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ABSTRACT 
This paper presents a virtual platform for the development and 
test of application software, low-level software, and hardware 
components for an MPSoC (Multiprocessor System-on-Chip) 
platform, where components are interconnected by a network-on-
chip (NoC). The environment is aimed at the development of 
multithread real-time embedded applications in Java language. 
Communication and task management services are provided that 
are able to deal with real-time restrictions, following the RTSJ 
standard. SystemC models are used to describe processors and 
network connections that have equivalent descriptions in VHDL. 
Performance and power / energy evaluation are made possible, 
helping to shorten cycles for embedded system development, 
integration, and test. 

 

Categories and Subject Descriptors 
C.3 [Computer Systems Organization]: Special-Purpose and 
Application-Based Systems – Real-time and embedded systems. 

General Terms 
Design, Performance, Experimentation. 

Keywords 
Embedded applications, Real-time systems, Energy efficiency, 
Network on Chip 

 

1. Introduction 
Embedded and real-time systems can be found from 
microcontrollers in coffee machines up to networked 

processors in automotive and avionic control systems. This 
market is growing strongly because of the increasing 
number of application areas. As those systems grow in 
complexity, it becomes more difficult for programmers and 
architects to build, configure, and maintain them with 
respect to correctness, resource optimization, and system 
stability. In particular, real-time systems depend not only 
on the logical results of computation, but also on the 
timeliness of those results [1].  

In the competitive market of embedded applications, 
an important goal is the reduction of time-to-market, 
demanding that teams for software development, 
integration, and test obtain short development cycles, 
increase product quality, and reduce costs. To go around 
these requirements, designers need tools that mitigate 
existing limitations of the software development process, 
such as the availability of the physical hardware. 

On the other hand, over the last years, Java gained 
popularity as a suitable programming language for 
embedded and real-time systems development. The 
definition of the Real-Time Specification for Java (RTSJ) 
standard [2] is the most prominent example of such 
popularization in the real-time domain. RTSJ defines an 
Application Programming Interface (API) for the Java 
language that allows the creation, execution, and 
management of real-time threads. 

Programming model and task control management will 
be major challenges for MPSoC (multiprocessor systems-
on-chip) designs in the coming years. The work presented 
in this paper is part of an effort to enlarge design space 
exploration when developing distributed applications in an 
MPSoC using a homogeneous ISA (Instruction Set 
Architecture) and abstracting both interfaces between HW-
SW component implementations and network 
communication. A virtual platform for the development 
and validation of real-time embedded MPSoCs, called 
SIMPLE (Simple Multiprocessor Platform Environment), 
is discussed. Processing elements (PEs) are Java processors 

 
 
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

JTRES'08, September 24-26, 2008, Santa Clara, California, USA. 
Copyright 2008 ACM 978-1-60558-337-2/08/9 .... $5.00 

31



and implement RTSJ, thus supporting multithread and real-
time applications. The communication infrastructure is 
based on a packet switching network-on-chip (NoC) that 
uses a mesh topology to connect PEs. 

This work combines simple processors in an MPSoC 
under a layer of software facilities that provides real-time 
scheduling and communication services. Moreover, 
hardware and software integration is made easy by a high 
abstraction level interface. The platform can be used to 
evaluate software and hardware behavior and performance 
as well as power and energy consumption. 

A case study in automatic control was chosen to 
demonstrate communication and synchronization 
functionalities. 

This work is part of a larger project aiming at 
providing a flexible and reusable middleware to raise the 
abstraction level for the development of real-time 
embedded applications upon an MPSoC platform. Object-
oriented programming facilitates the reuse of software 
components, making possible the exploration of classical 
features of distributed systems, such as remote method 
invocation and task migration. This paper focuses on the 
structure layer of the middleware, which provides services 
for task management and communication. 

The remaining of this paper is organized as follows. 
Section 2 discusses related work. Section 3 gives a brief 
overview of the hardware platform, including processor 
and network connection. Section 4 describes the software 
platform provided to application developers, with task 
management and communication services. Section 5 details 
the simulator and the resources it offers to the development 
team. Section 6 shows, as example of utilization of the 
virtual platform, the development of a control application. 
Experimental results and also implementation 
characteristics are presented. Finally, Section 7 draws main 
conclusions and discusses future work. 

 

2. Related work 
Platform-based design is a reality, as can be seen for 
instance in the OMAP platform from Texas Instruments [3] 
or Nexperia from NXP [4]. Several companies are 
introducing their own development frameworks. The tools 
allow designers to evaluate different platform 
configurations, making a fine tuning. For example, the 
designer can turn on/off the use of caches, special 
instructions (e.g. DSP instructions), co-processors, and 
reconfigurable areas. 

CoWare recently introduced its Virtual Platform tool 
[5]. With that, development teams can rapidly deliver 
platform simulators based on already developed component 

models. New models can be built and added to the 
component library too. 

In the academic domain, Saint-Jean et al. present a 
framework [6] to develop both hardware and software for 
an MPSoC platform. In that work, the hardware 
architecture is based on RISC processors, interconnected 
by a network-on-chip, where each core has it own memory. 

This work, in turn, uses real-time Java processors as 
main processing elements. This allows system software 
designers to program directly in the Java language, using 
high abstraction level APIs. The real-time guarantees of the 
system make it a good solution for the development of hard 
and software real-time applications. Moreover, energy 
evaluation is possible at the instruction level, for the 
processor, and at the architectural-level for the network. 

 

3. Hardware Platform 

3.1 Configurable processor  
For this work a configurable Java processor [7] is used, 
which implements an execution engine for Java in 
hardware, through a stack machine that is a subset of the 
specification of the Java Virtual Machine (JVM). There are 
different processor organizations, such as multi-cycle, 
pipeline, and VLIW [8]. For the multi-cycle processor, 
used for the experiments in this work, all instructions are 
executed in 3, 4, 7, or 14 cycles, because the 
microcontroller is cacheless and several instructions are 
memory bound. 

The initially proposed instruction set was expanded [9] 
to include the bytecodes putfield, getfield, 
invokevirtual, invokespecial, and 
instanceof, opening space for non-static objects. In 
order to support multithread applications, two pseudo-
bytecodes, save_ctx and restore_ctx, were created 
to provide context switching [10]. 

A compiler that follows the JVM specification is used. 
An environment [7] generates customized code for both the 
application software and the processor and allows the 
synthesis of an ASIP (application-specific integrated 
processor). The code produced includes the VHDL 
description of the customized processor core (whose ISA 
contains only instructions used by the application software) 
and ROM (programs) and RAM (variables) memories and 
can be used to simulate and/or synthesize the target 
application. All unreferenced methods and attributes are 
eliminated, as well as the unused JVM instructions, thus 
automatically customizing the final hardware and software 
code. 
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3.2 Communication infrastructure 
The NoC SoCIN [11] is used to connect the processors. 
SoCIN was proposed to be scalable and is based on a 
flexible router, called RaSoC. 

Communication is based on message passing. 
Messages are sent in packets, which are composed by flits. 
A flit (flow control unit) is the smaller unit over which the 
flow control is performed. A flit also coincides with the 
physical channel word (or phit – physical unit). 

SoCIN utilizes wormhole packet switching, such that it 
uses small buffers in the routers, thus saving size and 
energy. The routing is XY, which is deadlock free. Each 
router has 5 bi-directional ports with input buffer size of 4 
phits. The phit size is 4 bytes. 

The description provides parameters to perform fine 
adjustment in the NoC properties, aiming at matching 
application requirements as well as possible. The cost-
performance trade-offs can be explored by changing NoC 
parameters. 

The NoC SoCIN can support other devices connected 
to the routers, besides processors. In spite of that, this work 
considered only processors connected trough the network, 
using homogeneous ISA (Instruction Set Architecture) and 
private memory. Other research efforts have been 
conducted to use heterogeneous processors and shared 
memory, but they will not be explored in this paper. 

An ongoing work is implementing priorities in the 
SoCIN routers. For simplicity reasons the original routers 
did not include any QoS resource. 

 

4. Software Platform 

4.1 Multithread real-time development 
The Real-Time Specification for Java (RTSJ) [2] defines a 
set of interfaces and behavioral specifications to allow the 
development of real-time applications using the Java 
programming language. Among its major features are: 
scheduling properties suitable for real-time applications 
with provisions for periodic and sporadic tasks and support 
for deadlines and CPU time budgets. 

RTSJ allows the use of schedulable objects, which are 
instances of classes that implement the so called 
Schedulable interface, such as the RealtimeThread. It 
also specifies a set of classes to store parameters that 
represent a particular resource demand from one or more 
schedulable objects. For example, the 
ReleaseParameters class (superclass from 
AperiodicParameters and PeriodicParameters) 
includes several useful parameters for the specification of 
real-time requirements, such as cyclic activation and 

deadlines. Moreover, it supports the expression of the 
following elements: absolute and relative time values, 
timers, periodic and aperiodic tasks, and scheduling 
policies. 

Along with the Java processor there is an API [12] that 
supports the specification of concurrent tasks and allows 
the specification of timing constraints, implementing a 
subset of the RTSJ standard. The implementations of some 
of the API classes have slight differences in comparison to 
the RTSJ standard. This is due to constraints in the adopted 
platform and also for better clarity. An example of such 
differences appears in the RealtimeThread class. It uses 
two abstract methods that have to be implemented in the 
derived subclasses: mainTask() and exceptionTask(). 
They represent, respectively, the task body – equivalent to 
the run() method from a normal Java thread – and the 
exception handling code required to deal with deadline 
misses. 

The scheduling structure consists of an additional 
process that is in charge of allocating the CPU for those 
application-processes that are ready to execute, exactly like 
in an RTOS. Application developers should choose the 
most suitable scheduling algorithm at design time. 
Therefore, a customized scheduler is synthesized with the 
whole application into the embedded target system. 

The RTSJ-API supports both static and dynamic 
scheduling algorithms. More specifically, it provides a 
dispatching mechanism that is able to work with any fixed-
priority algorithm, like RM (Rate Monotonic) and Deadline 
Monotonic (DM) [13]. Additionally it includes support for 
dynamic scheduling with the EDF (Earliest Deadline First) 
algorithm [14]. Currently, four scheduling algorithms are 
available: EDF, RM, Fixed Priority (software and hardware 
implementations), and Time-Triggered. 

The EDF scheduler, provided by RTSJ-API, was 
extended to include DVS (Dynamic Voltage Scheduling) 
algorithms, such as cycle-conserving [15]. This opens 
space for energy explorations at development time. From 
the designer’s point-of-view it is enough to use a scheduler 
that is able to manage DVS resources. The scheduler can 
manage the local processor frequency to the lowest value 
able to match the deadlines of the threads added to the 
scheduler. 

4.2 Communication API 
The communication API (COM-API) encapsulates 
transport and datalink layers, providing an interface to the 
application layer [16]. 

The communication system was proposed to provide 
message exchange among applications running in different 
processors. The API allows applications to establish a 
communication channel through the network, which can be 
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used to send and receive messages. The service allows the 
assignment of different priorities to messages and can run 
in a multithread environment. From the application point-
of-view, the system is able to open and close connections 
as well as to send and receive messages, being accessed by 
different threads simultaneously. 

Figure 1 shows the overall platform architecture, 
which includes the COM-API. The COM-API works 
together with the RTSJ-API, using processor features to 
provide communication via a network interface. RTSJ-API 
provides schedulable objects (for real-time threads) and 
relative time objects. 

 

 

Figure 1: General Platform Architecture 
 

5. Implementation 
A synthesizable RTL model exists for each platform 
component, in order to guarantee a path to silicon for any 
system designed with the framework. However, this paper 
emphasizes a SystemC virtual platform, which can be used 
to evaluate application software and low-level software and 
to add hardware components to the platform as well. 

5.1 Simulator 
The simulator has been developed in SystemC. The tool 
can instantiate an arbitrary number of processors over the 
NoC. In this work, processors are supposed to be 
homogeneous, even though the simulator supports 
heterogeneous cores. The simulator also supports different 
description levels – the processor timing behavior was 
described at register-transfer level (RTL), and for the NoC 
a transaction level modeling (TLM) was used. 

New hardware components can be attached to the 
system. These modules can be connected to a network 
router, composing a new tile of the network, or to the 
processor bus [17], where the local memory and the 
resource devices are arranged. The devices currently 
available are timers, I/O ports, a real-time clock, and the 
network interface. Transactors are used to connect 

components from different description levels. Transactors 
are timeless interfaces responsible for the translation of the 
components’ inputs and outputs. 

A UART module was also implemented, which allows 
the processor to communicate with a desktop computer, for 
example. The simulator uses a virtual COM port, so that 
the simulation behavior is exactly the same of the 
prototyped platform and it is possible to monitor the 
processors’ messages using softwares like minicom or 
HyperTerminal. 

Another simulator feature is power and energy 
evaluation. The energy consumption behavior is 
independent from the timing one and can be modeled at 
different abstraction levels too. For the processors, energy 
estimation was extracted by the Synopsys Power Compiler 
tool based on the power consumption data of the 
instruction-set. With that, it is possible to have an 
instruction-accurate energy model instead of a cycle-
accurate one as in the timing description. This allows faster 
simulations, without a significant loss of precision. 

The dynamic power consumption of the network 
routers and links is calculated with help of the Orion 
library [18] (the same used in the Xpipes NoC [19]). It 
implements an energy estimator for the arbiter, the 
crossbar, and the buffers inside the routers. Buffers are 
usually responsible for 90% of the energy consumption in 
the router. The consumption of the links is also taken in 
account. Regarding them, the energy spent by a data phit to 
be transferred between two routers is defined similarly to 
[20].  

All energy estimations were tuned to correspond to 
consumption results of devices integrated in the TSMC 
0.18 µm technology [21]. 

 

6. Case study 
To illustrate the platform features, a crane controller has 
been implemented. A high level description of the crane as 
well as its control system are given in [22]. The main 
component of the system, a controller implemented using a 
floating point package, was split in three threads. Each 
thread performs a matrix multiplication and other 
operations. Since it is a control application, there is not too 
much parallelism to explore. However, the example is 
useful to explore synchronism in the communication 
among the threads. The correct behavior of this real-time 
application emerges from a right computation result in the 
correct time. So, the activation time of the threads and 
communication latencies should be kept under control. 

Figure 2 shows the threads that implement the control 
algorithm and the communication as well. They are 
periodic threads and should exchange messages at each 

34



execution cycle. Thread scheduling and message passing 
are managed by services implemented in Java (RTSJ-API 
& COM-API), and the application is described in Java too. 
For exploration purposes, each thread runs in a different 
processor. 

There are two kinds of data dependencies in this 
application. The first one occurs for the same execution 
period, which implies that no parallelism is allowed. This is 
the case in the communication between Mul_Bx and the 
two other threads. The other data dependency occurs when 
a thread uses a data calculated by other ones at the prior 
execution period. This is the way how Mul_Y depends on 
Mul_Aq, such that a concurrent execution is possible. 

 

Mul_Aq Mul_Bx

Mul_Y

Inputs

Output

 
Figure 2: Task set association for a crane controller 
 

Figure 3 shows the execution time-line for the system. 
In the left side it is possible to see which processor (PE) is 
running the thread indicated as a box, over the t-axis. The 
time interval filled up includes the costs to schedule the 
thread and to receive and send messages. 

 

 
Figure 3: Time-line for crane threads 

 

For this experiment the processors run at 100MHz, and 
an EDF scheduler was used without DVS. The COM-API 
uses messages of 500 bytes and packets of 49 bytes. Table 
1 shows the execution time for the threads and the system 
overhead due to the task scheduler and to the 
communication service. Scheduler overhead depends on 
the number of threads running, and communication costs 
depend on the size of the messages. These numbers can be 
used in the design to evaluate the impact of communication 

in the total latency. In this particular case, the time spent in 
the computation of the threads is not too much larger than 
the time in communication because an aggressive thread-
granularity was forced. 

Table 2 shows latency values to send and receive 
messages. Those values do not take in account the latency 
in the NoC, just the processing time in the PE that sends 
and/or receives a message. The latencies are high because 
the protocol stack is implemented in software. This 
throughput can be optimized using a hardware-
implemented communication service [23] or a processor 
with higher performance [8]. 

 

Table 1: Execution times  
 Scheduler Thread Communication 

PE 0 151 µs 938 µs 148 µs 
PE 1 150 µs 519 µs 228 µs 
PE 2 145 µs 244 µs 205 µs 

 

Table 2: Latencies to send and receive a message  
Message 
Length 
(bytes) 

Sending (µs) Receiving (µs) 

01 48 37 
02 51 46 
03 53 52 
04 56 59 
10 109 126 
15 160 187 
20 174 226 
50 252 422 

490 3121 3887 
 

To evaluate the memory consumption of the provided 
services, Table 3 shows code memory (ROM) and 
variables memory (RAM) sizes. The RTSJ column gives 
the cost to manage real-time threads and includes classes 
like scheduler, time representation, event handling, and so 
on. The communication column brings two different cases. 
The Pack49-Msg500 column shows data from the case 
study presented here, which uses more RAM space than a 
case where the packet size is reduced to 7 bytes and 
messages to 20 bytes. In both cases, the code size does not 
change. 

To evaluate energy issues the application was run for 
50 ms. Only dynamic energy was considered in this 
experiment because static energy is not relevant for the 
given technology (0.18 µm). 
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Table 3: Memory usage  
Communication 

 RTSJ 
Pack7-Msg20 Pack49-Msg500 

ROM 4491 4493 4493 
RAM 177 913 6345 
 

Table 4 shows the total energy consumption in each 
core. It reflects the energy consumed in the processor for 
all the instructions executed from start until the simulation 
stops (50 ms). Figure 4 shows the PEs connected in the 
routers. The energy consumption in the routers and in the 
links are shown. The energy below the routers indicates the 
total value for the router, including arbiter, crossbar, and 
the buffers, although the simulator provides each value 
separately. 

The energy consumption in the network is not 
significant, if compared to the energy in the processors, 
because the application does not produce a large traffic.   

 

Table 4: Energy consumption for each core  
 PE 0 PE 1 PE 2 

Total energy (µJ) 325.64 287.27 267.45 
 

 

 
Figure 4: Energy consumption for the NoC 

 
The simulator allows the extraction of energy values 

for each method in the Java code. Table 5 shows the energy 
consumed in the processor exclusively when running 
communication processes. These numbers can be used in 
the design to evaluate the impact of communication in the 
total energy cost, as seen in Table 4. 

 
 

Table 5: Energy consumption in communication 
 PE 0 PE 1 PE 2 

Send Msg (µJ) 0.749 0.754 0.419 

Receive Msg (µJ) 1.140 0.940 0.894 

 

Figure 5 shows the energy consumption in the 
processing element PE 0 along the first nine milliseconds 
of execution. The task Mul_Aq starts to be scheduled at 3 
ms. The system initialization occurs from 0 to 1 ms. The 
shadowed regions represent the task execution time. Since 
the task computation takes approximately 1 ms and its 
period is equal to 2 ms, the PE remains idle for another 1 
ms between two task schedulings. 

The curve inclination represents the power dissipated 
in the core. Note that during task computation more energy 
is spent in the core, with regard to the period where the PE 
is idle. The energy spent in each task execution is 
approximately 8 µJ, while when the processor is idle the 
energy spent in almost the same interval is about 3 µJ. 
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Figure 5: Energy consumption over time 

 
The simulation time for this case, with three cores 

running at 100 MHz, was 16.8 seconds for each 1 ms of 
execution in the real system, when running in a Pentium4 
2.67GHz with 1Gbyte of RAM. 

 

7. Conclusions and future work 
This paper described a framework to accelerate 
development and test of application software, low-level 
software, and hardware components for an MPSoC 
platform. The environment offers support for multithread 
real-time embedded object-oriented applications and allows 
design space exploration, evaluating performance and 
power costs of the application under development. 

This platform emulates the real hardware and can help 
to shorten cycles for embedded system development, 
integration, and test. 
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A real-time application is used to demonstrate 
capabilities and results on latencies and energy 
consumption. 

This work is the structure layer of a larger project that 
provides a flexible and reusable middleware to raise the 
abstraction level to develop real-time applications under an 
MPSoC (Multiprocessor System-on-Chip) platform. 
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