the proximities of the invariant set. This rich reinjection
mechanism was identified quite early by Rossler as cap-
able of producing complex dynamical behavior [17]. The
time spent in the neighborhood of the invariant set de-
pends on the reinjection coordinates. For a small change
in these coordinates, large time fluctuations may occur.
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This sensitive dependence on initial conditions is a hall-
mark of chaotic dynamical systems.

Yet another way of characterizing homoclinic chaos is
via Poincaré maps obtained from reconstructed phase-
space portraits [3,4]. However, we will prefer to apply a
procedure first introduced by Arecchi et al. [7] while in-
vestigating instabilities on a modulated laser: the re-
turn-time map, which is an experimentally very con-
venient tool for analyzing homoclinic chaos. Rather than
looking at the reconstructed phase-space trajectory, the
information is derived directly from the time evolution of
the signal. The relevant feature of the chaotic dynamics
extracted by a return-time map is the fluctuation in the
time necessary for the system to leave and come back to
the invariant set. To obtain a return-time map we define
a constant threshold level I, parallel to the ¢ axis in Fig.
2. Every time the current intersects this threshold level
(from below) we record the time interval ¢ that it takes
until the next similar intersection. Arranging the data in
a plot t;xt;+, produces the return-time map. Figures
3(a) and 3(b) show maps obtained for the chaotic signals
shown in Figs. 2(e) and 2(i), respectively. These maps
display a multibranched structure which evidences strong
time fluctuations in the dynamics of the discharge. At
the origin of these fluctuations are two distinct factors.
One is the number of times the system turns around the
invariant set (which corresponds to the number n of
small-amplitude oscillations in the C™ pattern). This
factor is responsible for the discontinuities in the
branches of the map. The other factor is the time the
system takes along the reinjection loop (i.e., the duration
of the large-amplitude oscillation in the C(") pattern).
The closer the system is to the homoclinic orbit, the
greater the time necessary to return to the invariant set;
in other words, the distance of the system from homoclin-
icity determines the time spent in the reinjection loop.
This increase in time is an evidence of homoclinic behav-
ior and, in order to better use this evidence, from the time
durations of the successive reinjection loops we construct
a return map similar to that proposed by Papoff and co-
workers [18] in their investigation of homoclinic chaos in
a laser with saturable absorber: the “time-of-flight” re-
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FIG. 3. Multibranched structure on return-time maps ob-
tained from the hesitating signals in (a) Fig. 2(e) and (b) Fig.
2().
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turn map. For this purpose one defines now upper and
lower current thresholds 7, and 7;,. The thresholds are
chosen such that /; is slightly lower than the lowest ex-
cursion of the small-amplitude oscillations while 7, is
somewhat larger than the highest of the small-amplitude
oscillations. The time necessary for the current to go
from I; (from below) to 7, (from above) is defined as the
time of flight 7: It is essentially the duration of the rein-
jection loop. From them we construct the time-of-flight
return maps 7;X 7;+1, given in Figs. 4(a) and 4(b) again
for the chaotic signals in Figs. 2(e) and 2(i), respectively.
It is remarkable that the maps are still multibranched. A
simple interpretation can be given to these branched
structures. First, we notice that there is a correlation be-
tween the time of flight and the number of small-
amplitude oscillations in the current of the discharge. A
large (small) time of flight is followed by a higher
(lower) number of small oscillations around the invariant
set. This relation is reflected in the map by the fact that
each branch may be identified with the number »n of
small-amplitude oscillations as is shown in Fig. 4. Thus
the branches in the map are labeled from left to right
with increasing n. Continuing this sequence one should
reach, in principle, a situation where the rightmost
branch in the map corresponds to an infinite time of flight
having n =o0 associated to it. In this case, the trajectory
would spend an infinite time approaching the invariant
set along the reinjection loop whereas the infinite number
of turns around the invariant set implies that it would
take an infinite time to leave the invariant set. To sum
up, we would have an orbit biasymptotic to the invariant
set for t— & oo, matching exactly the definition of a
homoclinic orbit [3].

The presence of a homoclinic orbit could also be deter-
mined from a current intensity return map. This map is
obtained from the reconstructed phase portrait through a
Poincaré section as shown elsewhere [19]. When the sys-
tem is near homoclinicity such a map should also be mul-
tibranched, similar to the time-of-flight return map in
Fig. 4 [18,20]. Indeed, it may be shown [18] that with an
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FIG. 4. Multibranched structure on time-of-flight maps ob-
tained from the hesitating signals in (a) Fig. 2(e) and (b) Fig.
2(i). Squares correspond to n =0, plusses to n=1, and crosses
ton=2.
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adequate choice of the threshold levels 1; and I, there is a
complete equivalence between the time-of-flight return
map and the intensity return map. We have verified this
equivalence in our system [19]. From the multibranched
current return map one may also infer quasihomoclinic
behavior using a symbolic dynamics approach. Further,
one can also characterize the low-dimensional chaotic be-
havior in the discharge by calculating Lyapunov ex-
ponents. These results are presented elsewhere [19].

In conclusion, we have reported the time evolution and
return maps associated with the current of a low-
temperature plasma medium, namely, a glow discharge.
The evidence gathered indicates that the observed dy-
namics is closely related to a Shilnikov homoclinic chaos
scenario. We showed that time-of-flight maps can be
efficiently used to characterize homoclinic behavior
directly from the definition of a homoclinic orbit. The
present paper reports the first observation of homoclinic
chaos in a plasma medium. As far as we know, the only
previous experimental observations of this interesting and
elusive phenomenon were done in chemical reactions and
in lasers.
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