
A Virtual Platform for Multiprocessor Real-Time
Embedded Systems

Elias T. Silva Jr2 Daniel Barcelos1 Flávio R. Wagner1 Carlos E. Pereira1

1PPGC – Instituto de Informática, UFRGS
Av. Bento Gonçalves, 9500 – Bloco IV

91501-970 Porto Alegre - Brazil
+55 51 3308-6161

{danielb, flavio}@inf.ufrgs.br
cpereira@ece.ufrgs.br

2Telecommunication and Computer Dept., CEFET-CE
Av. Treze de Maio, 2081

60040-531 Fortaleza - Brazil
+55 85 3307-3607

elias@cefetce.br

ABSTRACT
This paper presents a virtual platform for the development and
test of application software, low-level software, and hardware
components for an MPSoC (Multiprocessor System-on-Chip)
platform, where components are interconnected by a network-on-
chip (NoC). The environment is aimed at the development of
multithread real-time embedded applications in Java language.
Communication and task management services are provided that
are able to deal with real-time restrictions, following the RTSJ
standard. SystemC models are used to describe processors and
network connections that have equivalent descriptions in VHDL.
Performance and power / energy evaluation are made possible,
helping to shorten cycles for embedded system development,
integration, and test.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems – Real-time and embedded systems.

General Terms
Design, Performance, Experimentation.

Keywords
Embedded applications, Real-time systems, Energy efficiency,
Network on Chip

1. Introduction
Embedded and real-time systems can be found from
microcontrollers in coffee machines up to networked

processors in automotive and avionic control systems. This
market is growing strongly because of the increasing
number of application areas. As those systems grow in
complexity, it becomes more difficult for programmers and
architects to build, configure, and maintain them with
respect to correctness, resource optimization, and system
stability. In particular, real-time systems depend not only
on the logical results of computation, but also on the
timeliness of those results [1].

In the competitive market of embedded applications,
an important goal is the reduction of time-to-market,
demanding that teams for software development,
integration, and test obtain short development cycles,
increase product quality, and reduce costs. To go around
these requirements, designers need tools that mitigate
existing limitations of the software development process,
such as the availability of the physical hardware.

On the other hand, over the last years, Java gained
popularity as a suitable programming language for
embedded and real-time systems development. The
definition of the Real-Time Specification for Java (RTSJ)
standard [2] is the most prominent example of such
popularization in the real-time domain. RTSJ defines an
Application Programming Interface (API) for the Java
language that allows the creation, execution, and
management of real-time threads.

Programming model and task control management will
be major challenges for MPSoC (multiprocessor systems-
on-chip) designs in the coming years. The work presented
in this paper is part of an effort to enlarge design space
exploration when developing distributed applications in an
MPSoC using a homogeneous ISA (Instruction Set
Architecture) and abstracting both interfaces between HW-
SW component implementations and network
communication. A virtual platform for the development
and validation of real-time embedded MPSoCs, called
SIMPLE (Simple Multiprocessor Platform Environment),
is discussed. Processing elements (PEs) are Java processors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

JTRES'08, September 24-26, 2008, Santa Clara, California, USA.
Copyright 2008 ACM 978-1-60558-337-2/08/9 $5.00

31

and implement RTSJ, thus supporting multithread and real-
time applications. The communication infrastructure is
based on a packet switching network-on-chip (NoC) that
uses a mesh topology to connect PEs.

This work combines simple processors in an MPSoC
under a layer of software facilities that provides real-time
scheduling and communication services. Moreover,
hardware and software integration is made easy by a high
abstraction level interface. The platform can be used to
evaluate software and hardware behavior and performance
as well as power and energy consumption.

A case study in automatic control was chosen to
demonstrate communication and synchronization
functionalities.

This work is part of a larger project aiming at
providing a flexible and reusable middleware to raise the
abstraction level for the development of real-time
embedded applications upon an MPSoC platform. Object-
oriented programming facilitates the reuse of software
components, making possible the exploration of classical
features of distributed systems, such as remote method
invocation and task migration. This paper focuses on the
structure layer of the middleware, which provides services
for task management and communication.

The remaining of this paper is organized as follows.
Section 2 discusses related work. Section 3 gives a brief
overview of the hardware platform, including processor
and network connection. Section 4 describes the software
platform provided to application developers, with task
management and communication services. Section 5 details
the simulator and the resources it offers to the development
team. Section 6 shows, as example of utilization of the
virtual platform, the development of a control application.
Experimental results and also implementation
characteristics are presented. Finally, Section 7 draws main
conclusions and discusses future work.

2. Related work
Platform-based design is a reality, as can be seen for
instance in the OMAP platform from Texas Instruments [3]
or Nexperia from NXP [4]. Several companies are
introducing their own development frameworks. The tools
allow designers to evaluate different platform
configurations, making a fine tuning. For example, the
designer can turn on/off the use of caches, special
instructions (e.g. DSP instructions), co-processors, and
reconfigurable areas.

CoWare recently introduced its Virtual Platform tool
[5]. With that, development teams can rapidly deliver
platform simulators based on already developed component

models. New models can be built and added to the
component library too.

In the academic domain, Saint-Jean et al. present a
framework [6] to develop both hardware and software for
an MPSoC platform. In that work, the hardware
architecture is based on RISC processors, interconnected
by a network-on-chip, where each core has it own memory.

This work, in turn, uses real-time Java processors as
main processing elements. This allows system software
designers to program directly in the Java language, using
high abstraction level APIs. The real-time guarantees of the
system make it a good solution for the development of hard
and software real-time applications. Moreover, energy
evaluation is possible at the instruction level, for the
processor, and at the architectural-level for the network.

3. Hardware Platform

3.1 Configurable processor
For this work a configurable Java processor [7] is used,
which implements an execution engine for Java in
hardware, through a stack machine that is a subset of the
specification of the Java Virtual Machine (JVM). There are
different processor organizations, such as multi-cycle,
pipeline, and VLIW [8]. For the multi-cycle processor,
used for the experiments in this work, all instructions are
executed in 3, 4, 7, or 14 cycles, because the
microcontroller is cacheless and several instructions are
memory bound.

The initially proposed instruction set was expanded [9]
to include the bytecodes putfield, getfield,
invokevirtual, invokespecial, and
instanceof, opening space for non-static objects. In
order to support multithread applications, two pseudo-
bytecodes, save_ctx and restore_ctx, were created
to provide context switching [10].

A compiler that follows the JVM specification is used.
An environment [7] generates customized code for both the
application software and the processor and allows the
synthesis of an ASIP (application-specific integrated
processor). The code produced includes the VHDL
description of the customized processor core (whose ISA
contains only instructions used by the application software)
and ROM (programs) and RAM (variables) memories and
can be used to simulate and/or synthesize the target
application. All unreferenced methods and attributes are
eliminated, as well as the unused JVM instructions, thus
automatically customizing the final hardware and software
code.

32

3.2 Communication infrastructure
The NoC SoCIN [11] is used to connect the processors.
SoCIN was proposed to be scalable and is based on a
flexible router, called RaSoC.

Communication is based on message passing.
Messages are sent in packets, which are composed by flits.
A flit (flow control unit) is the smaller unit over which the
flow control is performed. A flit also coincides with the
physical channel word (or phit – physical unit).

SoCIN utilizes wormhole packet switching, such that it
uses small buffers in the routers, thus saving size and
energy. The routing is XY, which is deadlock free. Each
router has 5 bi-directional ports with input buffer size of 4
phits. The phit size is 4 bytes.

The description provides parameters to perform fine
adjustment in the NoC properties, aiming at matching
application requirements as well as possible. The cost-
performance trade-offs can be explored by changing NoC
parameters.

The NoC SoCIN can support other devices connected
to the routers, besides processors. In spite of that, this work
considered only processors connected trough the network,
using homogeneous ISA (Instruction Set Architecture) and
private memory. Other research efforts have been
conducted to use heterogeneous processors and shared
memory, but they will not be explored in this paper.

An ongoing work is implementing priorities in the
SoCIN routers. For simplicity reasons the original routers
did not include any QoS resource.

4. Software Platform

4.1 Multithread real-time development
The Real-Time Specification for Java (RTSJ) [2] defines a
set of interfaces and behavioral specifications to allow the
development of real-time applications using the Java
programming language. Among its major features are:
scheduling properties suitable for real-time applications
with provisions for periodic and sporadic tasks and support
for deadlines and CPU time budgets.

RTSJ allows the use of schedulable objects, which are
instances of classes that implement the so called
Schedulable interface, such as the RealtimeThread. It
also specifies a set of classes to store parameters that
represent a particular resource demand from one or more
schedulable objects. For example, the
ReleaseParameters class (superclass from
AperiodicParameters and PeriodicParameters)
includes several useful parameters for the specification of
real-time requirements, such as cyclic activation and

deadlines. Moreover, it supports the expression of the
following elements: absolute and relative time values,
timers, periodic and aperiodic tasks, and scheduling
policies.

Along with the Java processor there is an API [12] that
supports the specification of concurrent tasks and allows
the specification of timing constraints, implementing a
subset of the RTSJ standard. The implementations of some
of the API classes have slight differences in comparison to
the RTSJ standard. This is due to constraints in the adopted
platform and also for better clarity. An example of such
differences appears in the RealtimeThread class. It uses
two abstract methods that have to be implemented in the
derived subclasses: mainTask() and exceptionTask().
They represent, respectively, the task body – equivalent to
the run() method from a normal Java thread – and the
exception handling code required to deal with deadline
misses.

The scheduling structure consists of an additional
process that is in charge of allocating the CPU for those
application-processes that are ready to execute, exactly like
in an RTOS. Application developers should choose the
most suitable scheduling algorithm at design time.
Therefore, a customized scheduler is synthesized with the
whole application into the embedded target system.

The RTSJ-API supports both static and dynamic
scheduling algorithms. More specifically, it provides a
dispatching mechanism that is able to work with any fixed-
priority algorithm, like RM (Rate Monotonic) and Deadline
Monotonic (DM) [13]. Additionally it includes support for
dynamic scheduling with the EDF (Earliest Deadline First)
algorithm [14]. Currently, four scheduling algorithms are
available: EDF, RM, Fixed Priority (software and hardware
implementations), and Time-Triggered.

The EDF scheduler, provided by RTSJ-API, was
extended to include DVS (Dynamic Voltage Scheduling)
algorithms, such as cycle-conserving [15]. This opens
space for energy explorations at development time. From
the designer’s point-of-view it is enough to use a scheduler
that is able to manage DVS resources. The scheduler can
manage the local processor frequency to the lowest value
able to match the deadlines of the threads added to the
scheduler.

4.2 Communication API
The communication API (COM-API) encapsulates
transport and datalink layers, providing an interface to the
application layer [16].

The communication system was proposed to provide
message exchange among applications running in different
processors. The API allows applications to establish a
communication channel through the network, which can be

33

used to send and receive messages. The service allows the
assignment of different priorities to messages and can run
in a multithread environment. From the application point-
of-view, the system is able to open and close connections
as well as to send and receive messages, being accessed by
different threads simultaneously.

Figure 1 shows the overall platform architecture,
which includes the COM-API. The COM-API works
together with the RTSJ-API, using processor features to
provide communication via a network interface. RTSJ-API
provides schedulable objects (for real-time threads) and
relative time objects.

Figure 1: General Platform Architecture

5. Implementation
A synthesizable RTL model exists for each platform
component, in order to guarantee a path to silicon for any
system designed with the framework. However, this paper
emphasizes a SystemC virtual platform, which can be used
to evaluate application software and low-level software and
to add hardware components to the platform as well.

5.1 Simulator
The simulator has been developed in SystemC. The tool
can instantiate an arbitrary number of processors over the
NoC. In this work, processors are supposed to be
homogeneous, even though the simulator supports
heterogeneous cores. The simulator also supports different
description levels – the processor timing behavior was
described at register-transfer level (RTL), and for the NoC
a transaction level modeling (TLM) was used.

New hardware components can be attached to the
system. These modules can be connected to a network
router, composing a new tile of the network, or to the
processor bus [17], where the local memory and the
resource devices are arranged. The devices currently
available are timers, I/O ports, a real-time clock, and the
network interface. Transactors are used to connect

components from different description levels. Transactors
are timeless interfaces responsible for the translation of the
components’ inputs and outputs.

A UART module was also implemented, which allows
the processor to communicate with a desktop computer, for
example. The simulator uses a virtual COM port, so that
the simulation behavior is exactly the same of the
prototyped platform and it is possible to monitor the
processors’ messages using softwares like minicom or
HyperTerminal.

Another simulator feature is power and energy
evaluation. The energy consumption behavior is
independent from the timing one and can be modeled at
different abstraction levels too. For the processors, energy
estimation was extracted by the Synopsys Power Compiler
tool based on the power consumption data of the
instruction-set. With that, it is possible to have an
instruction-accurate energy model instead of a cycle-
accurate one as in the timing description. This allows faster
simulations, without a significant loss of precision.

The dynamic power consumption of the network
routers and links is calculated with help of the Orion
library [18] (the same used in the Xpipes NoC [19]). It
implements an energy estimator for the arbiter, the
crossbar, and the buffers inside the routers. Buffers are
usually responsible for 90% of the energy consumption in
the router. The consumption of the links is also taken in
account. Regarding them, the energy spent by a data phit to
be transferred between two routers is defined similarly to
[20].

All energy estimations were tuned to correspond to
consumption results of devices integrated in the TSMC
0.18 µm technology [21].

6. Case study
To illustrate the platform features, a crane controller has
been implemented. A high level description of the crane as
well as its control system are given in [22]. The main
component of the system, a controller implemented using a
floating point package, was split in three threads. Each
thread performs a matrix multiplication and other
operations. Since it is a control application, there is not too
much parallelism to explore. However, the example is
useful to explore synchronism in the communication
among the threads. The correct behavior of this real-time
application emerges from a right computation result in the
correct time. So, the activation time of the threads and
communication latencies should be kept under control.

Figure 2 shows the threads that implement the control
algorithm and the communication as well. They are
periodic threads and should exchange messages at each

34

execution cycle. Thread scheduling and message passing
are managed by services implemented in Java (RTSJ-API
& COM-API), and the application is described in Java too.
For exploration purposes, each thread runs in a different
processor.

There are two kinds of data dependencies in this
application. The first one occurs for the same execution
period, which implies that no parallelism is allowed. This is
the case in the communication between Mul_Bx and the
two other threads. The other data dependency occurs when
a thread uses a data calculated by other ones at the prior
execution period. This is the way how Mul_Y depends on
Mul_Aq, such that a concurrent execution is possible.

Mul_Aq Mul_Bx

Mul_Y

Inputs

Output

Figure 2: Task set association for a crane controller

Figure 3 shows the execution time-line for the system.
In the left side it is possible to see which processor (PE) is
running the thread indicated as a box, over the t-axis. The
time interval filled up includes the costs to schedule the
thread and to receive and send messages.

Figure 3: Time-line for crane threads

For this experiment the processors run at 100MHz, and
an EDF scheduler was used without DVS. The COM-API
uses messages of 500 bytes and packets of 49 bytes. Table
1 shows the execution time for the threads and the system
overhead due to the task scheduler and to the
communication service. Scheduler overhead depends on
the number of threads running, and communication costs
depend on the size of the messages. These numbers can be
used in the design to evaluate the impact of communication

in the total latency. In this particular case, the time spent in
the computation of the threads is not too much larger than
the time in communication because an aggressive thread-
granularity was forced.

Table 2 shows latency values to send and receive
messages. Those values do not take in account the latency
in the NoC, just the processing time in the PE that sends
and/or receives a message. The latencies are high because
the protocol stack is implemented in software. This
throughput can be optimized using a hardware-
implemented communication service [23] or a processor
with higher performance [8].

Table 1: Execution times
 Scheduler Thread Communication

PE 0 151 µs 938 µs 148 µs
PE 1 150 µs 519 µs 228 µs
PE 2 145 µs 244 µs 205 µs

Table 2: Latencies to send and receive a message
Message
Length
(bytes)

Sending (µs) Receiving (µs)

01 48 37
02 51 46
03 53 52
04 56 59
10 109 126
15 160 187
20 174 226
50 252 422

490 3121 3887

To evaluate the memory consumption of the provided
services, Table 3 shows code memory (ROM) and
variables memory (RAM) sizes. The RTSJ column gives
the cost to manage real-time threads and includes classes
like scheduler, time representation, event handling, and so
on. The communication column brings two different cases.
The Pack49-Msg500 column shows data from the case
study presented here, which uses more RAM space than a
case where the packet size is reduced to 7 bytes and
messages to 20 bytes. In both cases, the code size does not
change.

To evaluate energy issues the application was run for
50 ms. Only dynamic energy was considered in this
experiment because static energy is not relevant for the
given technology (0.18 µm).

35

Table 3: Memory usage
Communication

 RTSJ
Pack7-Msg20 Pack49-Msg500

ROM 4491 4493 4493
RAM 177 913 6345

Table 4 shows the total energy consumption in each
core. It reflects the energy consumed in the processor for
all the instructions executed from start until the simulation
stops (50 ms). Figure 4 shows the PEs connected in the
routers. The energy consumption in the routers and in the
links are shown. The energy below the routers indicates the
total value for the router, including arbiter, crossbar, and
the buffers, although the simulator provides each value
separately.

The energy consumption in the network is not
significant, if compared to the energy in the processors,
because the application does not produce a large traffic.

Table 4: Energy consumption for each core
 PE 0 PE 1 PE 2

Total energy (µJ) 325.64 287.27 267.45

Figure 4: Energy consumption for the NoC

The simulator allows the extraction of energy values

for each method in the Java code. Table 5 shows the energy
consumed in the processor exclusively when running
communication processes. These numbers can be used in
the design to evaluate the impact of communication in the
total energy cost, as seen in Table 4.

Table 5: Energy consumption in communication
 PE 0 PE 1 PE 2

Send Msg (µJ) 0.749 0.754 0.419

Receive Msg (µJ) 1.140 0.940 0.894

Figure 5 shows the energy consumption in the
processing element PE 0 along the first nine milliseconds
of execution. The task Mul_Aq starts to be scheduled at 3
ms. The system initialization occurs from 0 to 1 ms. The
shadowed regions represent the task execution time. Since
the task computation takes approximately 1 ms and its
period is equal to 2 ms, the PE remains idle for another 1
ms between two task schedulings.

The curve inclination represents the power dissipated
in the core. Note that during task computation more energy
is spent in the core, with regard to the period where the PE
is idle. The energy spent in each task execution is
approximately 8 µJ, while when the processor is idle the
energy spent in almost the same interval is about 3 µJ.

0 1 2 7 8 9 10
0

10

20

30

40

50

60

Tas
k S

ch
ed

uled

Tas
k Y

iel
ded

Tas
k S

ch
ed

uled

Tas
k Y

iel
ded

t [ms]

En
er

gy
 [u

J]

Figure 5: Energy consumption over time

The simulation time for this case, with three cores

running at 100 MHz, was 16.8 seconds for each 1 ms of
execution in the real system, when running in a Pentium4
2.67GHz with 1Gbyte of RAM.

7. Conclusions and future work
This paper described a framework to accelerate
development and test of application software, low-level
software, and hardware components for an MPSoC
platform. The environment offers support for multithread
real-time embedded object-oriented applications and allows
design space exploration, evaluating performance and
power costs of the application under development.

This platform emulates the real hardware and can help
to shorten cycles for embedded system development,
integration, and test.

36

A real-time application is used to demonstrate
capabilities and results on latencies and energy
consumption.

This work is the structure layer of a larger project that
provides a flexible and reusable middleware to raise the
abstraction level to develop real-time applications under an
MPSoC (Multiprocessor System-on-Chip) platform.

Acknowledgements
The work in this paper is partially sponsored by

Brazilian funding agency CNPq.

References
[1] Stankovic, J.A. “Misconceptions about Real-Time

Computing: A Serious Problem for Next-Generation
Systems”. IEEE Computer, Oct. 1988, v.21, n.10, p.10-19.

[2] Bollella, G. et al. “The Real-Time Specification for Java”,
http://www.rtj.org/rtsj-V1.0.pdf, 2001.

[3] OMAP Technology – Texas Instruments,
http://www.omap.com/

[4] NXP Semiconductors, www.nxp.com/
[5] CoWare corp., http://www.coware.com/
[6] Saint-Jean, N. et al. “HS-Scale: a Hardware-Software

Scalable MP-SOC Architecture for Embedded Systems”, in
Proceedings of VLSI 2007. IEEE Computer Society, pp. 21-
28, 2007.

[7] Ito, S.A., Carro, L., and Jacobi, R.P. “Making Java Work for
Microcontroller Applications”, IEEE Design & Test of
Computers, v.18, n.5, p. 100-110, Sep/Oct-2001.

[8] Beck Filho, A.C.S. and Carro, L. “Low Power Java
Processor for Embedded Applications”, In: IFIP VLSI-
SoC’2003, Darmstadt, 2003, pp. 239-244.

[9] Wehrmeister, M.A., et al. “Optimizing the Generation of
Object-Oriented Real-Time Embedded Applications Based
on the Real-Time Specification for Java”, in Proceedings of
DATE 2006, IEEE Computer Society. Munich, Germany,
pp. 806-811, 2006.

[10] Rosa Jr. L.S., et al. “Scheduling Policy Costs on a Java
Microcontroller”, in Proceedings of the JTRES, 2003, pp.
520-533.

[11] Zeferino, C.A.; Susin, A.A. “SoCIN: A Parametric and
Scalable Network-on-chip”, in Proceedings of SBCCI 2003,
IEEE Computer Society. p. 169-174, 2003.

[12] Wehrmeister, M.A., Becker, L.B., Pereira, C.E. “Optimizing
Real-Time Embedded Systems Development Using a RTSJ-
based API”, in Proceedings of JTRES 2004. Springer LNCS,
pp. 292-302, 2004.

[13] Leung, J.Y.T. and J. Whitehead. “On the Complexity of
Fixed-Priority Scheduling of Periodic, Real-Time Tasks”.
Performance Evaluation, v.2, n.4, p. 237-250, 1992.

[14] Liu, C.L. and Layand, J.W. “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”.
Journal of the Association for Computer Machinery, v. 20,
n.1, p.46-61, 1973.

[15] Pillai, P. and Shin, K.G. “Real-Time Dynamic Voltage
Scaling for Low-Power Embedded Operating Systems”, in
Proceedings of 18th ACM Symp. on Operating Systems
Principles 2001, pp. 89-102, 2001.

[16] Silva Jr., E.T. et al. “Java Framework for Distributed Real-
Time Embedded Systems”, in Proceedings of ISORC 2006,
Gyeongju, Korea, pp. 85-92, 2006.

[17] Silva Jr, E.T.; Andrews, D.; Pereira, C.E.; F.R. Wagner. “An
Infrastructure for Hardware-Software Co-design of
Embedded Real-Time Java Applications”, in Proceedings of
ISORC 2008. IEEE Computer Society. Orlando, USA, pp.
273-280, 2008.

[18] Wang, H. “Orion: A Power-performance Simulator for
Interconnection Networks”, in Proceedings of ACM
MICRO. Istanbul, Turkey, pp. 294-305, 2002.

[19] Jalabert, A. et al. “XpipesCompiler: A Tool for Instantiating
Application Specific Networks on Chip”, in Proceedings of
DATE 2004. IEEE Computer Society. Paris, France, pp.
884-889, 2004.

[20] Ye, T.; DeMicheli, G.; Benini, L. “Analysis of Power
Consumption on Switch Fabrics in Network Routers” , in
Proceedings of DAC 2002, pp 524-529, 2002.

[21] Taiwan Semiconductor Manufacturer Company:
http://www.tsmc.com.tw.

[22] Moser, E. and Nebel; W. “Case Study: System Model of
Crane and Embedded Control”. ”, in Proceedings of DATE
1999. IEEE Computer Society. Munich, Germany, pp 721-
723, 1999.

[23] Silva Jr, E.T.; Wagner, F.R.; Freitas, E.P.; Kunz, L. and
Pereira, C.E. “Hardware Support in a Middleware for
Distributed and Real-Time Embedded Applications”. Journal
of Integrated Circuits and Systems, v. 2, n.1, p. 38-44, Mar.
2007.

37

