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Resumo: The stages of design, analysis and optimization of chemical processes are usually based on stationary simulations, 
since dynamic informations are missing at this stage apart from the difficulty and cost of obtaining dynamic models. Moreover 
when the dynamic simulation is used to design linear control, linearized models are usually used from sensitivity analysis or by 
fitting an empirical model. The proposed method is based on a generic framework that relates a dynamic model with its 
underlying static model. When a static model is developed, the inventory part of the dynamic model (i.e. tank size, diameter 
and height of tray, and so on) is not included. Therefore, we should include theses information again but not in the static model 
directly. Instead of that, we use this information as a part of the problem, that is, the information about steady-state is 
guaranteed and there is no loss of static result. All results described in this paper show that the linearized models by this 
method are equivalent to those obtained by the dynamic model even with interactions between mass and energy balances. 
.  
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1. Introduction 

The need for cost containment in the chemical 
industry has introduced a trend towards the realization of 
highly integrated process, and the validation of design 
integrity and its practical operability require the simulation 
of the whole process with use of rigorous models. But the 
more accurate is the process description, greater the 
resulting set of equations and more difficult to treat. 
Moreover the stages of design, analysis and optimization 
of chemical processes are usually based on steady-state 
simulations of this process, since dynamic information are 
usually ignored in this stage, besides the difficulty and cost 
of obtaining dynamic models. This makes that stationary 
models of processes are more widespread than dynamic 
models. However, at later stages of the project, involving, 
for example the control strategy, a dynamic model of the 
process is very important. Whereas the benefits of 
employing computer tools for process design, planning 
and off-line optimization become evident, and 
consequently their use in practice widespread, the same is 
not true for on-line and dynamic simulation. Although this 
type of model can potentially lead to enormous benefits as 
well as applications ranging from operator training to 
dynamic optimization, the cost of developing such model 
is still inhibiting, at least at a useful degree of realism. In 
this way, any methodologies that help to bridge the gap 
between the conceptual design of such tools and their 
industrial application are greatly welcome. 

Usually, alternative designs are judged on economics 
alone without taking operability into account. This may 
lead to the elimination of easily-controlled but slightly less 
economical alternatives in favor of more economical 
designs which may be extremely difficult to control (Weitz 
and Lewin, 1996). One appealing possibility with this 
regard is to use simplified or shortcut dynamic 
representations based on steady-state models. It is quite 
common that a stationary model has been developed in 
some environment that does not support dynamic 
modeling. In this case, a methodology of making use of 
this model for the construction of consistent dynamic 
extension would be very beneficial. In addition, when the 
dynamic simulation is employed for linear control design, 
it is generally used to generate linearized models (either 
from sensitivity analysis or from adjusting models on the 
base of time responses), which are then used for tuning 
controller parameters (Bolognese Fernandes and 
Trierweiler, 2007). 

The integration of design and control received much 
attention in the past years. Weitz and Lewin (1996) 
describe a simple procedure which can be used to 
investigate the degree to which a process flowsheet is 
resilient to external disturbances and the approach involves 
the derivation of an approximate linear dynamic plant 
model, generated solely from steady-state flowsheet 
information and independent of control system design. 
Methods that allow for the study of input-output 
controllability issues – that is, poles and zeros of the 
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linearized models, RGA, RPN, and so on (Trierweiler, 
2002; Engell et al., 2004) – on the basis of steady-state 
models could facilitate greatly this kind of analysis, since 
it is generally carried out around an equilibrium state. 

The present paper aims at verifying the possibilities 
for the generation of dynamic models on the basis of 
steady-state ones. Since the main focus of the paper is on 
control and dynamic optimization, it is interesting to 
obtain the linearized models of the process to be studied. 
In this case, there are two possibilities: directly from 
dynamic models or combination of the linearized 
stationary model and the dynamic part of the process. 

2. Linearized and Dynamic Models from Static 
Simulations 

 
The fundamental laws of mass and energy 

conservation, when applied to a dynamic system, states 
that the variation rate of mass or energy in a differential 
volume control is equal to the difference between the rate 
of mass or energy that enters and leaves the element, plus 
generation rate of mass or energy. At steady state, the 
variation rate is neglected and the resulting equations are 
used to process design. That is, some information about 
process dynamic are not present in the stationary model. 

2. 1. Homogenous Systems 

Consider a system constituted by N control volumes 
containing a single species. The mass balance around each 
of these elements can be written in vector form as 
(Elnashaie and Garhyan, 2003): 

ssf
dt

d
 kM

 (1) 

where M = [m1 m2 … mN]T is the vector of mass and 
energy holdups, fss is the steady-state model and k is a 
diagonal matrix of common factors that relates the 
stationary model with mass and energy conservation. A 
common situation is when we are not interested directly on 
M, but on a property derived the vector q (such as level of 
liquids, gas pressure, temperature, and so on), which will 
be called here the state variables of the problem. These are 
related to the mass and energy holdups by means of a 
relation of the form M = M(q) In this case the balance can 
be expressed in terms of the new state variables as 
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In Eq. (2) the term ࣔܙࣔ/(ܙ)ۻ represents the 
variation of conserved property by related states and it’s 
called “mass matrix”. The stationary model usually 
depends on the state variables and, more specifically on 
control applications, manipulated variables (u). Therefore, 
the Eq. (2) can be rewritten as 
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In this way the dynamic model is constructed using 

information from static simulations and additional 
information about the dynamics of process.  

2. 2. Homogenous Reaction Systems 

Consider now a single control volume, in which a set 
of m chemical reactions involving P species takes place. 
The dynamic balance is now of the form (Elnashaire and 
Garhyan, 2003): 

νΘΘn
 outindt

d
 (4) 

where n = [n1 n2 … nP]T are the number of moles of the 
individual species, Θin and Θout are the mole flow into and 
from the system, and v are the overall generation/depletion 
rates due to chemical reaction. These reaction terms are 
generally written as volumetric rates; moreover, it is also 
customary to write them in terms of the Law of mass 
action, that is, as a function of the individual molar 
concentrations. This makes the concentration c a more 
natural state variable, and since     n = cV, the mole 
balance becomes: 
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where V is the volume of the reacting mixture and Λin,out 
are the volumetric in/outflows. Because the system is 
constituted by a single control volume, it is possible to 
consider Θin as an external input (in case of no feedback 
loops). Obviously, an extra equation is necessary to 
account for the variation in the volume, which can be 
obtained, for example, by an overall mass balance. We can 
write this extra equation as a relationship similar to Eq. 
(1), that is: 

  

    outoutinin

outinV
dt
d


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cρcρ

ΦΦcρ
 (6) 

where ρ is the specific mass of the mixture (which is in 
general a function of its concentration) and Φin,out are the 
overall mass flows into/out of the system. 

3. Linearization 

Additionally to the construction of dynamic models 
on the basis of stationary representations, another 
interesting application of this analysis concerns the Taylor 
linearization of the Eq. (3), which is of the form: 

uBqAq






t

 (7) 

where “–” stands for the fact that the linearized states are 
approximations of q, and the matrices A and B are given 
by: 



  X Oktoberfórum – PPGEQ  3 

www.enq.ufrgs.br/oktoberforum 

 

   

   
q

uq
q
qMk

uq
q
qM

q
kA


















































,

,

1

1

ss

ss

f

f
 

(8) 

   
u

uq
q
qMkB


















,

1
ssf  (9) 

Particularly for the linearizations corresponding to 
equilibrium points (steady-states), the dynamic matrix A is 
constituted solely by the product of the inverse of the mass 
matrix and the gradient of the stationary model with 
respect to q (all evaluated at steady-state), since the first 
term in Eq. (8) vanishes for any stationary solution of Eq. 
(3). 

There are two ways to obtain the linearized dynamic 
model: from dynamic model directly or from combination 
between linearized stationary model and dynamic part of 
the process. In this way, we can otain the matrices A and B 
without need to develop the dynamic model. 

Another possibility with this respect is to consider 
these parameterized models to formulate controlled 
optimization problems, in which one is interested in 
finding the best setting (operating point, holdups) in order 
to achieve good control performance, or to minimize any 
measure (RGA, non-linearity, and so on) that can be 
parameterized in terms of the equilibrium points 
(Bolognese Fernandes and Trierweiler, 2007). 

3. Numerical Example 

To exemplify the methodology, it will be shown how 
a dynamic model of the level system shown schematically 
in Figure (1) can be constructed on the basis of the 
previous analysis. The plant is constituted by three 
spherical tanks with different diameters Di [cm] disposed 
in series. Water flows from tank 1 to tank 3 by gravity at 
constant temperature and the flows are assumed to be 
turbulent. The manipulated variable is the inlet flow rate of 
the first tank, F0 [cm3/min]. The state variables (called q in 
the previous discussion) are the liquid levels Li [cm] in the 
tanks, i = 1, 2, 3. 

 
Figure 1. Diagram of the spherical tank system. 

The stationary model of the system has written in the 

implicit form given by Eq. (10) and depends on the state 
variables as showed in Eq. (11). 
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In order to generate a dynamic model on the basis of 
Eq. (7), as described in Section 2, it is necessary to 
represent the dependence M = M(q) of the holdup in each 
compartment with the respective level. Since the tanks are 
spherical, this relationship is given by 
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To generate the dynamic model is necessary to get 
the inverse holdup matrix according to Eq. (3). In this 
case, we want to evaluate the liquid level in each tank with 
respect to time. Thus, the vector of state variables is q = 
[L1 L2 L3]T and the inverse holdup matrix is described by 
Eq. (13): 
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(13) 

The matrix k is represented by diag(ρ1 ρ2 ρ3)in this 
case and it was considered constant for convenience 
(ρ1=ρ2=ρ3). The dynamic model is represented by Eq. (14). 
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The algebraic equations are decoupled from the state 
equations, in the sense that they can be solved separately 
for the Li and thus the system is not a “true” DAE 
representation. Observe that the dynamic model is in the 
form of Eq. (3) and was obtained solely on the basis of Eq. 
(10), which can be in principle a heuristic steady-state 
model or a “black-box” function, as compiled routine, for 
example. The model was compared with the one obtained 
by the traditional, or direct, approach, that is, by directly 
writing down the dynamic balances. 

An interesting application is to employ sensitivity 
studies of the steady-state model, coupled with the 
information given by Eq. (12), in order to determine the 
Taylor linearizations of the system, as described in Section 
3. In order to illustrate this, the three tanks system consist 
of the characteristics showed in Table 1, and the matrices 
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A and B of three linear models, were obtained by dynamic 
model, Eq. (15) and compared with matrices obtained by 
this shortcut method, Eq. (16), at the equilibrium points by 
the feed flow rate of 7070 cm3/min and was compared with 
the values determined by linearization of model. 

 

 

Tabela 1. Tank’s characteristics. 
Tank 1 2 3 

Di [cm] 35 20 25 

Cv,i [m2.5/min] 0.0169 0.0183 0.02 

______________________________________________________________________________________________________ 
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______________________________________________________________________________________________________ 

 

The matrices A obtained by this method and from the 
dynamic model are equal when Ai,i = 0, that is, when we 
perform the linearization around a stationary point. For 
any desviation from steady-state, the first term of matrix A 
in Eq. (8) is not zero, because fss(q,u) ≠ 0 and it must take 
into a count or evaluate the new steady-state point.  

 

4. Mass and Energy Systems Coupled 

 
Figure 2. Schematic representantion of the CSTR. 

This methodology can also be applied toprocess 
involving mass and energy balances. For this, we used as 
an example the Van de Vusse reaction (Trierweiler, 1997), 

where cyclopentenol (B) is produced from 
cyclopentadiene (A) and the by-products cyclopentanediol 
(C) and dicyclopentadiene (D) are produced in unwanted 
side and consecutive reations, 
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is carried out in a CSTR. Figure (2) shows the reactor 
schematically. 

Under the assumption of constant density the steady-
state model can be described by the following equations 
that are derived from mass and energy balances for the 
reactor and the cooling jacket: 
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where Q is the term referring to energy rate generated by 
the raction: 
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The raction rate (r1, r2 and r3) and the specific 
reaction rate are assumed to depend on the temperature via 
Arrhenius equation 
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The state variables of this problem are CA, CB, T, Tk, 
VR, respectively, and the mass and energy holdup is given 
by as described in Section 2.1. 
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In this case, the holdup matrix, Eq. (24) is not a 
diagonal matrix, but a matrix with elements outside the 
main diagonal. This occurs due to combination of state 
variables in mass and energy holdup. According to Section 
3 we can obtain the linearized model such as described by 
Eqs. (8) and (9). The results of linearized model obtained 
by this methodology were compared to linearized model 
from dynamic model according to Trierweiler (1997). 
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The reactor design was developed with the set of 
paraters showed in Table (2) and (3): 

Table 2. Chemical kinetic parameters for the Arrehnius equation. 

Reaction Collision 
factor kj,0 

Unit of 
kj,0 

Activation 
Energie Ei 

Reaction 
Enthalpy 

r1=k1(T)CA 1.287x1012 1/h -9758.3 K 4.2 kJ/mol 

r2=k2(T)CB 1.287x1012 1/h -9758.3 K -11.0 kJ/mol 

r3=k3(T)ܥ஺ଶ 9.043x1009 l/mol/h -8560 K -41.8 kJ/mol 
 

Table 3. Physico-chemical parameters and reactor dimensions. 
Parameter Symbol Value Unit 

Density ρ 0.9342 kg/l 

Heat capacity cp 3.01 kJ/kg/K 

Heat transfer coefficient Kw 4032 kJ/m2/h/K 

Surface of cooling water Ar 0.215 m2 

Coolant mass mk 5.0 kg 

Heat capacity of coolant cpk 2.0 kJ/kg/K 
 

The steady-state point was evaluated for the input 
variables: Fin = 141.9 l/h; CAin = 5.1 mol/l; Tin = 104.4 K; 
Qk = -1113.1 kJ/h. Therefore, the state variables at 
stationary points are: CA = 2.18 mol/l; CB = 1.09 mol/l;    T 
= 113.6 K; Tk = 112.3 K. The Figure (3) shows the 
linearized models by method (lines) and by model (circles) 
for concentration of (A) and (B). Both results are 
presented in deviation variables form (ΔCA = CA - CAss and 
ΔCB = CB - CBss). The Figure (3a) represents the variation 
of concentrations from a unit step in CAin and in Figure 
(3b) the unit step was on Tin. 

In view of results we can say that the methodology 
described is valid and can be used to obtain the linearized 
models without obtaining the dynamic model. Only results 
from stationary and information about the process dynamic 
are necessary. This example shows that the methodology 
can be used in conjunction with mass and energy balance.  

 

______________________________________________________________________________________________________ 

 
Figure 3. Linearized model from the proposed method ( – ) and from model ( O ) with a unit step in CAin (a) and in Tin (b). 
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_________________________________________________________________________________________________________________ 

4. Conclusions 

This paper showed some possibilities of exploiting 
steady-state information in order to construct linearized 
dynamic models, as well as the necessary extra 
information to produce them. The analysis was restricted 
to lumped models, although, at least in the last situation, 
extensions seem to be straightforward. Through this 
methodology, we can model a dynamic system from an 
existing stationary model. The application of this 
methodology in obtaining dynamic and linearized models 
from stationary model is demostrated, as discussed in the 
examples presented. The examples were chosen to 
demonstrate that this methodology is valid in cases where 
there is integration between the states variables. Thus it 
has shown that the linearized model can be obtained by 
deriving the stationary model and, after that, including 
dynamic information of the process. Note also that the 
linearization of dynamic models can be obtained at an 
intermediate step of the methodology, without obtaining 
the dynamic model firstly. As demonstrated with the 
examples, the technique can be applied to different types 
of systems (reaction systems, heat exchangers, column 
distillation, and on) with or without mass and energy 
coupling. 

This proposed approach can also be extended and 
combined with different tools. For instance, it can be 
included as a comprehensive environment for process 
design including dynamic operability. In this situation, the 
optimal operating conditions can be calculated by static 
optimization and the dynamic behavior can be synthesized 
afterwards to mitigate the problems of right half plane 
(RHP) zeros, dynamic coupling, disturbance effects, 

variability of product quality, etc. In the case of more 
complex models, it can also be associated with bifurcation 
analysis tools to provide valuable information for design. 
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