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“Far better it is to dare mighty things, to win glorious triumphs, even though
checkered by failure, than to take rank with those poor spirits who neither enjoy
much nor suffer much, because they live in the gray twilight that knows neither

victory nor defeat.”
— THEODORE ROOSEVELT, STRENUOUS LIFE



ABSTRACT

Automatic detection of planar regions in point clouds is an important step for many
graphics, image processing, and computer vision applications. While laser scanners and
digital photography have allowed us to capture increasingly larger datasets, previous tech-
niques are computationally expensive, being unable to achieve real-time performance for
datasets containing tens of thousands of points, even when detection is performed in a
non-deterministic way. We present a deterministic technique for plane detection in unor-
ganized point clouds whose cost is O(n log n) in the number of input samples. It is based
on an efficient Hough-transform voting scheme and works by clustering approximately
co-planar points and by casting votes for these clusters on a spherical accumulator using
a trivariate Gaussian kernel. A comparison with competing techniques shows that our ap-
proach is considerably faster and scales significantly better than previous ones, being the
first practical solution for deterministic plane detection in large unorganized point clouds.

Keywords: Plane detection, hough transform, unorganized point clouds.





RESUMO

Detecção em Tempo Real de Regiões Planares em Nuvens de Pontos Não
Estruturadas

Detecção automática de regiões planares em nuvens de pontos é um importante passo
para muitas aplicações gráficas, de processamento de imagens e de visão computacio-
nal. Enquanto a disponibilidade de digitalizadores a laser e a fotografia digital tem nos
permitido capturar nuvens de pontos cada vez maiores, técnicas anteriores para detec-
ção de planos são computacionalmente caras, sendo incapazes de alcançar desempenho
em tempo real para conjunto de dados contendo dezenas de milhares de pontos, mesmo
quando a detecção é feita de um modo não determinístico. Apresentamos uma aborda-
gem determinística para detecção de planos em nuvens de pontos não estruturadas que
apresenta complexidade computacional O(n log n) no número de amostras de entrada.
Ela é baseada em um método eficiente de votação para a transformada de Hough. Nossa
estratégia agrupa conjuntos de pontos aproximadamente coplanares e deposita votos para
estes conjuntos em um acumulador esférico, utilizando núcleos Gaussianos trivariados.
Uma comparação com as técnicas concorrentes mostra que nossa abordagem é considera-
velmente mais rápida e escala significativamente melhor que as técnicas anteriores, sendo
a primeira solução prática para detecção determinística de planos em nuvens de pontos
grandes e não estruturadas.

Palavras-chave: Detecção de Planos, Transformada de Hough, Nuvens de Pontos.
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1 INTRODUCTION

Automatic plane detection in point clouds is a key component in many graphics, image
processing, and computer vision applications. These include, among others, model recon-
struction for reverse engineering (VOSSELMAN; DIJKMAN, 2001; KAUCIC; HART-
LEY; DANO, 2001; TARSHA-KURDI; LANDES; GRUSSENMEYER, 2007; HUANG;
BRENNER; SESTER, 2011; FUCHS; KEDEM; USELTON, 1977), camera calibration
(TRIGGS, 1998), object recognition (ROTHWELL et al., 1995; PETERNELL; STEINER,
2004), augmented reality (SIMON; FITZGIBBON; ZISSERMAN, 2000; CHEKHLOV
et al., 2007), and segmentation (BIOSCA; LERMA, 2008; NING et al., 2009). The re-
cent popularization of laser scanners has led to an increasingly growth in the sizes of
the available datasets, and point clouds containing tens of millions of samples are now
commonplace. Software applications like SynthExport (HAUSNER, 2010) and Photo-
synth (PHOTOSYNTH, 2008) also allow us to extract point clouds from large collections
of digital images. Unfortunately, existing techniques for detecting planar regions in point
clouds are computationally expensive and do not scale well with the size of the datasets.
For performance improvement, they often exploit non-deterministic strategies, such as
working on a randomly-selected sub-set of the original samples. While this can reduce
execution time, these techniques are still unable to achieve real-time performance even on
datasets containing just tens of thousands of points. More importantly, their results de-
pend on the selected sample sub-sets and, therefore, there is no guarantee that all relevant
planes will be detected, or that such results will be consistent across multiple executions.

We present an efficient technique to perform deterministic plane detection in unorga-
nized point clouds whose cost isO(n log n) in the number of input samples. Our approach
scales well with the size of the datasets, is robust to the presence of noise, and handles
point clouds with different characteristics in terms of dimensions and sampling distribu-
tions. While the actual running times depend on specific features of the dataset (e.g.,
the number of planar regions), our technique is several orders of magnitude faster than
previous ones. For instance, it processes an entire point cloud with 20-million samples
(Bremen dataset (PHOTOSYNTH, 2008)) in just 2.105 seconds on a typical PC. In con-
trast, RANSAC takes more than 2 hours to process the same dataset, while the randomized
Hough transform takes 42.82 seconds to process only 10% of the samples.

1.1 Main Idea

Our technique is based on a robust and fast algorithm to segment point clouds into
approximately planar patches, even in the presence of noise or irregularly distributed
samples. For this, we use a subdivision procedure to refine an octree and cluster groups
of approximately coplanar samples. We use the identified clusters to obtain an efficient
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Hough-transform voting scheme by casting votes for each of these clusters (instead of for
individual samples) on a spherical accumulator. For voting, we use a Gaussian kernel cen-
tered at the cluster’s best fitting plane, which takes into account the cluster’s variances. In
this sense, our approach extends the kernel-based voting scheme proposed by Fernandes
and Oliveira (2008) using a trivariate Gaussian distribution defined over spherical coor-
dinates (θ, φ, ρ). While, at first, plane detection in unorganized point clouds might seem
as an immediate extension of line detection in images, the lack of explicit neighborhood
information among samples imposes significant challenges, requiring new clustering and
accumulation-management strategies.

Figure 1.1: Example of plane detection using our technique. (left) Museum dataset: point
cloud consisting of 179,744 samples obtained from a set of photographs using SynthEx-
port and Photosynth. (right) Planes automatically detected by our technique in just 0.025
seconds on a 3.4 GHz PC. They were resized to better represent the original model.

Figure 1.1 shows an example of planar regions detected using our technique. The point
cloud shown on the left consists of 179,744 samples obtained from a set of photographs
taken inside a museum. The samples were extracted using SynthExport (HAUSNER,
2010) and Photosynth (2008). The image on the right shows the planes detected by our
technique in just 0.025 seconds on a 3.4 GHz PC, and illustrates the effectiveness of our
approach.

1.2 Contributions

This thesis includes the following contributions:

• An O(n log n) deterministic Hough-transform-based technique for detecting planar
regions in unorganized point clouds (Chapter 3). Our solution is robust to noise,
and to sampling distributions. It is a few orders of magnitude faster and scales
significantly better than existing approaches. A software implementation of our
technique handles datasets with up to 105 points in real time on a typical PC;

• A fast Hough-transform voting strategy for plane detection (Section 3.4). Our solu-
tion uses a robust segmentation strategy to identify clusters of approximately copla-
nar samples. Votes are cast for clusters as opposed to for individual samples, greatly
accelerating the detection process.

1.3 Thesis Statement

It is possible to increase the performance of planar detection systems to run in real-
time by using a fast voting scheme. Our key observation is that the bottleneck for most
plane detection techniques is the voting process, which is performed for an excessive
number of possible solutions. By reducing the amount of voting, the plane detection can
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be greatly accelerated. This is achieved by considering only clustered regions of points
that present a plane-like spatial distribution as candidates for voting.

1.4 Structure of this Thesis

The remaining of this thesis is arranged as follows: Chapter 2 discusses related works;
Chapter 3 introduces our method. Specifically, in Section 3.2 we present our clustering
strategy to subdivide a point cloud; Section 3.3 describes the process for calculating the
trivariate Gaussian kernels; Section 3.4 shows the cluster voting using 3D Gaussian dis-
tributions; the spherical accumulator and the peak detection procedures are addressed by
Section 3.5 and Section 3.6 respectively. The results are shown in Chapter 4 with running
times and comparisons. Finally, Chapter 5 summarizes the thesis and discusses directions
for future exploration.
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2 RELATED WORK

This Chapter discusses techniques which have been proposed for detecting planar
regions in point clouds. Firstly, we introduce the key concepts and methods for point cloud
registration. Afterwards, the most popular techniques to detect planes in point clouds are
reviewed. They are mainly divided in five categories: Hough transform, random sample
consensus, surface growing, tensor voting and linear subspace learning. Finally, we
discuss the key issues of all techniques and how they relate to our approach.

2.1 Point Clouds

A point cloud is a set of samples represented by data points in a spatial coordinate
system. They usually result from a sampling process over a continuous domain and rep-
resent some form of physical shape or object. This section addresses different kinds of
point clouds and registration methods as a basis for understanding their nature and prob-
lems that may hamper detection of planes.

2.1.1 Point Cloud Acquisition Methods

There are different ways to sample points from a physical space into a point cloud,
which are called acquisition methods. They usually differ by the nature of the sensor
used and its application. The most common acquisition methods are laser scanning,
structured light, multi-view stereo and synth export (HAUSNER, 2010).

Laser scanning methods control the steering of moving laser beams, measuring the
distance at every pointing direction. LIDAR is a remote sensing scanner that uses this
principle to register high resolution maps from the surface of the Earth. This has applica-
tions in many areas, such as geography, geology, archeology, and remote sensing.

Structured light is a technique that measures three-dimensional shapes by analyzing
projected light patterns in objects using a camera system. A very well-known structured
light capture device is the Microsoft Kinect (ZHANG, 2012). It uses an encoded infrared
pattern and machine learning algorithms to interpret the scene providing depth maps.

Multi-view stereo techniques use a collection of pictures captured from different
known positions to compute a 3D representation of the scene. It works by computing
images correspondences by estimating pairwise disparity. There is a large number of
techniques (SEITZ et al., 2006) that use this principle to reconstruct three-dimensional
scenes from a collection of images.

Synth export is a tool that exports point clouds from synths on Photosynth (PHO-
TOSYNTH, 2008). Synths are images that are grouped based on camera parameters and
geolocation, and they can be exported as a cloud of colored points (in 3-D space). There-
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fore, given enouch images, these points can be used to represent (fairly) a 3d model of a
photographed scene.

Some registration techniques may store more than only three-dimensional points, such
as colors, connectivity, and normals. For our purpose, this information is not relevant
since our goal is performing plane detection of datasets of any kind. This way, other
point-cloud information will not be considered as clues to detect planes; only 3D points
are used in our plane detection algorithm.

2.1.2 Acquisition and Registration Errors

Ideal plane detection algorithms are not sensitive to point-cloud acquisition or regis-
tration errors. Hereafter we explain some usual problems which point clouds may have
by capturing or registering points incorrectly:

• Noise is an usual problem found in surface acquisition (Figure 2.1(a)). It can be
classified as high-order noise or low-order noise. In laser scanners, for example,
high-order noise usually appears when a scanner beam reaches the boundaries of
objects. On these situations, part of the beam may touch the object while the other
part goes on. The final calculation places the point at a wrong position making
this an outlier. On the other hand, low-order noise is generated by low accuracy of
scanners which fail on the precise sampling calculation.

• Holes: Once the surface properties hinder or restrict the scanners accessibility, cer-
tain regions may be lost, leading to incomplete reconstruction of objects and insert-
ing holes into scanned models (Figure 2.1(b)). Holes can also be caused by spec-
ular or reflective surfaces, as well as by black surfaces (which do not reflect light).
There are many algorithms concerned with filling holes of point clouds, since some
methods cannot work with incomplete point models. We notice, however, that our
algorithm works seamlessly in the presence of holes.

• Overlapping samples: When capturing all faces of an object, conventional scan-
ners may register some faces from distinct positions. Thus, samples are acquired
more than once from different perspectives. This may cause misalignment, i.e.
when structures are shifted by each acquisition (Figure 2.1(c)). Later calibrations
are necessary to overcome this problem, positioning samples on its right positions.

Plane detection algorithms can be implemented in such a way that they are not sensi-
tive to these acquisition or registration errors. These problems always hamper the detec-
tion of shapes. How to treat them is out of the scope of this work. For further information
on acquisition or registration error treatment, the reader may refer to (CHALMOVIAN-
SKY; JUTTLER, 2003; MITRA; NGUYEN, 2003; LIU, 2006; WANG; OLIVEIRA,
2007).
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Figure 2.1: Examples of registration errors. (a) Model of a hand with noise (left) and the
model reconstructed by Kolluri et al.(right). (b) Model with holes of a head (left) and the
model reconstructed by Lanman et al. (right). (c) Partially overlapped point cloud.

(a) (b) (c)
Kolluri; Shewchuck; O’Brien (2004), Lanman et al.(2006), Richtsfeld; Vincze (2009)

2.2 Hough Transform

The Hough transform (HT) (HOUGH, 1962; DUDA; HART, 1972) is a feature-detection
technique. For any given input sample, it casts a vote for each instance of the feature one
wants to detect that could possibly contain that sample. The votes are accumulated over
all samples, and the detected features correspond to the ones with most votes. The time
and space complexity of the algorithm both depend on the discretization used for the ac-
cumulator, whose dimensionality varies with the number of parameters used to describe
the features to be detected. For instance, plane detection requires a 3D accumulator to
represent the three parameters that characterize a plane.

2.2.1 Standard Hough Transform

The Hough transform was introduced by Paul Hough (1962) for the detection of lines
in images. Today, the universally used version of the HT is the standard Hough transform
(SHT) proposed by Duda and Hart (1972), which replaced the slope-intercept with an
angle-radius parameterization based on the normal equation of the line (Equation 2.1):

ρ = x cos(θ) + y sin(θ). (2.1)

Here, x and y are the coordinates of a sample pixel, ρ is the distance from a line (passing
through the pixel) to the origin of image’s coordinate system, and θ is the angle between
the normal of the line and the x-axis.

An important algorithm to the line detection field is the Kernel-based Hough trans-
form (KHT) (FERNANDES; OLIVEIRA, 2008), which replaces the extensive voting
procedure by an efficient voting scheme, casting votes only for close bins around the
best-fitting lines thus producing a much cleaner voting map. For this, they cluster ap-
proximately collinear pixels and then they cast votes using an oriented elliptical-Gaussian
kernel which models the uncertainty associated with the best-fitting line. For the input im-
age in Figure 2.2 (a), (b) shows the resulting accumulator for the standard voting scheme
compared to the KHT voting scheme (c).
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Figure 2.2: For a given input image (a) the resulting accumulator for the standard voting
(b) versus the Kernel-based Hough transform voting scheme (c). Note that the accumu-
lator produced by the KHT voting is much cleaner than the accumulator produced by the
standard voting scheme.

(a) (b) (c)

The Kernel-based Hough transform is able to achieve real-time performance even for
relatively large images (approximately 2 MP), depending on the number of edge pixels.
Unfortunately, its extension to the three-dimensional space is not straightforward since
the subdivision procedure, which clusters the feature points, takes advantage of the pixel
connection on an image.

The Standard Hough transform can be naturally extended to 3D by adding another
slope parameter (Equation 2.2). Differently from lines, the 3D version of the SHT sup-
ports plane detection in the (θ, φ, ρ) Hough Space.

ρ = x cos(θ)sin(φ) + y sin(φ)sin(θ) + z cos(φ). (2.2)

In Equation 2.2, x, y and z are the Cartesian coordinates of the samples, θ ∈ [0◦, 360◦)
and φ ∈ [0◦, 180◦] are the polar coordinates of the plane’s normal vector, and ρ ∈ R≥0 is
the distance from the plane to the origin of the coordinate system.

The Standard Hough transform for plane detection uses Equation 2.2 and iterates over
each sample in the point cloud casting votes in the accumulator for all possible planes
passing through that sample. More specifically, for given x, y and z coordinates, it iterates
over all combinations of θ and φ, computing the value of the parameter ρ (Equation 2.2)
and then casting a vote at the corresponding accumulator cell (or bin). To make the com-
putation feasible, one needs to discretize the θ and φ parameter values (defining angular
steps). Thus, the computational cost of the SHT is O(|P |NθNφ), where |P | is the number
of points in the point cloud P , and Nθ and Nφ are the number of bins in the discretization
of the θ and φ angles, respectively. In the Figure 2.3 we show a plane-detection example
in the Computer dataset with 68, 852 samples generated by SHT. The meaning of each
parameter used in the following images is elucidated in (BORRMANN; DORIA, 2011).

Given the high computational cost of the SHT, many techniques have been proposed
to accelerate its voting procedure. Common to most of these techniques is the focus on
reducing the execution time by using a subset of the points in P , as opposed to design-
ing new algorithms that effectively reduce the asymptotic cost of the voting process. The
following part of this section reviews these techniques and shows examples of plane de-
tection in the same point cloud (Computer). Note that all the following techniques of
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Figure 2.3: Example of plane detection generated by the Standard Hough transform
technique with randomly colored planes. The technique detected 11 planes in approx-
imately one minute. Parameters used in this example: RhoNum = 100, ThetaNum = 60,
PhiNum = 30 and PlaneRatio = 0.5.

this Section are highly parameter depended. The detection may be compromised if one
criterion is poorly estimated.

The Probabilistic Hough transform (PHT) (KIRYATI; ELDAR; BRUCKSTEIN, 1991)
randomly selects m points (m < |P |) and uses them, instead of the entire point cloud,
for voting. Since m is a percentage of |P |, the asymptotic cost is still O(|P |NθNφ). The
PHT needs to find an optimal value for m to achieve good results. Small values tend to
cause some relevant planes not to be detected, while large values do not result in signif-
icant reduction in execution time. As opposed to the SHT, the PHT is not deterministic.
An example showing the detection of planar structures generated by this approach can be
seen in Figure 2.4.

Figure 2.4: Example of plane detection generated by the Probabilistic Hough transform
technique with randomly colored planes. The technique detected 9 planes in approxi-
mately 0.3 seconds. Parameters used in this example: RhoNum = 100, ThetaNum = 60,
PhiNum = 30, PlaneRatio = 0.5 and MinSizeAllPoints = 5.

Finding the optimal value for m is not a simple task, as it depends on many charac-
teristics of the point cloud. To overcome this difficulty, the Adaptive Probabilistic Hough
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transform (APHT) (YLä-JääSKI; KIRYATI, 1994) monitors the accumulator during the
voting procedure. As stable structures emerge, they are stored in a list of potential max-
imum cells and only this list needs to be monitored. Since the process is adaptive, there
is no need for an initial m value. The algorithm ends when the list of potential peaks
becomes stable (i.e., when it keeps all largest peaks after an update phase). APHT is sen-
sitive to noise, as the choice of the points is probabilistic and may lead to the detection
of spurious planes, not present in the dataset. Its asymptotic cost is the same as SHT’s.
Figure 2.5 shows an example of plane detection generated by APHT.

Figure 2.5: Example of plane detection generated by the Adaptive Probabilistic Hough
transform technique with randomly colored planes. The technique detected 6 planes in ap-
proximately one second. Parameters used in this example: RhoNum = 100, ThetaNum =
60, PhiNum = 30, MinSizeAllPoints = 5, MinPlanarity = 0.3, PointDist = 0.05 and
MaxPointPlaneDist = 0.02.

The Progressive Probabilistic Hough transform (PPHT) (MATAS; GALAMBOS; KIT-
TLER, 1998) tries to avoid the influence of random noise by only detecting structures
whose number of votes exceeds a threshold defined as a percentage of the total number of
votes. Once a structure has been detected, the votes from all samples that support it are
removed from the accumulator. This is done to filter the accumulation that results from
random noise. Thereafter, the points which lie on the shape are removed from the point
set and the process restart for the remaining points. Like the previous techniques, PPHT
is non-deterministic and its asymptotic cost is the same as SHT’s. An example of plane
detection generated by PPHT can be seen in Figure 2.6.

The Randomized Hough transform (RHT) (XU; OJA; KULTANEN, 1990) reduces
the SHT’s vote-processing time by exploiting the fact that a plane can be defined by three
non-collinear points. The technique randomly selects groups of three non-collinear points
and casts a single vote to the accumulator cell corresponding to the plane. This strategy
drastically reduces the voting cost, making itO(|P |). Unfortunately, the technique is non-
deterministic and does not scale well with the size of the point cloud (due to the relatively
large hidden asymptotic constant). Among all previous HT-based techniques for plane
detection, RHT is by far the fastest one, being the universally used version to deal with
tridimensional data considering other HT variants.

The accumulator is a decisive component of the Hough-transform methods, because
it will be used for storing the votes. In order to detect planes in three-dimensional space
it is necessary to use a special accumulator which better describes it, independently of the
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Figure 2.6: Example of plane detection generated by the Progressive Probabilistic Hough
transform technique with randomly colored planes. The technique detected 10 planes
in approximately 30 seconds. Parameters used in this example: RhoNum = 100,
ThetaNum = 60, PhiNum = 30, MinSizeAllPoints = 5, MinPlanarity = 0.3, PointDist =
0.05 and MaxPointPlaneDist = 0.02.

Figure 2.7: Example of plane detection generated by the Randomized Hough transform
technique. The technique detected 7 planes in 0.121 seconds. Parameters used in this
example: RhoNum = 100, ThetaNum = 60, PhiNum = 30, MaxDist = 0.1, MinDist =
0.01 and AccumulatorMax = 100

particularly Hough-based approach used. Different types of accumulators were tested by
Borrmann et al. (2011) who have shown the advantages of using a spherical accumulator,
called accumulator ball, with the purpose of having the same patch size for each cell. This
allows each cell to have the same portion size of the space, decreasing the total number
of cells that a regular 3D accumulator has while still using the same discretization. A
comparison between a simple 3D accumulator (cube) and the accumulator proposed by
Borrmann et al. (ball) can be seen in Figure 2.8. The accumulator ball also prevents
the detection of spurious planes, helps in finding local maxima (peaks) and has a small
storage space.

A detailed comparison between the techniques explained above (SHT, PHT, APHT,
PPHT, RHT) and different types of accumulators can be found at (BORRMANN et al.,
2011). In the following part of this Section we will focus in the remaining Hough trans-
form variants.
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Figure 2.8: A comparison between the accumulator cube (left) and accumulator ball
(right) proposed by Borrmann et al. (2011). Note that both accumulators have the same
discretization in φ, i.e., 8 cells over 180 degrees from the north pole to the south pole (the
angle was sampled every 22.5 degrees). However, the accumulator ball has fewer cells
and each one represents a different planar angle, which does not happen in the simple 3D
accumulator. While the accumulator cube has 64 cells in the top, representing a single
angle a plane can take (φ = 0), the accumulator ball has only one.

2.2.2 Other Hough Transform Variants

Vosselman et al. (2004) proposed a two-step procedure for the Hough transform, ex-
ploiting the connectivity of point clouds acquired with laser scanners to calculate the nor-
mal vectors of the points. This way, each sample casts a single vote. This approach is not
as fast as the RTH. Moreover, it is not applicable to unorganized point clouds. Bauer and
Polthier use the Radon transform (continuous form of the HT) to detect planes on a struc-
tured or unstructured grid. They use a subdivided icosahedron, using a Hamiltonian path
over the edge graph, to represent the parameter space in order to search for all connected
components and to compute their respective masses. This technique requires the use of a
grid and its performance is similar to the SHT. More recently, Ogundana et al. (2011) used
an optimized model for tridimensional sparse matrix to accumulate votes. Furthermore
they propose a robust peak detection algorithm using connected component labeling and
weighted average. Ogundana et al. also showed a Hough transform optimization to detect
parallel planes, replacing the default accumulator by an one-dimensional array, since the
planes have the same orientation. Nguyen et al. (NGUYEN et al., 2013) estimate normal
vectors in range images (based on their neighbors) and map such vectors to a sphere (a
Gauss map) to define plane orientations. Optimization is then used to segment patches of
coplanar samples in the range image. The authors demonstrated their technique on simple
box-like and polyhedral shapes.

2.3 Random Sample Consensus

Another important class of algorithms for performing plane detection is the Random
Sample Consensus (RANSAC) (FISCHLER; BOLLES, 1981). RANSAC is a widely
used technique, being reliable even in the presence of a high proportion of outliers. It can
also be generalizable to solve other problems, such as cylinder detection in unorganized
point clouds (CHAPERON; GOULETTE, 2001), ellipse detection for calibrating central
catadioptric cameras (DUAN; WANG; GUO, 2010), and to estimate complex curves (e.g.,
splines). RANSAC performs plane detection by randomly choosing three points, calcu-
lating the plane defined by them, and counting how many points (in the point cloud) lie
on this plane within a tolerance threshold. The number of points found is called the score
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of the plane. The algorithm stops when it reaches stability, based on a low probability of
finding a plane with higher score than the previous ones. RANSAC’s computational cost
for detecting a single plane is then given by (I (E + |P |F )) = O(I |P |), where I is the
number of iterations required to detect a plane, E is the cost of estimating a plane from
three points, and F is the cost of checking whether a point lies on a plane. While being
robust to noise, RANSAC’s random nature makes it non-deterministic. Depending on the
choice of its parameter values, the algorithm may detect planes that do not represent the
original dataset. This is illustrated in Figure 2.9 for a point cloud representing the faces
of a cube. The gray plane was detected by RANSAC and represents one of many planes
that could be detected by the algorithm.

Figure 2.9: A point cloud representing the faces of a cube, shown in color. Depending on
the used parameters, RANSAC may detected (spurious) planes, such as the one shown in
gray, which do not represent the original dataset.

RANSAC must optimize three main parameters to produce a good output: the thresh-
old value (tr) for determining when a subset fits a model, the number of iterations (kr)
performed by the algorithm and the minimum number of expected data required to fit a
model (er). Hereafter we present a deeper explanation about these three parameters.

The distance threshold is the maximum orthogonal distance which a point will be
considered an inlier to the model. This parameter is usually chosen empirically. If the
error distribution is known, the distance threshold can be optimized to select inliers with
high probability. Low threshold values will yield an insufficient number of inliers for the
best-fit, while high threshold values may select incorrect points that are outside the best-
fit, hindering the quality of the plane detection. The problem generated by misestimating
distance thresholds in a real example can be seen in Figure 2.10.

The number of iterations are usually not constant and not specified directly. They
depend on the probability pr that the algorithm will produce a useful result in its next iter-
ation. Let 0 ≤ wr ≤ 1 be the inlier point probability, which normally assume conservative
values depending on the model being fitted. For a subset of n points, the probability that
all points are inliers is (wr)

n, while 1 − (wr)
n is the probability that at least one of the

n points is an outlier. For all iterations, the probability that the algorithm selects all sets
with at least one outlier is 1− pr. This way,

1− pr = (1− (wr)
n)kr . (2.3)

Isolating the number of iterations kr we have

kr =
log (1− pr)

log (1− (wr)n)
(2.4)

which give us the number of iterations that the algorithm must run to find a good solution.
The probability pr is usually chosen to be 0.99.

The minimum expected number of points defines how many inliers the algorithm
needs to define a model. A good approximation to this parameter is given by multiplying
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Figure 2.10: Real example of the threshold problem in RANSAC. High threshold
(tr = 0.06) (top) - many solutions which cross the entire model are considered good
ones. Optimized threshold (tr = 0.02) (bottom). Note that the thresholds are very close
and produce completely different results.

the total number of points on the data by the inlier point probability wr. A plane-detection
example generated by RANSAC can be seen in Figure 2.11.

Schnabel et al. (2007) introduced an optimization to RANSAC using an octree to
establish spatial proximity among samples. In their approach, point selection is based on
spatial proximity, and the score function only tests a local subset of the samples. Since
spatial proximity does not guarantee coplanarity, the technique needs to estimate normal
vectors for samples, and the shapes have to be properly sampled. While this approach can
significantly accelerate RANSAC, it inherits RANSAC’s limitations, and the performance
reported by the authors is still far from real time for datasets containing a few hundred
thousand samples.

2.4 Surface Growing

The third class of techniques used to identify planes in point clouds is surface growing
(FISCHLER; BOLLES, 1986; BESL; JAIN, 1988; CHEN, 1989; POPPINGA et al., 2008)
– the 3D analogue of region growing in images. These techniques perform a local search
to identify and expand regions with the same range of characteristics. Surface growing
methods require information about the neighbors of each sample, not being directly ap-
plicable to unorganized point clouds, which lack explicit connectivity information.

The growing procedure can be based on one or more of these criteria:

• Proximity of points: To evaluate the possibility of a point be part of the growing
region, it must be near other point already on the region. The proximity is calculated
depending on the point cloud characteristics, such as bounding box, number of
points and level of noise.
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Figure 2.11: Example of plane detection generated by RANSAC. It took approximately
0.4 seconds to detect 7 planes. The parameters used in this example were: tr = 0.02,
pr = 0.99 and er = 2000.

• Global parameters: The global parameters criteria depend on the distance from
the growing region’s fitted surface to the new candidate point. The surface must be
fitted without the new point, while maintaining the its orthogonal distance from the
surface below a specified threshold.

• Local characteristics: The local characteristics criteria are related with the local
surface normal. Both the surface normal and the local surface normal must be
similar, in order to add the evaluated point to the growing region.

Once the chosen criteria are satisfied, the region continues growing until it cannot
expand anymore. Since it expands surfaces’ growing areas locally, Surface-Growing-
based techniques may be very time consuming when considering big (104 samples) to
huge (106 samples) point clouds.

Recently, Deschaud and Goulette (2010) proposed an algorithm to detect planes in un-
organized point clouds using filtered normals and voxel growing. Their approach assigns
a normal vector to each point through an improved normal-estimation procedure and uses
a voxel-growing algorithm based on these normal vectors. It is, however, considerably
slower than existing techniques.

2.5 Tensor Voting

Tensor voting (TV) is a framework which retrieves, at the same time, all salient struc-
tures from a dataset (MEDIONI; LEE; TANG, 2000). It is founded on two components:
tensor calculus for representation, and non-linear voting for data communication. TV can
detect structures at any dimensionality, while still being robust against noise and preserv-
ing discontinuities as the HT. However, since tensor voting is naturally multidimensional,
it cannot be directly applied to the detection of predefined types of data in an efficient
way.
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2.6 Linear Subspace Learning

The purpose of linear subspace learning (LSL) algorithms is to find the possible lin-
ear or affine subspaces which accommodate as many objects from a dataset as possi-
ble. These include, among others, techniques based on principal component analysis
(PCA) (VIDAL; MA; SASTRY, 2003), linear discriminant analysis (LDA) (MCLACH-
LAN, 2004), general averaged divergence analysis (GADA) (TAO et al., 2007), and lo-
cality preserving projections (LPP) (HE; NIYOGI, 2004). A more complete review about
LSL algorithms can be found in (VIDAL, 2011). In contrast to dimensionality reduction
techniques, which can solve a class of more generic problems, our aim is to find planes in
the three-dimensional space in an efficient manner.

2.7 Summary

In this Chapter we discussed the most relevant research related to our work. We
pointed that even though registration errors can hamper the detection of planes, the com-
putational cost to correct this is too high, so it is not taken into account.

Furthermore, we reviewed the five most important plane detection approaches: Hough
transform, which perform a voting procedure on possible planes to decide the most fitting;
random sample consensus, which search for larger amounts of coplanar points with a
certain degree of error; surface growing, which start from a seed and grow to regions with
similar characteristics; tensor voting, which detects salient structures in multidimensional
data; and linear subspace learning, which reduces the dimensionality of the data to find
possible solutions. HT-based techniques have received special attention as they are mostly
related to this work.

Generally speaking, the referenced papers reflect the state of the art in point-cloud
plane detection. Since most reported approaches are very dependent on parameters, and/or
slow for large datasets, the main motivation for this work is to improve on existing tech-
niques for plane detection to provide an efficient and easy-to-use solution. In this way,
by greatly reducing the needed computational costs we make possible a new range of
applications that require real-time execution.

This work proposes detection of planes in unorganized point clouds combining and
enhancing some previous ideas. The main inspiration of this work is the Kernel-based
Hough transform of Fernandes and Oliveira (2008), which performs real-time line detec-
tion in images using a fast voting scheme. Another important concept used was the accu-
mulator ball, proposed by Borrmann et al. (2011) which improves the three-dimensional
perception of space, and thus improving the quality of results. Both the voting scheme and
the accumulator design were modified to better suit our purposes. The most significant
differences from the previous works are:

• An optimized way to handle the access of neighboring cells in the accumulator,
used to cast votes around the best-fitting plane. In (BORRMANN et al., 2011) they
are not worried about accessing the neighborhood of a cell, since only one vote is
cast per plane.

• A new subdivision strategy that extends the one used by (FERNANDES; OLIVEIRA,
2008) for three-dimensional space, while being efficient for large datasets and still
producing good results. This adaptation is not straightforward, as it is harder to
deal with neighborhood in the three dimensional space than in the two dimensional
space.
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• Real-time performance for datasets up to 105 points. None of the reported ap-
proaches are able to detect planes in real-time in datasets of this magnitude.

• A deterministic approach that can generate consistent result in dynamic data. Most
current approaches are probabilistic, producing different outputs event for the same
data.

• A new approach for storing votes in the accumulator using floating points numbers
instead of integers, that is more accurate and robust.

• An O(n log n) approach in number of samples which does not require connectivity
information nor information about sample normals.
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3 EFFICIENT PLANE DETECTION IN POINT CLOUDS

This chapter presents the details of our solution for detecting planes in point clouds. It
discusses the faced challenges and how we solved them. We will first present an overview
of the entire process and after this we will explain each part in details. At the same time,
we focus on how to implement some algorithms, needed for better understanding.

3.1 Overview

The main contribution of this work is provide an algorithm capable of detecting planes
in real-time for sufficiently large point clouds (105). It has been inspired by the efficient
Kernel-based Hough transform (KHT) for line detection introduced by Fernandes and
Oliveira (2008). However, when dealing with unorganized point clouds, the lack of ex-
plicit neighborhood information among samples (which is available for images) requires
new and efficient clustering and accumulation-management strategies. In a nutshell, our
technique performs a fast and robust octree-based segmentation of approximately copla-
nar clusters of samples. We then use the identified clusters to perform a Hough-transform
voting procedure where votes are cast by clusters (as opposed to by individual samples)
on a spherical accumulator. For voting, we use a trivariate Gaussian distribution (ker-
nel) defined over spherical coordinates (θ, φ, ρ) and centered at each cluster’s best fitting
plane. Peak detection is then performed on the resulting accumulator identifying peaks of
votes, according to their importance, which better represent the point-cloud planes. Thus,
we choose to organize this chapter into each part of this process: Clustering, Voting and
Peak Detection. Algorithm 1 summarizes the technique.

Algorithm 1 Plane Detection (3-D KHT) Algorithm
Require: P {point cloud}

1: nodes← Clustering(P ) {cluster approximately coplanar samples }
2: for each n in nodes do
3: q ← kernel(n) {kernel estimation}
4: accumulator ← accumulator + voting(q) {voting}
5: end for{peak detection}
6: sort accumulator cells by voting importance in descending order
7: iterate over accumulator detecting cells not adjacent to already inspected ones {peak

detection}

Our goal is to be able to process any kind of point cloud with the same assurance.
The optimizations proposed in this thesis for the three-dimensional HT allow a software
implementation to operates in real-time for sufficiently large point clouds (105) of any
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kind. The time performance of our method is smaller to the ones obtained by others
techniques, while producing results at least as good as theirs. In the next sections we
explain how this is done.

3.2 Clustering of Approximately Coplanar Samples

Clustering of approximately coplanar samples is key to our technique as it optimizes
the voting procedure, which is the Hough transform’s bottleneck. For unorganized point
clouds, no neighborhood information among samples is available. For efficiency, we
perform clustering by spatial subdivision. For this, we have compared the advantages
of using kd-trees and octrees. Kd-trees provide little control over the dimensions of the
nodes. According to our experience, subdividing the kd-tree cells using the centroid of
the samples tends to lead to thin cells that do not capture the shapes of the planes in the
dataset. In contrast, all nodes at a given level of an octree have 1/8 of the size of its parent
node and better capture the structure of the planes. Moreover, the costs of creating and
manipulating a kd-tree are higher than for an octree. For these reasons, we have chosen
an octree as spatial-subdivision data structure. It has proven to be a good choice both in
terms of efficiency and quality of the results.

The clustering procedure starts with a root node that includes the entire point cloud,
which is then recursively subdivided to refine the octree. Except when the entire point
cloud is just a plane, searching for planes in the initial level(s) of the octree often lends to
less effective computations.

Thus, the procedure only checks for approximate coplanarity among samples after a
certain level of the octree has been reached, thus minimizing processing time. According
to our experience, starting checking for approximately sample coplanarity around level
4 of the octree provides a good compromise between computational performance and
robustness, and produces good segmentation in practice. The more detailed the point
cloud, the more subdivisions are required, as nodes must be small enough to contain only
approximately coplanar samples. If no further subdivision is required for an octree node,
that branch stops and the node is stored as a cluster. If, on the other hand, the number
of samples inside the octree node is smaller than a threshold, the node is marked as not
containing a cluster.

The procedure for clustering approximately coplanar samples is presented in Algo-
rithm 2. It uses descriptive statistics to analyze the data and calculate the variances as-
sociated with the point-cloud distribution. For this, principal component analysis (PCA)
is used. Since the eigenvalues of the covariance matrix associated to the set of samples
inside an octree node represent the proportions of the variances of the sample distribution
inside that cell, they can be used to filter out clusters that could not represent planes. In
order to check whether a set of samples is approximately coplanar, two conditions are ver-
ified: the cluster thickness and its degree of isotropy (the technique should avoid detecting
lines and thin elongated clusters as planes). Thus, let Λ and V represent, respectively, the
eigenvalues and the eigenvectors of a cluster’s covariance matrix Σ. These eigenvalues
are non-negative and we sort them in ascending order so that λi ≤ λi+1. A test for approx-
imate sample coplanarity can be obtained by checking if (λ2 > sαλ1) and (λ3 < sβλ2),
where sα and sβ are scaling factors defining relative tolerances for the acceptable amount
off-plane displacement (i.e., noise) and degree of sample anisotropy on the cluster. Ac-
cording to our experience, sα = 25 and sβ = 6 produce good results and have been used
for all examples shown in the paper. The recursive subdivision performed by Algorithm 2
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stops when the current octree cell is considered to contain approximate coplanar samples
(i.e., ncoplanar = true, line 9) or the cell contains less than a minimum number of samples
(sms, in line 2). Small number of samples tend to provide less reliable estimates for the
variances of the samples. In our experience, sms = 30 provides a good threshold for large
point clouds.

Algorithm 2 Clustering
Require: n {current node of the octree }

s {settings to cluster data: smp, slevel, sα, sβ }
Symbols

nsamples {samples in the current octree node }
nlevel {level of the current octree node}
ncoplanar {are the samples in current node approximately coplanar?}
nchildren {children of the current octree node}
sms {minimum number of samples required in a cluster}
slevel {first octree level for checking for approximate coplanarity}
sα {relative tolerance associated with plane thickness }
sβ {relative tolerance associated with plane isotropy }

1: ncoplanar ← false
2: if size(nsamples) < sms then
3: return
4: end if{octree subdivision step}
5: if nlevel > slevel then
6: Σ(x,y,z) ← cov(nsamples) {covariance matrix in (x, y, z) space}
7: (Vxyz,Λxyz)← eigen(Σ(x,y,z)) {eigen-decomposition}

{approximate coplanarity test }
8: if (λ2 > sαλ1) and (λ3 < sβλ2) then
9: ncoplanar ← true

10: return
11: end if
12: end if
13: nchildren ← children(n) {initialize the node’s eight children}
14: for each p in nsamples do
15: put p in respective child node
16: end for
17: for each c in nchildren do
18: call Clustering(c,smp, slevel, sα, sβ) {recursive call for node c}
19: end for

Once an octree cell is considered to contain an approximately coplanar sample cluster,
least-squares is used for plane fitting (SHAKARJI, 1998) after discarding samples at a
distance bigger than τ/10 from the plane passing by the centroid of the cluster and whose
normal is given by the eigenvector with smallest eigenvalue of Σ. τ is the current octree-
node edge length.

Figure 3.1 illustrates the adaptive octree refinement and sample clustering for the Mu-
seum dataset using Algorithm 2. From top to bottom, left to right, the first five images
show the 6th, 7th, 8th, 9th, and 10th levels of the octree. The image at the bottom right
shows the octree nodes containing approximately coplanar samples. Note that these nodes
might be at different levels of the octree. A different color has been assigned to each plane,
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even when they span different levels of the octree. This is possible by keeping track of
the clusters who voted for the individual planes, and will be explained next.

Figure 3.1: Adaptive octree refinement and sample clustering for the Museum dataset
using Algorithm 2. From top to bottom, left to right, the first five images show the 6th,
7th, 8th, 9th, and 10th levels of the octree. The image at the bottom right shows all nodes
at different octree levels containing coplanar samples. Note that once a planar patch
is found the subdivision stops for that branch. Each color represents one plane, whose
reconstructions are shown in Figure 1.1.

3.3 Computing Gaussian Trivariate Kernels for Cluster Voting

Let a cluster of approximately coplanar samples stored in an octree node, with co-
variant matrix Σ, and centroid µ = (µx, µy, µz)

T (Figure 3.2). Also let V = {~v1, ~v2, ~v3}
be the unit eigenvectors of Σ and let Λ = {λ1, λ2, λ3} be their respective eigenvalues,
so that λi ≤ λi+1. The equation of the plane π passing though µ and with normal
~n = ~v1 = (nx, ny, nz)

T is given by:

Ax+By + Cz +D = nxx+ nyy + nzz − (nxµx + nyµy + nzµz) = 0 (3.1)

Using Equation 2.2, one can rewrite Equation 3.1 using spherical coordinates as:

ρ = −D = µx nx + µy ny + µz nz =
√
p2x + p2y + p2z,

θ = arctan 2(py, px), φ = arccos

(
pz
ρ

)
, (3.2)
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ρ ∈ R≥0, θ ∈ [0◦, 360◦), φ ∈ [0◦, 180◦] and ~p = (px, py, pz)
T = ρ~n. For θ calculation,

if the angle between ~n and ~µ is bigger than 90◦, we point ~n to the opposite direction
(i.e., multiply it by −1). When voting in an accumulator indexed by (θ, φ, ρ), the vote
distribution is based on the uncertainties associated to each cluster’s best-fitting plane π
(i.e., the cluster’s variances σ2

φ, σ2
θ , and σ2

ρ). A cluster with small variances concentrates
its votes in a small region of the accumulator, while a cluster with large variances spreads
its votes over a large region, like in the KHT (FERNANDES; OLIVEIRA, 2008).

Figure 3.2: Samples approximating a planar region in a point cloud, shown with its best-
fitting plane (left). Eigenvectors of the covariance matrix Σ associated to the sample
distribution (center). Ellipsoid defined by the eigenvalues and eigenvectors of Σ (right).
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λ3v3
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Algorithm 3 Computing Σ(θ,φ,ρ) and the Gaussian kernel voting threshold
Require: Σ(x,y,z) {covariance matrix with respect to x, y and z coordinates}

1: J ← Jacobian() {defined in Equation 3.4}
2: Σ(θ,φ,ρ) ← J Σ(x,y,z) J

T {cov. matrix in (θ, σ, ρ) space from Σ(x,y,z)}
3: σ2

ρ ← σ2
ρ + ε {add a small value to avoid zero variance}

4: σ2
θ ← σ2

θ

5: σ2
φ ← σ2

φ

6: (Vθφρ,Λθφρ)← eigen(Σ(θ,φ,ρ)) {eigen-decomposition of Σ(θ,φ,ρ)}
7: λθφρ_min ← smallestEigenvalueIn(Λθφρ) {smallest eigenvalue}
8: Vθφρ_min ← Eigenvector(λθφρ_min) {eigenvector corresp. to λθφρ_min}
9: std_dev ← sqrt(λθφρ_min) {standard deviation}

10: gmin = Gaussian(Vθφρ_min 2 std_dev) {threshold value for voting}

The variances and covariances defined in the (θ, φ, ρ) space can be estimated from
the covariance matrix Σ(x,y,z) defined in Euclidean space, using first-order uncertainty
propagation analysis (PARRATT, 1961) as:

Σ(θ,φ,ρ) =

 σ2
ρ σρφ σρθ

σρφ σ2
φ σφθ

σρθ σφθ σ2
θ

 = JΣ(x,y,z)J
T = J

 σ2
x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

 JT , (3.3)

where J is the Jacobian matrix:

J =


∂ρ
∂px

∂ρ
∂py

∂ρ
∂pz

∂φ
∂px

∂φ
∂py

∂φ
∂pz

∂θ
∂px

∂θ
∂py

∂θ
∂pz

 =

 nx ny nz
pxpz√
wρ2

pypz√
wρ2

−
√
w
ρ2

−py
w

px
w

0

 . (3.4)

(px, py, pz) are defined in (3.2), ~n = (nx, ny, nz)
T , and w = p2x + p2y.
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3.4 Cluster Voting using 3D Gaussian Distributions

Once we have computed the variances and covariances associated with θ, φ and ρ
(Σ(θ,φ,ρ)), the votes are cast in the spherical accumulator using a trivariate Gaussian dis-
tribution. For the multivariate non-degenerate case, i.e., when the covariance matrix Σ
is symmetric and positive definite, its probability density function is given by (TONG,
1990)

p(x|µ,Σ) =
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
, (3.5)

where |Σ| is the determinant of Σ. Considering the trivariate case (i.e., k = 3), letting
~δ = x− µ be the displacement with respect to the center, and since the votes are already
centered at the best-fitting parameters (θ, φ, ρ), this equation can be rewritten as

p(~δ,Σ) =
1

15.7496 |Σ|1/2
exp

(
−1

2
~δt Σ−1 ~δ

)
. (3.6)

Casting votes for a given accumulator cell requires two matrix-vector multiplications
and one exponentiation, since the determinant of the covariance matrix and its inverse
need to be calculated only once per cluster.

As planes become more horizontal (i.e., when φ approaches 0 or 180 degrees) the vari-
ance relative to θ tend to become large, since at the poles the parameter θ does not affect
the orientation of a plane. As a result, the amount of votes in individual accumulator cells
near the poles tend to be smaller than in voted cells in other regions of the accumulator.
Although this does not affect the correct detection of peaks around the poles, sorting the
detected planes taking into account only the amount of votes would lead to always finding
vertical planes before horizontal ones.

When estimating the importance of a cluster (and consequently the importance of
its votes), one should consider other properties besides its number of samples. Aspects,
such as area coverage should be given greater importance as sampling density varies with
object distance to the scanner. Thus, we weight votes from a cluster by the relative size of
its octree node with respect to the size of the octree root (in our system, all octree cells,
including the root, are cubic cells). Votes are then weighted using

wcluster(i) = wa

(
nodesize
octreesize

)
+ wd

(
|Ci|
|P |

)
, (3.7)

where nodesize and octreesize are, respectively, the edge length of the octree node con-
taining the cluster and the edge length of the root node. |Ci| is the number of samples
in the cluster i and |P | is the total number of samples in the point cloud. wa and wd
are the weights associated with relative area and relative number of samples, such that
wa +wd = 1. According to our experience, spatial coverage should be favored over num-
ber of samples. While we have used wa = 0.75 and wd = 0.25 in all examples shown in
the paper, we have also observed that wa = 1 and wd = 0 still produces good results in
practice.

The voting procedure uses a spherical accumulator indexed by (θ, φ, ρ), which is de-
scribed in Section 3.5. Starting at the center of the 3-D Gaussian kernel representing the
position, orientation, and uncertainties of the best-fitting plane for a given cluster, the vot-
ing procedure iterates away from the kernel’s center up to two standard deviations storing
votes in the accumulator’s cells. This provides a 95.4% assurance that the selected region
of the parameter space receiving votes covers the true plane. Sampling is performed in
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the accumulator at steps of ∆θ, ∆φ and ∆ρ. The number of votes that a cluster casts in a
given accumulator cell a is obtained by multiplying the weight of the cluster’s vote (Equa-
tion 3.7) by the evaluation of Equation 3.6 for the cell’s (θa, φa, ρa) parameter values (i.e.,
for ~δ = (θa, φa, ρa)− (µθ, µφ, µρ)).

3.5 The Spherical Accumulator

An accumulator is a registry where intermediate results are stored, during the execu-
tion of an algorithm, to build an incremental solution. In this case, votes are stored in a
3-D accumulator to represent different combinations of θ, φ and ρ, where each combina-
tion (accumulator cell) represents a plane. While a 2-D array provides a good accumulator
for the detection of lines in images, Borrmann et al. (2011) have demonstrated that the
use of a 3-D accumulator array for plane detection may compromise the result of the HT.
They have shown that since polar regions must have fewer cells than equatorial regions,
the use of a full 3-D array may result in cells improperly receiving less votes than others.
To overcome this problem, Borrmann et al. have proposed a spherical accumulator called
the accumulator ball, whose illustration is provided in Figure 3.3.

Figure 3.3: A discrete representation of the 3-D spherical accumulator, showing the indi-
vidual cells for a given value of the parameter ρ. The colors represent normal directions.

Z

Y

X

While Borrmann et al. cast votes in a conventional way (i.e., they cast one vote for
each possible plane passing through each sample in 3-D), we vote for each entire cluster
at once. Thus, we also need to cast votes for cells adjacent to the one that represents the
cluster’s best-fitting plane. This is required to account for the uncertainty resulting from
the variances in the cluster’s sample positions. We use Borrmann et al.’s spherical accu-
mulator, but normalize the azimuthal angle θ ∈ [0◦, 360◦) to [0, 1), as its discretization
varies with the elevation angle φ (see Figure 3.3). For any value of φ, the θ index for ac-
tually accessing the spherical accumulator is obtained as θindex = round(θ nc(φ)), where
nc(φ) is the number of accumulator cells for the elevation angle φ.

For identifying adjacent cells, θindex must be incremented/decremented using modular
arithmetic. The φindex must be between 0 and the size of the array (φmax), which varies
with the accumulator discretization. If incrementing/decrementing φindex should exceed
its lower or upper bounds, the sign of its increment is reversed to guarantee the wrapping
around the sphere. Finally, ρindex must be between 0 and ρmax, which depends on the
point cloud size. If ρindex exceeds the limit of ρmax, the voting process stops; if, however,
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it assumes a negative value, θindex and φindex are recalculated for angles θ and φ in the
opposite direction.

Votes in a HT 3-D accumulator tend to be sparsely distributed. Thus, during initializa-
tion, we only allocate space for the angular discretization of θ and φ. The third dimension
(ρ) is allocated as needed during the voting procedure. Therefore, if a range of ρ values
are only required around certain values of θ and φ, they will only be allocated there. This
strategy lends to considerable memory savings, allowing such memory to be used towards
better angular discretization, resulting in more accurate detections. Figure 3.4 illustrates
the data structures used for implementing the spherical accumulator: a 1-D array with
size φmax represents the discretization of the elevation angle φ. Each element of this array
contains a pointer to another 1-D array representing the discretization of the azimuthal
angle (θ) at that specific elevation. In turn, each element of a θ array stores a pointer to
yet another 1-D ρ array that stores the number of votes cast to cells indexed by (θ, φ, ρ).
Note that the arrays at this last level are only allocated if necessary.

Figure 3.4: The spherical accumulator and its representation in memory (the bottom half
is just indicated). The angular discretization (θ, φ) behaves like a sphere. The indexing
of the azimuthal angle (θ) uses modular arithmetic (i.e., it wraps around). Each (θ, φ)
cell has a points to a vector (allocated as needed during the voting process) storing the
actual votes associated with the distances from the origin (ρ), thus covering all possible
orientations and positions.

θ ρΦ

The accumulator discretization can be adjusted by choosing the number of φ cells,
since the number of θ cells are automatically calculated to represent the same proportion
of the arc length discretization. The number of cells used for radial discretization (ρ) is
adjusted according to size of the point cloud to emphasize either performance or precision.

Accumulator structures used for HT store a discrete number of votes, which is true
even for the KHT (FERNANDES; OLIVEIRA, 2008). In our solution, a vote represents
a plane and the uncertainly associated to its exact location and orientation. Thus, our
accumulator uses floats instead integers to reduce the influence of rounding errors. This
improves the accuracy of our solution allowing the accumulation of fractional votes, at
the expense of a small increment (approximately 4%) in the execution time. Since our
solution already achieves real-time performance for relatively large datasets, this addi-
tional cost is not perceived by the users. The rounding errors, recently mentioned, would
difficult the ordering of accumulator bins in the peak detection, because many bins could
have the same value stored. The voting process does not guarantee that cells receive votes
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from the center to the borders of the Gaussian (in all directions). This precludes the use of
stable sorting algorithms that would keep elements with equal votes in the same relative
order as they were voted.

3.6 Peak Detection

The last stage of a Hough-transform consists of detecting peaks of votes in the ac-
cumulator. We optimize this process by using an auxiliary 1-D array to store the (θ,φ,ρ)
coordinates of accumulator cells as they receive votes for the first time during the voting
procedure. Only cells in this array need to be inspected for peak detection. As demon-
strated in the KHT (FERNANDES; OLIVEIRA, 2008), low-pass filtering the accumulator
smooths the voting map, consolidating adjacent peaks. Therefore, before peak detection
is actually performed, we apply a low-pass filter to the accumulator cells whose indices
have been stored in the auxiliary array. For this, we use a 3-D isotropic kernel comprised
of seven cells (the central one and its six-connected neighborhood in 3-D). This topology
was used to handle the discretization of the accumulator, which has a singularity at the
poles. The kernel weights should satisfy wc, wn > 0, wc + 6wn = 1, and wc ≥ wn,
where wc and wn are the weights of the central and neighbor cells, respectively. Although
various combinations of wc and wn values produce good results in practice, according to
our experience the use of wc = 0.2 and wn = 0.133 seem to provide the best compromise
between peak consolidation and smoothness.

The low-pass-filtered values of the voted cells are copied from the accumulator to an
auxiliary array and sorted in decreasing order. Iterating over this array, the algorithm
selects each peak candidate and checks if the corresponding accumulator cell has already
been visited. If not, the cell is chosen as a peak and its (up to) 26 neighbors are tagged as
visited. If the cell has already been visited, their neighbors are also tagged as visited. This
procedure guarantees that only true peaks will be selected to represent the output planes.

The number of votes cast by a plane on the cells of a spherical accumulator decreases
as one moves from the equator to the poles. This is illustrated in Figure 3.5(a), which
compares the distribution of votes cast by a cluster as it is rotated around the origin. The
color scale indicates the number of cast votes, while the thumbnail image on its right
shows the best fitting planes corresponding to the rotated cluster. Note that the number
of votes cast on cells around the poles is significantly smaller than the ones near the
equator. Figures 3.5(b) and 3.5(c) explain this behavior, for a fixed value of the parameter
ρ. Figure 3.5(b) shows two versions of the rotated point cloud: one near the equator and
the other near the north pole. The noise in the point cloud lends to some uncertainty on
the plane’s orientation, which is represented by a cone of normals around the normal of
the best-fitting plane (shown in red). On the equator, such uncertainty causes some votes
to be cast in a small θ and φ neighborhood around the (θ, φ, ρ) coordinates of the best
fitting plane. There, equal angular steps in θ and in φ correspond to arc lengths of equal
sizes, resulting in an isotropic Gaussian kernel in the (θ, φ) subspace. Such a Gaussian
is illustrated on the top portion of Figure 3.5(c). Near a pole, on the other hand, the
uncertainty on the plane’s normal lends to a small uncertainty in the parameter φ, but
to a huge uncertainty in the parameter θ, as at the pole the value of θ varies from 0 to
360 degrees. This results in a highly anisotropic Gaussian kernel in the (θ, φ) subspace,
as shown by the truncated kernel at the bottom of Figure 3.5(c). This wider and lower
Gaussian covers a large θ neighborhood, but the voting procedure constrains voting to
values of at least gmin (see line 10 of Algorithm 3), which is reached much earlier than
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Figure 3.5: The number of votes cast by a cluster as it is rotated varies with the position
on the spherical accumulator (a). The color scale indicates the number of votes, while
the thumbnail image on its right shows the best-fitting planes corresponding to the rotated
clusters. (b) On the equator, the uncertainty on the plane orientation lends to votes on a
small isotropic neighborhood in the (θ, φ) subspace. At (next to) a pole, the same uncer-
tainty on the plane orientation lends to a small uncertainty in the φ dimension, but to a big
uncertainty in the θ dimension, as θ can range from 0 to 360 degrees. (c) isotropic (top)
and truncated anisotropic (bottom) Gaussian kernels in the (θ, φ) subspace associated to
the cluster near the equator and near the pole, respectively.
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the two standard-deviation limit is reached. This explains the smaller number of votes per
cell as the cluster moves from the equator the the poles.

Let C1 and C2 be two clusters with the same number of samples and same variances,
C1 located near the equator and C2 near a pole. Considering only the number of votes,
C1 would always be detected first, as its peak is higher. To retrieve the detected planes
based on how representative they are for a scene, as opposed to just on the heights of their
associated peaks, the list of detected planes is sorted based on the sum of the weights
(Equation 3.7) of all clusters that voted for each plane πi:

wsum(πi) =
∑

voted for πi

wcluster. (3.8)

3.7 Algorithm Complexity

The overall steps of our plane-detection technique can be summarized in Algorithm 4.
The cost of constructing an octree for a set of |P | samples is O(|P | log |P |). Checking
whether a cluster Ci with |Ci| samples (inside an octree node) is approximately coplanar
requires computing its covariance matrix Σ(x,y,z) and comparing its eigenvalues (lines
7 and 8 in Algorithm 2). These operations are performed in time O(|Ci|). Since this
operation is used to decide if a node needs to be subdivided, it has to be performed in
all nodes of the octree, resulting in a total cost of O(|P | log |P |). Transforming Σ(x,y,z)

to the (θ, φ, ρ) space requires computing a Jacobian matrix and multiplying three 3 × 3
matrices (see Equations 3.3 and 3.4), which has cost O(1). Computing the eigenvalues
of Σ(θ,φ,ρ) costs O(1). These operations (lines 5 and 6 in Algorithm 4) are executed once
per cluster, whose number is bounded by O(|P |). Each cluster Ci casts votes over a
total vCi

cells. Note that since in a spherical accumulator each cell represents a (set of)
plane orientation(s), each cluster only votes for a relatively small number of cells. Thus,
typical numbers for vCi

vary from 20 to 50, depending on the distribution of samples
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in the cluster, and on the resolution of the accumulator. Let B be the total number of
accumulator bins that received some votes. Since there are O(|P |) clusters and each
cluster votes for a finite number of cells, B = O(|P |). Filtering any given accumulator
cell is performed in O(1) time, for a total cost of O(|P |). Sorting the B voted cells is
accomplished in O(|P | log |P |), and peak detection has cost O(|P |). Thus, the overall
time complexity of the algorithm is O(|P | log |P |).

Algorithm 4 Algorithm Summary and Asymptotic Cost
Require: P {point cloud}

1: Octree generation; {O(|P | log |P |)}
2: for each octree node do
3: Compute cluster covariance matrix Σ(x,y,z); {O(|Ci|)}
4: if cluster is approximate co-planar then
5: Transform covariance matrix Σ(x,y,z) to (θ, φ, ρ) space; {O(1)}
6: Compute eigenvalues of Σ(θ,φ,ρ); {O(1)}
7: Cast cluster votes and update the auxiliary array (AA); {O(1)}
8: end if
9: end for

10: Filter accumulator cells pointed by AA; {O(|P |)}
11: Copy accumulator votes to AA and sort them; {O(|P | log |P |)}
12: Iterate over sorted AA detecting peaks; {O(|P |)}

3.8 Space Complexity

The amount of memory required by our 3-D Kernel-based Hough transform consists
basically of the octree (used to store point-cloud samples and indexes), the voting map,
and the trivariate kernels. Except for the root, which stores the samples, each octree node
only stores (integer) indexes for the sample array. Since each sample stores its (x, y, z)
coordinates as doubles, the memory required for the octree is given by 3× 8× |P | bytes
for the samples themselves, and 4 × |P | (log8 |P | − 1) bytes for the remainder of the
octree. Thus, for instance, assuming a point cloud with 20 million samples, the octree
would require approximately 1.50 GB of memory allocation. The voting map, in turn,
depends on the discretization of the Hough space (θ, φ, ρ) and on how many cells receive
votes (only voted cells are allocated in memory). Each accumulator cell consists of one
float for storing its votes, and one boolean to indicate if it has already been inspected
by the peak-detection procedure. An accumulator with discretization of φ = 30 and
ρ = 300 would require 1690.84 KB if all cells were initialized. Finally, a trivariate kernel
stores a 3 × 3 covariance matrix and the (θ, φ, ρ) Hough coordinates of the best fitting
plane, resulting in 12 doubles per cluster. While voting could be performed in parallel on-
the-fly as we reach the octree leaf nodes, we have not implemented concurrency control
mechanisms for accessing the accumulator, and voting is performed in a serial fashion
(see Algorithm 4). The space complexity of the algorithm is then O(|P | log8 |P |).

3.9 Summary

This Chapter described the pipeline used to detect planes in unorganized point clouds.
It also discussed challenges involved in maximizing computing performance. Firstly, it



44

described our clustering approach for segmenting coplanar samples efficiently. Follow-
ing, it explained how to compute Gaussian kernels for the purpose of voting using 3-D
Gaussian distributions. It is illustrated how votes are stored and manipulated in the accu-
mulator, and showed how the peak-detection procedure finds the most predominant bins
in the accumulator.
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4 RESULTS

We have implemented our technique in C++, using OpenMP to parallelize the oc-
tree generation, dlib (DLIB, n.d) to compute eigenvalue decompositions, and OpenGL
to render the detected planes. We have used this implementation to automatically de-
tect planes in a large number of unorganized point clouds, and compared its performance
against the state-of-the-art approaches: the Randomized Hough transform (RHT) and
RANSAC. Since surface-growing techniques are not as fast as RHT and RANSAC, and
require information about neighbor samples (see Section 2.4), they were not included in
our performance comparisons.

4.1 Accuracy Tests

To evaluate the accuracy of our approach, we created a point cloud (Box) by sampling
the faces of a cube centered at the origin and with 400 units. Each face of the cube contains
160, 801 samples with 2.5% of uniformly-distributed noise. This point cloud is shown in
Figure 4.1 (a) and was also used for the RANSAC experiment shown in Figure 2.9. A 3D
perspective and an unfolded slice of the spherical accumulator displaying the six peaks
detected by our technique is shown in Figure. 4.1(b). Four of these peaks are equally
distributed on the central line (equator) of the accumulator, while gray indicates zero
votes. Such peaks correspond to the lateral faces of the cube. The two additional peaks
are at the poles (shown as the blue lines on top and at the bottom of the gray region), and
correspond to the top and bottom faces of the cube. The detected planes are shown in
Figure 4.1(c). Note that only six planes were founded as our trivariate Gaussian kernel
naturally handles the noise in the dataset.

We have rotated the Box point cloud by arbitrary amounts and around arbitrary axes
and verified that our technique accurately detected the planes in all cases. In Figure 4.2,
we show an example of rotating the cube only in the x-axis for better viewing.
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Figure 4.1: Box dataset. (a) A point cloud representing a cube centered at the origin.
Each face consists of 160, 801 points with 2.5% of uniformly-distributed noise. (b) A
3D visualization of an unfolded slice of the accumulator representing all pairs (θ, φ) for
one value of ρ after the voting procedure. There are six detected peaks: four equally
distributed on the gray region represent the lateral faces of the cube, plus two at the poles
(shown as the blue lines) corresponding to the top and bottom faces. (c) Reconstructed
planes from the peaks detected by our approach.
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Figure 4.2: Point clouds and detected planes after rotating the point cloud by 20, 40, 60
and 80 degrees around the x-axis. The 3D KHT exactly found the six rotated planes in all
experiments. They were randomly colored at each execution, except for the dark plane.

(a) (b)

(c) (d)

To evaluate the robustness of our technique to missing samples and noise, we down-
sampled the Box dataset to 48,000 points and added 1% of Gaussian noise. For this
experiment, each face of the cube corresponds to three discontinuous stripes of samples
covering approximately 60% of its original area. The resulting point cloud is illustrated
in Figure 4.3, which also shows six colored squares representing the most important de-
tected planes. As in the previous experiment, the point cloud was rotated by arbitrary
amounts around arbitrary axes, consistently producing the same results.

Table 4.1 presents detailed information about the experiments performed with our
technique on each dataset. These times were computed by averaging the results of 50 exe-
cutions. It shows that our approach processes the Computer dataset with its 68K samples
in approximately 22 milliseconds, and the Museum dataset, which contains 179K sam-
ples, in 25 milliseconds. For larger point clouds (e.g., Bremen, with 20 million samples)
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Figure 4.3: Downsampled version of the cube, where each face is covered by three stripes
of samples covering approximately 60% of its original area. The squares indicate the
detected planes.

the octree creation (column 6) becomes the bottleneck of 3D KHT. Still, our technique
processes the Bremen dataset 3, 586 times faster than RANSAC. The available imple-
mentation of the RHT could not handle the entire dataset. Working on the full dataset,
our technique is still 20 times faster than the RHT working on a subset containing only
10% of the original samples (Table 4.2). Table 4.1 also shows that even though the octree
might segment large coplanar structures into several clusters, such clusters end up voting
for the same regions in the accumulator, resulting in the detection of the right planes. In
our experiments, all datasets were processed in their original scales.

Table 4.1: Data on the experiments performed with our technique. Number of samples in
the point clouds, numbers of detected clusters, number of samples used in the voting pro-
cedure, octree-generation time, voting time, peak-detection time, and number of detected
planes.

Point Cloud Octree Time (sec) Result

Name Size Bounding Box Clusters Used Points Rate(%) Clustering Voting Peaks Planes

Computer 68 852 1.3× 3.0× 0.9 119 30 630 44.48 0.005 0.009 0.008 8

Room 112 586 29.2× 14.5× 3.1 339 66 682 59.22 0.009 0.02 0.012 40

Utrecht 160 256 75.8× 75.8× 37.3 393 92 839 57.93 0.024 0.005 0.011 38

Museum 179 744 72.4× 132.8× 23.1 232 121 943 67.84 0.013 0.007 0.005 21

Box 964 806 409.9× 409.9× 409.9 144 584 028 60.53 0.054 0.008 0.015 6

Bremen 20 332 246 110.2× 379.3× 84.6 7 489 17 929 145 88.18 2.05 0.033 0.022 202

4.2 Comparison with Other Methods

For performance comparisons, we used the RANSAC implementation for plane detec-
tion in point clouds available in the Point Cloud Library v1.7 (RUSU; COUSINS, 2011),
a modern C++ library for 3D point-cloud processing. For RHT, we used the implemen-
tation by Borrmann et al. (2011). These implementations proved to be the most efficient
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ones for plane detection using RANSAC and RHT, respectively. All experiments were
performed on an Intel i7-2600 3.4 GHz CPU with 16 GB of RAM. The codes for the
three techniques (RHT, RANSAC, and ours) were compiled using Visual Studio 2012 for
64 bits on Windows 7 to exploit the full potential of the hardware. Figure 4.5 shows the
datasets used to compare the performance of the three techniques. On the right, it also
shows the most representative planes detected by our approach (for the more complex
examples, some planes are not shown to avoid cluttering the images). These datasets in-
clude a computer desk (Computer), a room (Room), a set of fa cades from a city block
(Utrecht), the interior of a museum (Museum), and a partial scanning of some buildings
in the city of Bremen (Bremen). These datasets were obtained using 3D scanners or ex-
tracted from a collection of photographs. They were chosen because they span a large
range of parameters, varying in number of points, sampling rate, occupied volume, and
number of detectable planes.

Table 4.2 compares the performance of our technique to RHT and RANSAC. These
results show that our approach is one to four orders of magnitude faster than the competing
ones. Although RHT and RANSAC are relatively fast on small datasets containing low
noise and just a few planar structures (e.g., Computer), they are not as efficient on bigger
and noisier datasets (e.g., Museum and Bremen). Our approach, on the other hand, can
efficiently handle both large and noisy datasets. RANSAC takes approximately 2 hours to
detect 16 planes in the Bremen dataset, even though the 3 most representative planes were
detected in about 3 minutes. This happens because RANSAC removes samples associated
to the detected planes, increasing the proportion of outlier samples among the remaining
ones. In contrast, our approach took 2.1 seconds to detect all the representative planes
(Figure 4.5).

Table 4.2: Performance comparison of our approach (3D KHT) against RHT and
RANSAC for various datasets. The entries of the table show the execution times (in
seconds) of the three techniques for these datasets. (*) The RHT was computed with
a simplified version of Bremen dataset containing only 2 million samples, because the
available implementation did not support larger inputs.

Computer Room Utrecht Museum Bremen

3D KHT 0.022 0.041 0.040 0.025 2.105
RHT 0.121 6.313 2.814 11.96 42.824 *
RANSAC 0.424 3.293 15.412 302.61 7531.01

While 3D KHT and RANSAC use the same number of parameters (less than RHT),
the 3D KHT is less dependent on them. This is because our approach performs adap-
tive clustering based on relative measurements of the samples’ variances, instead of using
specific thresholds. Since the running times of the three algorithms are affected by the
selected parameters, we chose values that optimize their execution times. Figure ?? com-
pares the planes detected by the three techniques on two datasets. The results are similar,
but our technique is significantly faster (Table 4.2).
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Figure 4.4: Examples of plane detection for two datasets using our technique (top), RHT
(middle), and RANSAC (bottom). While our approach detected 20 planes in the Museum
dataset, RHT detected 10 and RANSAC detected 22. The actual results are similar, but
our technique is significantly faster. For the Museum dataset, our technique is two or-
ders of magnitude faster than RHT and three orders of magnitude faster than RANSAC
(Table 4.2).

4.3 Limitations

Our technique has some limitations. Even though the best-fitting plane for any given
cluster can have arbitrary position and orientation, the position and orientation of the
detected planes is constrained by the accumulator discretization. Such a restriction is
shared by all Hough-transform techniques. If a valid plane is immersed in very high
levels of noise, our approach might not be able to detect it. This may happen if the
portions of the point cloud inside the octree nodes are still sufficiently noisy to not allow
the detection of approximately coplanar clusters. Also, if the samples in an octree node
are left-overs from its neighbors, our technique may fit a spurious plane through these
samples. According to our experience, starting the approximate-coplanarity check after
the third level of the octree subdivision tends to avoid this problem.

4.4 Summary

This Chapter reported the use of our technique in different types of point clouds,
varying in size (number of points), sampling (density) and complexity (number of planes).
It has shown that our technique is significantly faster than the state-of-the-art approaches
and is able to accurately detect planes.



50

Figure 4.5: Datasets used for performance comparison. Point clouds (left) and the most
representative planes detected by our technique (right). From top to bottom, the datasets
are: Computer, Room, Utrecht, Museum, and Bremen. Their numbers of samples are
shown in Table 4.1. The detected planes were resized for better visualization. For all
datasets, the accumulator discretization was obtained using φmax = 30 and ρmax = 300.
The threshold sms was set to 30. slevel was chosen for each point cloud to generate the
best results as 2, 4, 5, 6 and 7 (top to bottom).
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5 CONCLUSIONS AND FUTURE WORK

This thesis presented an O(n log n) Hough-transform technique to perform determin-
istic plane detection in unorganized point clouds. Our approach uses a fast and robust
algorithm to segment clusters of approximately coplanar samples, and casts votes for in-
dividual clusters, instead of for individual samples, on a spherical accumulator. For this,
we use a trivariate Gaussian kernel that models the uncertainty about the position and
orientation of the plane represented by the cluster.

While previous approaches for plane detection have basically resorted to randomly
selecting a subset of the samples as a way to reduce execution time, we have undertaken
the more fundamental strategy of designing an efficient algorithm with lower asymptotic
cost.

Probabilistic approaches are good at finding the first few best planes (usually four or
five on average). However, as the points that lie on these planes are removed, the amount
of noise relative to the number of left samples tends to increase. Thus, the odds of finding
additional relevant planes in the resulting point cloud tend to decrease. In contrast, our
approach scans the entire point cloud without removing partial information, thus keeping
the inliners/outliers ratio constant.

Our experiments have shown that our approach is several orders of magnitude faster
than existing (non-deterministic) techniques for plane detection in point clouds, such as
RHT and RANSAC, and scales better with the size of the datasets, since asymptotic con-
stants of previous techniques are too big. It is also robust to noise and to irregularly-
distributed samples. As such, it has the potential to enable a new range of applications
that require fast detection of planar features on large datasets.

Our approach can be further optimized using CUDA to obtain a more efficient subdi-
vision procedure. The use of concurrency control mechanisms for accessing the accumu-
lator would allow voting to be performed in parallel.
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APPENDIX A DERIVING THE JACOBIAN MATRIX

This Section details the derivation of the Jacobian matrix in Equation 3.4. The follow-
ing equations show the partial derivatives of ρ with respect to px, yp and pz:

ρ =
√
p2x + p2y + p2z (A.1)

∂ρ

∂px
=

1

2
(p2x + p2y + p2z)

− 1
2 × 2px (A.2)

∂ρ

∂px
=

px√
p2x + p2y + p2z

= nx (A.3)

∂ρ

∂py
=

1

2
(p2x + p2y + p2z)

− 1
2 × 2py (A.4)

∂ρ

∂py
=

py√
p2x + p2y + p2z

= ny (A.5)

∂ρ

∂pz
=

1

2
(p2x + p2y + p2z)

− 1
2 × 2pz (A.6)

∂ρ

∂pz
=

pz√
p2x + p2y + p2z

= nz (A.7)

Since the vectors ~p = (px, py, pz) and ~n = (nx, ny, nz) have the same direction, each
component of ~p is normalized in Equations A.3, A.5 and A.7, so that the norm of ~p is
one, corresponding to ~n. The following set of Equations show the partial derivatives of φ
(from Equation A.8 to A.15), and θ (from Equation A.16 to A.24), with respect to px, py
and pz:

φ = arccos
pz
ρ

(A.8)
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APPENDIX B DETECÇÃO EM TEMPO REAL DE
REGIÕES PLANARES EM NUVENS DE PONTOS NÃO

ESTRUTURADAS

Resumo da Dissertação em Português

Detecção automática de regiões planares em nuvens de pontos é um importante passo
para muitas aplicações gráficas, de processamento de imagens e de visão computacional.
Entre as principais aplicações, podem ser citadas reconstrução de modelos para engen-
haria reversa (VOSSELMAN; DIJKMAN, 2001; KAUCIC; HARTLEY; DANO, 2001)
(TARSHA-KURDI; LANDES; GRUSSENMEYER, 2007; HUANG; BRENNER; SES-
TER, 2011; FUCHS; KEDEM; USELTON, 1977), calibração automática de câmeras
(TRIGGS, 1998), reconhecimento de objetos (ROTHWELL et al., 1995) (PETERNELL;
STEINER, 2004), realidade aumentada (SIMON; FITZGIBBON; ZISSERMAN, 2000;
CHEKHLOV et al., 2007) e segmentação (BIOSCA; LERMA, 2008; NING et al., 2009).
A recente popularização de digitalizadores a laser levou a um aumento no tamanho e na
quantidade de dados disponíveis. Além disso, aplicações como o SynthExport (HAUS-
NER, 2010) e o Photosynth (PHOTOSYNTH, 2008) nos permitiram extrair nuvens de
pontos enormes a partir de fotografias digitais georreferenciadas. Infelizmente, técnicas
anteriores para detecção de planos em nuvens de pontos são computacionalmente caras e
não escalam bem com o aumento do conjunto de dados, sendo incapazes de alcançar de-
sempenho em tempo real para conjunto de dados contendo dezenas de milhares de pontos,
mesmo quando a detecção é feita de um modo não determinístico. Para aumento desse
desempenho, várias técnicas exploraram o uso de estratégias não determinísticas, como
por exemplo, processar apenas com um subconjunto randômico do original, fazendo com
que os resultados dependam desse conjunto selecionado de amostras e não garantindo
que todos os planos relevantes serão encontrados e que os resultados serão consistentes
ao longo de múltiplas execuções.

Apresentamos uma abordagem determinística para detecção de planos em nuvens
de pontos não estruturadas que apresenta complexidade computacional O(n log n) no
número de amostras de entrada. Ela é baseada em um método eficiente de votação para a
transformada de Hough. Nossa estratégia agrupa conjuntos de pontos aproximadamente
coplanares e deposita votos para estes conjuntos em um acumulador esférico, utilizando
núcleos Gaussianos trivariados. Uma comparação com as técnicas concorrentes mostra
que nossa abordagem é consideravelmente mais rápida e escala significativamente melhor
que as técnicas anteriores, sendo a primeira solução prática para detecção determinística
de planos em nuvens de pontos grandes e não estruturadas.
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Este trabalho apresenta as seguintes contribuições:

• Uma técnica baseada na transformada de Hough para detectar regiões planares em
nuvens de pontos não estruturadas. Nossa solução é robusta a ruído, e independente
a amostragem da distribuição. Ela é algumas ordens de magnitude mais rápida e es-
cala melhor que as técnicas do estado da arte. Uma implementação em software da
nossa técnica consegue processar até 105 pontos em tempo real em um computador
típico;

• Uma estratégia eficiente de votação para detecção de planos. Nossa solução uti-
liza uma estratégia de segmentação robusta para identificar clusters de amostras
aproximadamente coplanares. Votos são depositados para clusters ao invés de para
amostras individuais.

B.1 Trabalhos Relacionados

Apresentamos nesta secção trabalhos relacionados a detecção de planos em nuvens de
pontos. Estes estão subdivididos em cinco áreas: transformada de Hough, random sample
consensus, surface growing, tensor voting e linear subspace learning. Como poderemos
observar, técnicas anteriores, sendo elas determinísticas ou não determinísticas, não são
capazes de processar nuvens de pontos suficientemente grandes em tempo real.

B.1.1 Transformada de Hough

A transformada de Hough (HT), inicialmente proposta por Paul Hough (1962) é uma
técnica para detecção de características, podendo essas estarem presentes em dados de
qualquer dimensão, desde que possam ser escritas a partir de uma equação paramétrica.
Hoje em dia, a versão da transformada de Hough utilizada universalmente é a de Duda e
Hart (1972) chamada de transformada de Hough padrão (SHT), que utiliza uma parametriza-
ção mais eficiente do que a utilizada por Paul Hough. Embora sejam robustas a ruído,
ambas as técnicas são computacionalmente caras.

Para contornar o alto custo computacional do processo de votação da transformada
de Hough, visto que este é o gargalo do algoritmo, várias técnicas foram propostas. A
Probabilistic Hough transform proposta por Kiryati et al.(1991) busca diminuir o número
de amostras processadas, selecionando e votando apenas para um subconjunto randômico
de pontos. Contudo, é difícil encontrar um tamanho ótimo para o subconjunto, ao longo
que, quanto menor ele for maiores serão os ganhos no tempo de processamento, porém
piores serão os resultados. Visto isso a Adaptive Probabilistic Hough transform (YLä-
JääSKI; KIRYATI, 1994) monitora o acumulador durante o processo de votação em busca
de estruturas estáveis, fazendo que não seja preciso encontrar um número exato para
o tamanho do subconjunto selecionado. A Progressive Probabilistic Hough transform
(MATAS; GALAMBOS; KITTLER, 1998) tenta diminuir a influência de ruído no acu-
mulador, já que quando um número menor amostras é selecionado, este pode ser mais
prejudicado por amostras incorretas. Por fim, a Randomized Hough transform (RHT)
(XU; OJA; KULTANEN, 1990) vota com uma confiança maior no acumulador. Difer-
entemente de votar para cada amostra, a RHT vota para planos que ajustam três pontos
escolhidos aleatoriamente. Esta abordagem mostrou-se a mais eficiente e é considerada
como estado da arte em detecção de planos, considerando a transformada de Hough.

Quando a transformada de Hough é estendida para três dimensões, o acumulador deve
adequar-se a este novo espaço. A extensão imediata de um acumulador 2D para 3D é
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trivial, adicionando-se uma nova dimensão à estrutura de dados. Porém um acumulador
3D apresenta problemas de discretização para as coordenadas esféricas, contendo várias
células que apresentam a mesma posição e inclinação. Para contornar este problema Bor-
rmann (2011) propôs a utilização de um acumulador esférico parametrizado nas mesmas
variáveis (θ, φ e ρ). Este acumulador possui, para a mesma discretização de um acu-
mulador 3D comum, um número menor de células, visto que ele não apresenta células
redundantes. Observando isso, nossa técnica utiliza o acumulador esférico ao invés do
acumulador tradicional.

B.1.2 Random Sample Consensus

Outra importante classe de algoritmos que detectam planos é a random sample con-
sensus (RANSAC) (FISCHLER; BOLLES, 1981). RANSAC é um técnica amplamente
utilizada para detecção de modelos matemáticos, sendo robusta mesmo em altas pro-
porções de outliers. Ela pode ser generalizada para resolver diversos tipos de problemas,
qualquer que sejam suas dimensões. RANSAC realiza detecção de planos escolhendo
randomicamente três pontos, calculando o plano definido por estes e contando quantos
pontos (da nuvem de pontos) ajustam o plano com certa tolerância. O número de pontos
encontrado representa a pontuação do plano. Fazendo isso iterativamente, o algoritmo vai
melhorando a solução, até que a probabilidade de encontrar um plano com uma pontuação
maior seja muito pequena. RANSAC depende dos parâmetros de entrada (tolerância) para
que sejam encontradas boas soluções em um baixo tempo de execução.

B.1.3 Surface Growing

A terceira classe de técnicas utilizada para identificar planos em nuvens de pontos é
surface growing (FISCHLER; BOLLES, 1986) - a análoga de region growing em três
dimensões. Este tipo de técnicas realizam buscas locais, a partir de sementes escolhidas
no início do algoritmo, com o objetivo de expandir regiões com características similares.
Por realizarem uma busca local, estes algoritmos são ineficientes computacionalmente.
Este tipo de técnica também necessita de informações adicionais a respeito da nuvem de
pontos, bem como informações de vizinhança e às vezes normais e cores das amostras.

B.1.4 Tensor Voting

Tensor voting (TV) é um framework que identifica, ao mesmo tempo, todas estru-
turas salientes de um conjunto de dados. Ele é baseado em dois componentes: o cálculo
tensorial para representação dos dados e uma votação não linear para comunicação da
informação. TV consegue detectar estruturas em qualquer dimensionalidade, sendo ainda
robusta a ruídos e preservando descontinuidades. Porém, como TV é naturalmente mul-
tidimensional, ele não pode ser aplicado para detectar tipos predefinidos de modelos de
uma maneira eficiente.

B.1.5 Linear Subspace Learning

O objetivo de técnicas baseadas em linear subspace learning (LSL) é encontrar pos-
síveis subespaços lineares ou afins que acomodem a maior quantidade possível de objetos
de um conjunto de dados, deixado a detecção mais trivial em espaços de menor dimen-
sionalidade. Estas incluem técnicas baseadas em principal component analysis (PCA),
linear discriminant analysis (LDA), general averaged divergence analysis (GADA) e lo-
cality preserving projections (LPP). Uma revisão mais completa sobre algoritmos LSL
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pode ser encontrada em (VIDAL, 2011). Em contraste com técnicas baseadas em reduzir
a dimensionalidade dos dados, os quais conseguem resolver problemas mais genéricos, a
nossa técnica busca entrar planos em um espaço tridimensional de maneira eficiente.

B.2 Detecção Eficiente de Planos em Nuvens de Pontos

O objetivo do nosso algoritmo é processar qualquer tipo de nuvem de pontos com a
mesma garantia. As otimizações propostas neste trabalho para a transformada de Hough
tridimensional permitem que uma implementação em software opere em tempo real para
conjunto de dados suficientemente grandes (105).

B.2.1 Agrupando Amostras Aproximadamente Coplanares

Agrupar amostras aproximadamente coplanares é a chave do nosso método, já que ele
aperfeiçoa o processo de votação, o qual é o gargalo da transformada de Hough. Para isso
nos utilizamos uma abordagem global de subdivisão (octree). Esta abordagem mostrou-se
eficiente, pois ela fornece grande controle sobre as dimensões dos nodos da árvore, já que
todos possuem as mesmas dimensões para o mesmo nível das ramificações.

O processo de subdivisão inicia com o nodo pai que inclui todo conjunto de dados, o
qual é subdividido recursivamente a fim de refinar a árvore. A cada subdivisão são ver-
ificadas duas condições: a quantidade de informação e as proporções do subconjunto de
dados. Primeiramente é verificado o nível da octree, para evitar cálculos desnecessários,
já que nos primeiros níveis não há normalmente informações de regiões planares. No se-
gundo passo, verificamos as proporções da distribuição com principal componente anal-
ysis, identificando quando um conjunto de pontos representa um plano. Quando as duas
condições forem satisfeitas, o processo de subdivisão para naquele ramo, caso contrário o
processo continua até que não haja informação suficiente mais no nodo, ou seja, quando
o número de pontos for menor que um valor predeterminado.

B.2.2 Calculando Núcleos Trivariados para Votação

A votação indicará os possíveis planos que podem ser detectados na nuvem de pon-
tos. Para realizar a votação de um modo eficiente, votos são depositados para cada cluster
ao invés de para cada amostra. Para isso, votos gaussianos são depositados no acumu-
lador, centralizados na célula do acumulador que representa o plano que melhor ajusta a
distribuição.

Para votarmos no acumulador esférico, é necessário conhecer as variâncias das dis-
tribuições dos clusters em relação aos parâmetros do acumulador. Como conhecemos as
variâncias em relação ao eixo cartesiano, calculadas anteriormente por PCA, basta propa-
garmos as variâncias do espaço cartesiano para o espaço paramétrico (esférico). Para isso,
utilizamos uma propagação de incertezas de primeira ordem, multiplicando a matriz de
covariância nas coordenadas (x, y, z) pela matriz Jacobiana à esquerda e sua transposta a
direita, propagando assim as variâncias de (x, y, z) para (θ, φ, ρ).

B.2.3 Votando para Clusters Utilizando Distribuições Gaussianas

Uma vez que temos a matriz de covariância calculada nas coordenadas corretas, uti-
lizamos uma distribuição Gaussiana trivariada para amostrar a quantidade de votos que
será depositada em cada célula. Votando no acumulador utilizando apenas as variân-
cias das distribuições não é o suficiente, já que o espaço tridimensional, onde estão as
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amostras, é contínuo. Deste modo, propomos uma ponderação dos votos pela área e
número de pontos relativo de cada cluster.

B.2.4 Detecção de Picos

O último estágio da transformada de Hough compreende a detecção de picos no acu-
mulador, os quais representarão os planos mais importantes da nuvem de pontos. O pro-
cesso de detecção de picos é otimizado por um vetor que armazena as células do acumu-
lador que receberam votos durante o processo de votação. Primeiramente, este vetor é
convoluído por um filtro Gaussiano que utiliza os 6 vizinhos imediatos, ou seja, variando
um eixo a cada amostragem. Este processo suaviza o mapa de votos, consolidando picos
adjacentes no acumulador. Após isso, os valores do vetor são ordenados em ordem decres-
cente e iterados linearmente. Neste processo, vizinhos de cada célula são inspecionados
em busca de células que já foram inspecionadas por este mesmo processo. Caso nenhum
vizinho de uma célula fora anteriormente inspecionado, esta célula é escolhida como pico.
À medida que os planos se tornam mais horizontais, a variância em θ tende a ficar muito
grande, fazendo com que os votos sejam menores nas regiões polares do acumulador.
Desde modo, após termos os planos detectados, eles são ordenados por representativi-
dade. A representatividade de cada plano se dá pelo somatório das representatividades
dos clusters que votaram naquele plano, ou seja, levando em conta a área e número de
pontos relativo de cada plano.

B.3 Resultados

Para comprovar a eficácia da nossa técnica, planos foram detectados em nuvens de
pontos, que variam em tamanho (número de pontos), amostragem (densidade) e complex-
idade (número de planos). Para testes de acurácia, criamos uma nuvem de pontos sintética
de uma caixa com 964,806 pontos. Nela, testamos a detecção de planos utilizando ver-
sões rotacionadas em eixos e angulações arbitrárias com a presença de 2, 5% de ruído
distribuído uniformemente. Em todos os casos, nossa técnica foi capaz de detectar os seis
planos mais representativos da caixa em suas devidas inclinações e posições. Também foi
criada uma nuvem de pontos degenerada de uma caixa, onde fatias dos planos foram re-
movidas, deixando aproximadamente 60% da área original dos planos. Para este conjunto
de dados, foi adicionado ruído Gaussiano de 1%. Do mesmo modo, testamos a detecção
de planos em versões rotacionadas desta nuvem e verificamos que os seis planos eram
sempre detectados.

Para comparação de desempenho testamos nossa técnica contra as técnicas do estado
da arte as quais mostraram ser as mais eficientes: a random sample consensus e a ran-
domized Hough transform. Todas implementações foram feitas em C++ e testadas em
um mesmo computador. Tempos obtidos podem ser vistos na Tabela B.1. Respectivas
detecções da nossa técnica podem ser vistas na Figura B.1.
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Table B.1: Comparação de desempenho entre a nossa técnica e as técnicas do estado da
arte. Como podemos perceber, nossa abordagem é entre uma e quatro ordens de magni-
tude mais rápida que as outras. (*) A RHT foi processada com uma versão simplificada da
nuvem de pontos Bremen contendo apenas 2 milhões de amostras, já que a implementação
disponível não funcionava para conjunto de dados maiores.

Computer Room Utrecht Museum Bremen

3D KHT 0.022 0.041 0.040 0.025 2.105
RHT 0.121 6.313 2.814 11.96 42.824 *
RANSAC 0.424 3.293 15.412 302.61 7531.01

Figure B.1: Exemplo de detecção de planos utilizando nossa técnica. Em cada imagem
são mostrados os planos mais representativos encontrados nas nuvens de pontos Com-
puter, Room, Utrecht, Museum e Bremen respectivamente.

B.4 Conclusão

Este trabalho apresentou uma técnica baseada na transformada de Hough que detecta
de planos em nuvens de pontos não estruturadas de maneira determinística. Nossa abor-
dagem utiliza um algoritmo rápido e robusto para a segmentação de pontos aproximada-
mente coplanares. Após isso, votos são depositados no acumulador utilizando uma dis-
tribuição Gaussiana que modela a incerteza com respeito a posição e orientação de cada
agrupamento. Nossos experimentos mostraram que nossa técnica é algumas ordem de
magnitude mais rápida que técnicas concorrentes e escala melhor com o aumento do con-
junto de dados.


