Metaserver Locality and Scalability in a
Distributed NFS*

Everton Hermann'**, Rafael Avilal** *, Philippe Navaux!,

and Yves Denneulin?

! Tnstituto de Informatica/UFRGS
Caixa Postal 15064
91501-970 Porto Alegre — Brazil
Phone.: +55 (51) 3316-6165; Fax: +55 (51) 3316-7308
{ehermann,avila,navaux}@inf.ufrgs.br
% Laboratoire ID/IMAG
51, avenue Jean Kuntzmann
38330 Montbonnot-Saint Martin — France
Phone.: +33 (4) 76 61 20 13; Fax: +33 (4) 76 61 20 99
Yves.Denneulin@imag.fr

Abstract. The leveraging of existing storage space in a cluster is a desir-
able characteristic of a parallel file system. While undoubtedly an advan-
tage from the point of view of resource management, this possibility may
face the administrator with a wide variety of alternatives for configuring
the file server, whose optimal layout is not always easy to devise. Given
the diversity of parameters such as the number of processors on each
node and the capacity and topology of the network, decisions regarding
the locality of server components like metadata servers and I/O servers
have a direct impact on performance and scalability. In this paper, we
explore the capabilities of the dNFSp file system on a large cluster instal-
lation, observing how scalable the system behaves in different scenarios
and comparing it to a dedicated parallel file system. Our obtained results
show that the design of ANFSp allows for a scalable and resource-saving
configuration for clusters with a large number of nodes.

Topics: Cluster and grid computing, parallel I/O, parallel and distribu-
ted computing.

1 Introduction

Solutions for efficient management of I/0O in large clusters have long been the
focus of several research groups and industrials working on parallel computing [IJ.
Ranging from RAID arrays and fibre optics to virtual distributed disks, many
approaches have been proposed in the last decade that vary considerably in terms
of performance, scalability and cost.

* Candidate to the best student paper award.
** Work partially supported by CAPES and CNPq.
*** Work supported by HP Brazil grant.

M. Daydé et al. (Eds.): VECPAR. 2006, LNCS 4395, pp. 145 2007.
© Springer-Verlag Berlin Heidelberg 2007

146 E. Hermann et al.

In previous works [2/3], we have presented the dNFSp file system, an extension
of NFSv2 that aims at improving both performance and scalability of a regular
NFS server while keeping its standard administration procedures and, mainly,
compatibility with the regular NFS clients available on every Unix system. Sim-
ilarly to other parallel file systems such as PVFS [4] and Lustre [5], dNFSp is
based on a distributed approach where the gain in performance is obtained by
executing tasks in parallel over several machines of the cluster.

One important aspect of a parallel file system is its capability of leveraging
existing resources. In the case of commodity clusters, the hard disks that are
installed on the compute nodes are frequently under-used: a typical GNU /Linux
node installation takes only a few gigabytes, and today’s PCs are hardly ever
configured with less than 40 gigabytes of storage. This leaves us with at least 75%
of the total hard disk capacity available for the storage of data, and consequently
it is important that a cluster file system have the ability to use it.

dNFSp provides such a feature, so that the storage on the compute nodes can be
used to form a single cluster file system. It is then up to the cluster administrator
to decide how to configure the system, finding a good balance between resource
utilization, performance and scalability, which might not be an obvious task.

For this reason, we have conducted a series of experiments varying the config-
uration of ANFSp on a large cluster. This allowed us to watch how scalable the
system os. Also it was possible to identify layouts best suited for one or another
situation, and whose results and conclusions are presented in this work.

In the remainder of the paper, Section Pl presents the ANFSp file system and its
main characteristics, with the purpose of providing some background knowledge;
Section [3] describes in more details the experiments we have conducted and
introduces the evaluation criteria; in Section] we present the results obtained
in the experiments and provide the discussion which is the focus of this work;
Section [l brings a comparison of our work to systems with related objectives,
and finally Section[G draws some conclusions on the obtained results and analysis
and reveals future directions.

2 dNFSp — A Distributed NFS Server

The NFSp project [6] has been established in 2000 at the Laboratoire Informa-
tique et Distribution of Grenoble, France, with the goal of improving performance
and scalability in a regular NFS installation. The main idea of the project is to
provide a cluster file system that benefits from the standard administration pro-
cedures and behavior of a well-known protocol such as NFS. As a result, NFSp
— for parallel NFS — presents some simple extensions to the NFS server im-
plementation that distributes its funcionalities over a set of nodes in the cluster,
thus gaining performance. On the other hand, the client machines do not have
to be modified at all, favoring portability.

As a subproject within the NFSp group, dNFSp has been proposed as a fur-
ther extension to the model, aiming at an improvement on concurrent write
operations by client machines.

Metaserver Locality and Scalability in a Distributed NFS 147

Figure [1 depicts the distribution model proposed by dNFSp. The top of the
figure shows the two main server components: the /0 daemons, or IODs, and
the metaservers. The metaservers are daemons that play the role of the NFS
server, serving clients’ requests and cooperating with each other to form the
notion of a single file server. The I0ODs work as backends for the metaservers,
being responsible solely for data storage and retrieval. On the lower part of the
figure, client machines connect to the metaservers in the same way that clients
connect to a regular NFS server.

10Ds

meta-servers

clients

Fig. 1. Distributed metaserver architecture of ANFSp

Each client is connected to one metaserver, which is responsible for han-
dling its requests. Operations involving only metadata are replied directly by
the metaserver, which in some cases can contact other metaservers to obtain the
needed metadata. I/O operations are forwarded by the metaserver to the IODs,
which will perform the operation and reply directly to the client. In the case of
read operations, the file contents are transferred directly from the IODs to the
clients, allowing parallel reads up to the number of available IODs. In the case
of write operations, the data are transferred from the client to the metaserver,
and then forwarded to the IODs. Therefore, global write performance depends
both on the number of IODs and the number of metaservers.

The metaservers exchange information to keep metadata coherence across all
metaservers. The information is retrieved only when needed by a client, avoiding
unnecessary network traffic. However, there are situations when all metaservers
must be contacted (e.g. lookup() upon file creation), and this communication
becomes more visible as we increase the number of metaservers.

148 E. Hermann et al.

The extensions introduced by dNFSp have been implemented on an exist-
ing NFSp prototype, and a performance evaluation has been carried out pre-
viously [3] with the execution of some micro benchmarks. As an illustration of
dNFSp raw performance, Figure] shows the results obtained for concurrent
read and write operations (each client reads/writes one independent 1 GB file)
in comparison to the performance of a regular NFS server using Fast Ethernet
network (~11 MB/s). As expected, one obtains an increased throughput when
more than one client read /write at the same time.

Concurrent Reads Concurrent Writes

T T T T T T NS 60 T T T T T T CTNFS
regular regular
120 dNFS; —N 55 { dNFSp ; 5

100

80

60

40

Aggregate throughput (MB/s)
Aggregate throughput (MB/s)

20 15

0 L L L L L L L L L L 5 L L L L L L L L L L
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
No. clients No. clients

Fig. 2. dANFSp performance for concurrent read and write operations using 12 I0Ds
and 7 metaservers

3 Benchmark and Cluster Environment

The measurements we carried out have the objective of evaluating the scalability
of dNFSp in a large number of nodes using a real application-based benchmark.
The benchmark we used is the NAS/BTIO, and the machine used to run the
applications is the INRIA i-cluster2d. Both the application and the cluster are
detailed in the following sections.

3.1 The NAS/BTIO Benchmark

The BTIO Benchmark is a part of the NAS Parallel Benchmarks (NPB) [7]. It is
commonly used for evaluating the storage performance of parallel and distributed
computer systems. The application used by BTIO is an extension of the BT
benchmark [§]. The BT benchmark is based on a Computational Fluid Dynamics
(CFD) code that uses an implicit algorithm to solve the 3D compressible Navier-
Stokes equations. BTIO uses the same computational method employed by BT.
The I/0O operations have been added by forcing the writing of results to disk. In
BTIO, the results must be written to disk at every fifth step of BT.

The number of process running one execution of BTIO must be a perfect
square (1, 4, 9, 16, etc.). The problem size is chosen by specifying a class. Each

! http://ita.imag.fr

Metaserver Locality and Scalability in a Distributed NFS 149

class corresponds to the dimensions of a cubic matrix to be solved by the appli-
cation: class A (64%), class B (1023), class C (162%). We have chosen class A since
it was enough to have a good mixing of computation and file system operations.
Moreover, using a larger class has not changed the profile of the results.
Another customization of BTIO is the way the I/O operations are requested
to the file system. There are four flavors that can be chosen at compilation time:

— BTIO-full-mpiio: This version uses MPI-1IO file operations with collective
buffering, which means that data blocks are potentially re-ordered previously
to being written to disk, resulting in coarser write granularity

— BTIO-simple-mpiio: Also uses MPI-IO operations, but no data re-ordering
is performed, resulting in a high number of seeks when storing information
on the file system

— BTIO-fortran-direct: This version is similar to simple-mpiio, but uses the
Fortran direct access method instead of MPI-IO

— BTIO-epio: In this version, each node writes in a separate file. This test
gives the optimal write performance that can be obtained, because the file
is not shared by all the processes, so there is no lock restriction. In order to
compare with other versions, the time to merge the files must be computed,
as required by the Application I/O benchmark specification.

In order to perform MPI-IO operations using an NFS-based file system, it
would be necessary to have an implementation of the NFSv3 protocol, due to the
need of controlling file access by means of locks. Since ANFSp was implemented
based on the NFSv2 protocol, it has no lock manager; hence, we decided to use
the BTIO-epio version of the benchmark. Furthermore, using epio allows one
to achieve optimal performance results, since the data are written to individual
files by each node.

With the goal of having a more write-intensive benchmark, we have made
a small change in the BTIO benchmark code, modifying the frequency of file
writes. The original code performes writes on every five iterations, resulting in a
total amount of writes of 400 megabytes; with the modification, BTIO performs
writes on every iteration, resulting in 2 gigabytes of written data. The results of
each computing step are appended to the end of the file used by the process. The
granularity of writes changes with the number of nodes used on the computation.
Changing the frequency of writings allowed us to make the differences between
the file systems more visible.

3.2 The i-Cluster2

The i-cluster2 [9] is installed in Montbonnot Saint Martin, France, in the IN-
RIA Rhone-Alpes facility. The cluster is composed by 100 nodes. Each node is
equipped with a dual Itanium2 900 MHz with 3 gigabytes of memory and a disk
storage with 72 gigabytes, 10000 rpm, SCSI. All the nodes are interconnected us-
ing a 1 Gigabit Ethernet network, Fast Ethernet network and Myrinet Network.
The experiments were performed using the 1 Gigabit Ethernet network.

150 E. Hermann et al.

The software installed on i-cluster2 is based on Red Hat Enterprise Linux AS
release 3 distribution, with a Linux kernel version 2.4.21. The MPI implementa-
tion used with the BTIO benchmark is mpich version 1.2.6.

4 Performance, Scalability and Locality Evaluation

In this section we present the results obtained with our experiments. The re-
ported execution times are those informed by BTIO at the end of the execution,
together with a confirmation of correct computation. Each value reported is the
arithmetic mean of at least 5 runs of BTIO with the same configuration, so as
to obtain a stable value. Standard deviations lie within a maximum value of
3 seconds.

4.1 Performance Analysis

The first step in our analysis of ANFSp has been an evaluation of the perfor-
mance of the system on the i-cluster2. We have run BTIO on a large subset
of the available nodes, and compared the performance of ANFSp with that of
a dedicated parallel file system. We have chosen PVFS [4] for this task, as it
is a representative parallel file system in the Beowulf cluster context in which
our work is inserted. It wasn’t possible to perform tests using Lustre because it
needs a kernel patch to the system to run, and we didn’t have the permission
needed to do this task.

For both systems, we have varied the number of IODs in the file server from
4 up to 12 IODs, in steps of 2. In the case of ANFSp, we always use a number of
metaservers equal to that of IODs. PVFS uses only one extra node in all cases,
for the manager. The experiments have been executed from 4 up to 49 clients,
respecting the feature of BTIO that the number of clients must be a perfect
square.

We show, in Figure Bl the results obtained using the minimum and the max-
imum number of IODs, respectively 4 and 12. Intermediate configurations have
shown proportional variation.

When the file system is accessed by a small number of clients, a shorter number
of metaservers has shown better performance results, because a higher number
of metaservers results in more management communication. In this case, the
application does not have enough nodes to benefit from all the parallelism offered
by the file system.

As expected, execution times drop as the number of clients increase. For
dNFSp, the reduction in execution time is progressive on the whole range of
clients, except for the case of 49 clients using 4 IODs, where it slightly starts
to rise again. For PVFS, one observes a lower limit at around 100 seconds. We
conclude that the main cause for the limitation in both systems is that, as the
number of clients increase, the amount of data written by each one decreases,
and reaches a point where parallelism does not pay off anymore due to the man-
agement cost of the striping mechanism. dNFSp seems to handle the situation
better than PVFS, reaching around 47 seconds in the case of 12 IODs.

Metaserver Locality and Scalability in a Distributed NFS 151

4 10DS 12 10DS

500 500
450 450 -
400 — 400 —
350 — 350 —
@ 300 — @ 300 —
= 200 i= 200
150 — 150 —
100 — 100 —
50 — 50 —
0 0

4 9 16 25 36 49 4 9 16 25 36 49
No. of clients No. of clients

Fig. 3. Performance comparison for dNFSp vs. PVFS using 4 and 12 IODs on the file
server

It is important to remark that such experiments were run using PVFS vl
(more precisely, version 1.6.3), while PVFS2 is already available and should pre-
sumably yield more performance than its predecessor. PVFS2 was effectively
our initial choice for comparison, not only because of its performance, but also
because it features a distributed metadata model which is closer to that of
dNFSp. However, early experiments with that version on the i-cluster2 resulted
in strangely poor performance (results are shown in Table [II for information).
One reason to this poor result is the writing profile of BTIO, which appends
contents to the end of the files, changing metadata information on each write.
The relaxed model used by dNFSp does not require updating metadata on all the
metaservers so there is no extra communication when an append is performed.
While we are still investigating further causes for that behavior, we chose to
report results for PVFS v1, which nevertheless represents no loss in significance
since it is still fully supported by the developers as a production system.

4.2 Scalability Evaluation

As a subsequent analysis of our experiments we have compared how both file
systems react to the addition of more nodes to the file system. The number of
IODs, metaservers and clients is the same as described in the previous section.
In Figure [we have three samples from our experiment. In the first chart
we have kept the number of BTIO clients on 4 and varied the number of IODs
and metaservers. We can see that both file systems sustain an almost constant
performance due to the fact that the application doesn’t have enough clients to
stress the capability of storage offered by the file systems. In this case, dNFSp
even shows a small decrease in performance as we add more nodes. This loss of
performance comes from the metaserver communication, which is more signifi-
cant when we have more of them. The better performance of PVFS lies on the
size of messages. As we have only four BTIO clients, the amount of computation
designated to each node is large resulting in larger writes on the file system.

152 E. Hermann et al.

Table 1. Sample execution times (in seconds) obtained for dNFSp and PVFS vl in
comparison to PVFS2

No. of clients dNFSp PVFS vl PVFS2

4 464.416 319.273 363.395
9 272,728 170.663 263.655
16 135.164 103.247 253.88
25 76.712 95.35 252.505
36 53.745 96.313 293.44
49 43.776 105.44 353.64

The second chart shows the transition case where both file systems have a
similar behavior. Using 25 clients BTTO seems to have a block size that results
in similar performance to both file systems. They have an improvement of per-
formance as we add more nodes to the file system, reaching a limit where adding
more nodes increases the execution time instead of reducing.

In the third chart we show a more stressing case, where we have 49 clients
accessing the file system. In this situation we can see that from 4 to 10 nodes
dNFSp has an improvement of performance as we increase the file system size.
When we reach 12 IODs and 12 metaservers, the overhead added by the insertion
of more nodes is not compensated by the performance gain. The clients don’t
have enough writes to stress the file system, and the communication between
metaservers is more expressive, falling in the same situation shown by the four
clients sample. PVFS has shown a performance limitation when we have small
writes to the file system. As the number of clients is larger than the previous
case, we have smalls chunks of data being written.

4.3 Metaservers and IODs Locality Impact

As a last experiment, we have investigated the capabilities of ANFSp in saving
cluster nodes for the deployment of the file server. As usual in distributed file
systems (and distributed systems in general) like ANFSp and PVFS, each task
of the system is usually performed on a distinct machine or compute node. For
example, in the previous experiments we have always used distinct nodes for
running the IODs and the metaservers/manager.

It would be desirable, however, that one could make use of as few nodes for the
file server as possible, in order to maximize the number of nodes available for the
real computing tasks. While the decision depends mostly on the amount of storage
desired for the server, some considerations can be made regarding performance
and scalability that might allow for a shorter number of nodes than that initially
accounted. This is specially true if the compute nodes are dual-processed.

The results in Figure [l correspond to the execution of BTIO with dNFSp
with IODs and metaservers running on the same nodes, compared to the original
execution where the two entities run on separate nodes. Again, we show results
for a small and a large number of client nodes.

Metaserver Locality and Scalability in a Distributed NFS 153

4 clients 25 clients 49 clients

500

450
400
350
300
200 meves

150

Time (s)

ddnFsp
WPvFs

Time (s)
Time (s)

100
50

12 4 12 4 6 10 12

6 8 10 8
No. of I0Ds No. of 10Ds

6 8 10
No. of IODs

Fig. 4. Scalability comparison for dNFSp vs. PVFS using 4, 25 and 49 BTIO clients
processes

4 clients 49 clients
500 90

450 80 A

400 11

70 H
350 -H 60U
300 -H

200 W overlap
150 H
100 207

50
Dno overlap
20 Moverlap

30 1

Time (s)
Time (s)

50 1 10

o-H o
4 6 8 10 12 4 6 8 10 12
No. of I0Ds No. of I0Ds

Fig. 5. Results for ANFSp with and without overlapping IODs and metaservers on the
same nodes

Two different situations are presented, both favoring the overlapping of IODs
and metaservers. In the first case, with few client nodes, more information is
written by each single client, and thus there is a visible difference in performance
in favor of the overlapping configuration, since communication between the IOD
and the metaserver on the same node is done faster (by means of memory copy).
Approximately 1/N requests, where N is the number of IODs, can be processed
locally, without the need of contacting an IOD through the network. On the
second case, there are much more, smaller client writes, and consequently the
differences are not much evident. Increasing the number of IODs also contributes
to minimize the differences, as the probability of performing a request locally
decreases as the number of striping slices grows. As a conclusion, we can see that
such an overlapping configuration can be employed without loss of performance,
contributing to the amount of nodes dedicated to computation.

5 Related Work

The increasing performance gap between I/O and processor has placed the file
system performance as the most severe bottleneck to applications that massively
use the storage subsystem [II0]. Several approaches have been proposed since

154 E. Hermann et al.

the deployment of the first large-scale parallel machines. Many are based on the
use of specialized technologies (e.g. RAID, fiber optics) as a means to increase
performance, such as GPFS [11] and GFS [12]. This kind of system usually relies
on the concept of a Storage Area Network (SAN), which basically defines a com-
mon storage “device” composed of several physical devices. As such, scalability is
a direct consequence of this concept. Other projects like Petal /Frangipani [T3/14]
and the Shared Logical Disk [I5] make use of the same concept, but the SAN is
implemented in software over a network. Good performance and scalability thus
depend heavily on the communication technology.

Research projects like PVFS [] and Lustre [16] follow another trend. To
achieve high performance on I/O operations, these file systems distribute the
functions of a file system across a set of nodes in a cluster. To perform paral-
lel I/O operations, they stripe the data across the nodes, keeping the striping
transparent to the application.

PVFS is a parallel cluster file system composed of two types of nodes: the /0
server and the manager, which is a metadata server. The nodes in the cluster
used by the file system can be configured as I/O servers, and one of them as a
manager. Lustre is an object-based file system designed to provide performance,
availability and scalability in distributed systems. Like PVFS, Lustre comprises
two types of server nodes: Metadata Servers (MDS) are responsible for managing
the file system’s directory layout, as well as permissions and other file attributes.
The data is stored and transferred through the Object Storage Targets (OST).
Figure [0l shows the architecture of PVFS and Lustre in comparison to that of
dNFSp.

High performance in PVFS is achieved by distributing the contents of a file
across the I/O server nodes (striping). Clients are allowed to access the contents
of the file in parallel. The way the files are striped is handled by the metadata
manager, which is also responsible for managing file properties and a name space
to applications, but has no participation in I/O operations. The I/O servers are
accessed directly by the clients to deal with the data transfers. The user can
access the file system through the PVFS library or using an OS-specific kernel
module. The latter allows the user to mount the file system using a POSIX
interface, and access files as any other file system.

In Lustre, similarly to PVFS, the client contacts the Metadata Servers to know
which OST contains a given part of a file. After obtaining this information, the
client establishes direct connections to the OST performing reads and writes. The
MDS has no intervention in the I/O process, being contacted by the OST only to
change file attributes like file size. Both types of nodes can have replicas working
in pairs and taking the place of each other when a failure occurs. Figure[f] shows
an active MDS, and its replica is represented by the failover node. Information
concerning the overall system configuration is stored in a Lightweight Directory
Access Protocol (LDAP) server. In the event of a MDS failure, the client can
access the LDAP server to ask for an available MDS.

As in ANFSp, PVFS version 2, or PVFS2 [I7], has the option of running
more than one manager. The main difference lies on the way PVFS controls the

Metaserver Locality and Scalability in a Distributed NFS 155

dANFSP PVES
User space M User space User spac
| a8 | Due - DataServ
Application | < Application ‘ ‘ pvfs-client “

Kernel

-

writes data

; Kernel User spac§
Pp-USET SpaC
NFS ‘ Control VFS/pvfs_mod Meta Serve
»| Meta Serve!
[User spacg

iL write data
-

Lustre

User space

Data Serve:

"Fuilur\'c'r' o ‘
0@\[5 User spacé i
Keel * comdh o

e R
\>:Userspac |
| |

Fig. 6. Architecture of the related cluster file systems

distribution of metadata. Each manager stores the metadata information about
a range of files, while in ANFSp each server has the metadata information about
all the files. The PVFS approach can result in a surcharged manager when all
the clients access files in the same range.

6 Conclusions and Final Considerations

The execution of the BTTO benchmark with dNFSp and PVFS on the i-cluster2
has confirmed the objectives of our system in providing good performance and
scalability while keeping compatibility with NFS. The results show very good,
scalable performance in comparison to a dedicated parallel file system. dANFSp
is able to reach the same level of performance of PVFS, and many times even
reach beyond it. We understand that this advantage comes from the fact that
dNFSp can tolerate a smaller size of writes than PVFES before reaching the point
where parallelism in no longer favorable. When configured with a large number
of clients, dNFSp has outperformed PVFS in up to 50% of its execution time.
Another positive aspect of our benchmarking is that dANFSp performs effi-
ciently when IODs and metaservers have been run together. The performance
results obtained using IODs and metaservers on the same node were up to 17%
faster than in the case where metaservers and I0Ds were run on distinct ma-
chines. This allows for a resource-saving configuration which maximizes the avail-
ability of compute nodes without sacrificing performance. Although the nodes
of the i-cluster2 are dual-processed, which favors this configuration, we believe
that a similar approach, at least partial, should be possible on single-processor

156 E. Hermann et al.

clusters, since the IODs present a typical I/O-bound profile, while the metaser-
vers do little disk activity. This evaluation was not possible on the i-cluster2, as
it would require booting with a non SMP-enabled kernel. We intend to carry it
out in the next stage of the project.

One of the future activities in ANFSp is the implementation of a dedicated com-
munication mechanism between metaservers, given some loss of performance in a
few of the experiments due to the heavy lookup mechanism that the metaservers
perform. The dedicated protocol should minimize the impact of lookup operations
by implementing some kind of prefetching and message aggregation for the ex-
change of metadata. Also, we are planning a porting of ANFSp to NFS version 3.
This will allow us to profit from the changes on the protocol, like asynchronous
1/0 operations and the larger block size limit. Another aspect to be worked upon
is fault tolerance and replication, which are being studied and shall be included in
the upcoming versions.

References

1. Schikuta, E., Stockinger, H.: Parallel I/O for clusters: Methodologies and sys-
tems. In Buyya, R., ed.: High Performance Cluster Computing: Architectures and
Systems. Prentice Hall PTR, Upper Saddle River (1999) 439-462

2. Kassick, R., Machado, C., Hermann, E., Avila, R., Navaux, P., Denneulin, Y.:
Evaluating the performance of the dNFSP file system. In: Proc. of the 5th IEEE
International Symposium on Cluster Computing and the Grid, CCGrid, Cardiff,
UK, Los Alamitos, IEEE Computer Society Press (2005)

3. Avila, R.B., Navaux, P.O.A., Lombard, P., Lebre, A., Denneulin, Y.: Perfor-
mance evaluation of a prototype distributed NFS server. In Gaudiot, J.L., Pilla,
M.L., Navaux, P.O.A., Song, S.W., eds.: Proceedings of the 16th Symposium on
Computer Architecture and High-Performance Computing, Foz do Iguagu, Brazil,
Washington, IEEE (2004) 100-105

4. Carns, P.H., Ligon III, W.B., Ross, R.B., Thakur, R.: PVFS: a parallel file system
for Linux clusters. In: Proc. of the 4th Annual Linux Showcase and Conference,
Atlanta, GA (2000) 317-327 Best Paper Award.

5. Cluster File Systems, Inc.: Lustre: A scalable, high-performance file system (2002)
Available at http://www.lustre.org/docs/whitepaper.pdf (July 2004)

6. Nfsp: homepage (2000) Available at <http://www-id.imag.fr/Logiciels/NFSP>
Access in May 2005.

7. Wong, P., der Wijngaart, R.F.V.: NAS Parallel Benchmarks I/O Version 2.4. RNR,
03-002, NASA Ames Research Center (2003)

8. Bailey, D.H., et al.: The NAS parallel benchmarks. International Journal of Su-
percomputer Applications 5(3) (1991) 63-73

9. i-Cluster 2 (2005) Available at <http://i-cluster2.inrialpes.fr> Access in May 2005.

10. Baker, M., ed.: Cluster Computing White Paper. IEEE Task Force in Cluster Com-
puting (2000) Available at http://www.dcs.port.ac.uk/~mab/tfcc/WhitePaper/
final-paper.pdf Final Release, Version 2.0.

11. Schmuck, F., Haskin, R.: GPFS: A shared-disk file system for large computing
clusters. In: Proc. of the Conference on File and Storage Technologies, Monterey,
CA (2002) 231-244

12. The openGFS project (2003) http://opengfs.sourceforge.net

http://www.dcs.port.ac.uk/$sim $mab/tfcc/WhitePaper/final-paper.pdf
http://www.dcs.port.ac.uk/$sim $mab/tfcc/WhitePaper/final-paper.pdf

13.

14.

15.

16.

17.

Metaserver Locality and Scalability in a Distributed NFS 157

Lee, E.K., Thekkath, C.A.: Petal: Distributed virtual disks. In: Proc. of the 17th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA (1996) 84-92

Thekkath, C.A., Mann, T., Lee, E.K.: Frangipani: A scalable distributed file sys-
tem. In: Proceedings of the 16th ACM Symposium on Operating Systems Princi-
ples, Saint Malo, France, New York, ACM Press (1997) 224-237

Shillner, R.A., Felten, E.W.: Simplifying distributed file systems using a shared
logical disk. Technical Report TR-524-96, Dept. of Computer Science, Princeton
University, Princeton, NJ (1996)

Schwan, P.: Lustre: Building a file system for 1000-node clusters. In: Proceedings
of the 2003 Linux Symposium. (2003)

Latham, R., Miller, N., Ross, R., Carns, P.: A next-generation parallel file system
for Linux clusters. LinuxWorld Magazine (2004)

	Introduction
	dNFSp -- A Distributed NFS Server
	Benchmark and Cluster Environment
	The NAS/BTIO Benchmark
	The i-Cluster2

	Performance, Scalability and Locality Evaluation
	Performance Analysis
	Scalability Evaluation
	Metaservers and IODs Locality Impact

	Related Work
	Conclusions and Final Considerations
	References

