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fim = lzo; w0l + T(A[zo;yo] + b X sign(yo + Po(1(1)))); Sophie Tarbouriech and Jodo Manoel Gomes da Silva, Jr.

else

D = |(P1 — x0); I . . . I

[V, 1] = sort(D); Abstract—The stabilization of linear continuous-time systems with time
o ) ’ T Alza: b s P11 . delay in the state and subject to saturating controls is addressed. Suffi-

ffm = [zo;y0] + T(A[zo; yo] + b sign(yo — P2(1(1)))); cient conditions obtained via a linear matrix inequality (LMI) formulation

end; are stated to guarantee both the local stabilization and the satisfaction of

end; some performance requirements. The method of synthesis consists in de-

(i +1) = ml(1):y(i +1) = m(2): termining simultaneously a state feedback control law and an associated
( j_ f?f ({‘)f ( l’ ?Sc +(2§_ 7t ( )’ domain of safe admissible states for which the stability of the closed-loop

g?} d_' i)Yo = =) system is guaranteed when control saturations effectively occur.

Tr = P1(17 length (Pl)) (T 4 Index Terms—Control saturation, linear matrix inequalities (LMI's),

_ . local stability, time-delay systems.
Yy = TT — TT;

P, = [Pxa];
Py = [Payyl; I. INTRODUCTION

The problem of stabilizing linear systems with saturating controls
. . . has been widely studied these last years because of its practical interest:
Fig. 4 ShOWS. the use of this switch curve ona “eabe system Wh?&, for example, [2] for a bibliographical overview. In this context, sig-
A’{.) tal_<|ng their values a¢ - .0'4’ but t_he switch curve is the SaMEificant results have emerged in the scope of global [20] or semiglobal
as in Fig. 3. The system'’s trajectory still converges to almost its Sa bilization [18]. These studies require some stability properties for

maximum “rr."t cycle (shovyn as dotted curve) show[ng some robusgf, open-loop system. Relaxing these assumptions, the local stabiliza-
ness of the disturbance switch curve. Any 2 x 2 mattiand any 2 x tion has been investigated [26], [5]

1 matrixb can be entered in the above using the switch curve specifiedThe stabilization of linear systems with a delayed state is also a

by ¢ to explore other ropustness properties. . problem of interest, because the existence of a delay may be a source
For\ gomplete_ness, Fig. 5 shows th? use of the switch curve (I'E?instability (as the occurence of the controls saturation) [10]. Dif-

y = 0} in selecting the most stressful disturbance for state reSPONS§arent conditions for the stabilization of time-delay systems via mem-
oryless control laws have been obtained. For an outline about the last
results on the delay systems, consult, for example, [15], [11], and ref-
erences therein, and the proceedings of the 13th World IFAC Con-

I1l. CONCLUSIONS gress (San Francisco, USA—July 1996) or the 35th IEEE-CDC (Kobe,

Japan—December 1996).

Time maximum disturbances that are bounded can be synthesized ife9arding linear systems with both delayed state and bounded con-
feedback form using the obtained closed analytic form for the switdff!S: Some results on local or global stabilization via memoryless con-
curve of stable second-order systems. Although this switch curve (! laws have been stated. We may cite 4], [7], [8], [16], [19], and [25].
closed analytic form was obtained for the maximum time severity didhe stability conditions presented in these papers are mainly based on
turbance index, itis easy using the above ideas to get the switch curvi{}f USe of matrix measure, complex Lyapunov equations or, still, Razu-
closed analytic form for the usual time optimal task [3] for the dampd@ikhin’s approach. _ o
harmonic oscillator and all other second-order systems. This paper deals with the synthesis of stabilizing controllers for

linear systems with state delay and saturating controls. The objective
of the control design is twofold. It consists in determining both a
memoryless state-feedback control law to ensure some performance
requirements for the closed-loop system when the control is not
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approach [9]. The synthesis of both a suitable gain matrix and agpstem (4) admits the linear model

associated set of initial conditions is carried out by solving linear

matrix inequalities (LMI's) [3]. i(t) = (A+ BE)x(t) + Aqx(t — 7). (6)
The paperis organized as follows. Section Il presents the system with . o L

its properties and the problem to be solved. Section 1l deals with sofi& cannot conclude, however, that any trajectory initiates{ift, uo)

preliminaries. The synthesis of the controller is presented in Sectiift frajectory of system (6).

IV. Section V illustrates the results on a numerical example borrowedL€t US now define thel-stability [14].

from the literature. Finally, in Section VI, concluding remarks end the Definition I1.1: Consider the solutionss of the equation
det{F(s)) = 0, F(s) = sI, — (A 4+ BK) — e~"" 44. The linear

paper. oo . .
Notations: R" is the set of nonnegative real numbers. The notgyStem (6) is said to bg-stable ifRe(s) + 5 < 0. Or, equivalently,

tion X > Y (respectively,X > V), whereX andY are sym- € System

metric matrices, means that the matfix— Y is positive semidefi- J(t) = (A+ BK + BL,)y(t) + ¢’ Agy(t — 7) )

nite (respectively, positive definite). For any real matix AT, and

A(;) denote the transpose and ﬂ;‘f‘x row of matrix 4, respectively. s stable. In other words, system (6) is stable with the decayjate
1, denotes the identity matrix ilR""". Awax(P) andAuwin(P) de- The objective of the paper can be summarized as follows.

note, respectively, the maximal and minimal eigenvalue of matrix  proplem I1.1: Find both a state feedbadk and a set of initial con-
co{-} denotes a convex hull.- = C([-,0], R") denotes the Banach jtions D, such as follows.

space of continuous vector functions mapping the intdrval 0] into

R™ with the topology of uniform convergencg.- || refers to either
the Euclidean vector norm or the induced matrix two-nojfeil]. =

SUp_.,<o ||&(¢)|] stands for the norm of a functian € C.. When
the delay is finite, then “sup” can be replaced by “ma%”is the set
defined byC; = {¢ € C;:||¢]]. < v,v > 0}.

1) The asymptotic stability of the closed-loop system (4) is guar-
anteed inDo, that is,Vé(8) € Do, V8 € [—7, 0], system (4) is
asymptotically stable.

2) The linear closed-loop model (6) (that is, without saturations) is
3-stable in the sense of Definition 11.1; that is, the trajectories of
(6) contained in the regiofi( I, uo ) are stable with a decay rate
s.

In [4], [16], and [25], conditions of stability for the closed-loop

Consider the linear continuous-time delay system subject to inggstem (4) are given in a general form (by using condition of norm

Il. PROBLEM STATEMENT

saturation described by and matrix measure or Riccati equation) without explicitely defining
the set in which the asymptotic stability is effectively ensured. At
#(t) = Ax(t) + Agx(t — 7) + Bsat(u(t)), (1) the converse, based on the Lyapunov—Krasovskii approach [6], our
objective consists in quantifying a set of admissible initial conditions
with the initial condition from which the asymptotic stability of the closed-loop saturated

system is guaranteed.
x(to+8)=06(8), V9€[-7,0], (to,d) ERT xCY (2 Remark I1.2:
* When no limits on the control vector are taken into account (sat-

wr_]erer(f_) € R™ isthe statey(t) € R™ is the saturating control input, uration-free case), then the sBt of the initial conditions that

7 is the time-delay of the system, and 4., and B are known real may be stabilized is the séf considered in (2), provided that
constant matrices of appropriate dimensions. PdirB) is assumed the Krasovskii—Lyapunov theorem is satisfied [6].

to be stabilizable. * In both the delay-fre¢r = 0) and the saturation-free case, the

In the present paper, we consider a saturated state feedback, resolution of Problem II.1 simply consists in stabilizing a linear
sat(u(t)) = sat(Kx(t)), K € R™*", with each component defined systemi:(t) = (A + Aq)x(t) + Bu(t) for which different so-
fori =1,---,m lutions are available depending on the stabilizability property of

pairs(A, B) or ((A + Ad), B).
sat(Kyx(t)) = sign(Kye(t)) min(|Ky2(t)], o),  (3)
Ill. PRELIMINARIES

whereug;y > 0, Vi = 1,---,m. Thus, we consider the following ) )
nonlinear system: Let us write the saturation term as
i(t) = Ax(t) + Aga(t — 7) + Bsat(Kx(t)). (4) sat(Kx(t)) = D(a(x))Kx(t); D(a(z)) € R™*™,  (8)

whereD(«(x)) is a diagonal matrix for which the diagonal elements
In general, for a given stabilizing state feedbdckit is not possible to (af) g g

. . . L a(y(r) are defined fok = 1,---,m as
determine exactly the region of attraction of the origin with respect to
system (4). Hence, a domain of initial conditions, for which the asymp- _W0G) g K < —u
totic stability of the system (4) is ensured, has to be determined. When Ky’ 0 0()
the open-loop systerfu. = 0) is stable, the global stabilization can ay(e) =4 1, if —uo(y < Ky < o 9)

be studied (see [8] and references therein). Throughout the paper, no
assumption on the stability of the open-loop system is made. In this
sense, the problem to be solved is a problerocédl stabilization

Remark II.1: When saturations do not occur, we get(K;)=(t)) and0 < a)(x) < 1. System (4) can then be written in the equivalent
= K(yx(t),¥i=1,---,m. Thus, forallz(t) € S(K, uo) definedas form

Uo(i)
If([)l"

if If(i);l' > Ug(i)

S(K,ug)={r e R";—ug < Kz < ug}, (5) #(t) = (A+ BD(a(x))K)x(t) + Aqe(t — 7). (10)
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The coefficientw;)(2) can be viewed as an indicator of the degree Proposition IV.1: If two symmetric positive-definite matricd$” €
of saturation of théth entry of the control vector. In fact, the smallerR™*" andR € R"*"exist, a matrixt” € R™*™ and a positive scalar
o) (2), the farther is the state vector from the region of linearity: solutions of the following LMI’s:

S(K, ug). Notice thato;) () is a function ofz(z).

If we consider any compact s&§ C R”, it follows that for anyz(¢)

belonging taS,, one may define a lower bound fog; () as WA + AW +Y"B" + BY +28W + R 7AW
ePTW AL -R
<0 (16)
Omin(sy = min{oy(2); 2 € So}. (12)
Therefore,Yz(t) € So, the scalarsy(;)(x), i = 1,---,m, satisfy T , 7 7 ,
Omin(i) < ag)(x) < 1. Define now matricest;, j = 1,---,2™, as {W AT+ AW+ R+Y D(%)B +BD(7)Y AW }
follows [13]: o vies WA; —-R an
, Y
A; = A+ BD(v;))K (12) - T
{ | , . ck,11jvm(2i) O | >0, i=1..m (18)
where D(~;) is a diagonal matrix of positive scalafs;), for i = Qmin(i)1()) Kl
1,--+,m, which arbitrarily take the value one @fuini). ThUS, if o) the state feedback matid& = Y17~ solves Problem I1.1 with
z(t) € So, then(t) can be determined from the following pOIyIOpICrespect to system (4) for every initial condition in the ball
model:
B(8) = {6 € Cl:|loll* < &) with
K/fl
2m 5= _ B (19)
=" Ajedya(t) + Aga(t — 7) (13) Amax (W) + 7 Ao (W RW 1))
=t Proof: The existence of two symmetric positive-definite matrices

. W e R"*" andR € R™*", and a matrixt” € R™*" satisfying
with 3% Aje = 1, A;+ > 0. Note that the matricesi; are the LMI (16), implies that the linear closed-loop system (6)jistable,
vertices of a convex polyhedron of matrices, andifag So, one gets according to Definition I1.1 (see also [15]). Furthermore, by some al-
(A4 BD(a(x))K) € co{A,,---, A2m}. Note also thatvminiy,  gebraic manipulations, one can prove that the satisfaction of LMI (16)
i =1,---,m, define the polyhedral set also implies that

{WAT + AW +YTBT + BY + R AW

WAL _R} < 0. (20

S(K,ug)={z € R"; —ufy < Ka <uf}, (14)
From (20) and provided that LMI's (17) are satisfiégl € .7, by set-
where every component of vectaf is defined by(ugg;)/miny), NG K = YW, P =W andS = W='RW™', it follows by

i = 1,---,m. This set contain$, and corresponds to the maximalconvexity:
set in which model (13) can represent system (4) [or (10)].
r ;.
x(t) M(j) PAs x(t)
Aj 0
IV. SYNTHESIS OF THECONTROLLER Z n { t— 7)} {A}l P -s } |:ar(t - 7) <
Consider the following Lyapunov function: (21)

with 27 X0 =1.);, > 0.andM(j) = (A + BD(v;)K)" P+

. - -t - P(A+BD(~;)K)+S. Moreover, the satisfaction of LMI's (18) means
Vi(w) =2(t) Pa(t) + /f_ 2(6)" Sx(6) df that the ellipsoidS(W !, k1) = S(P, s~ ') defined by
T T
P=P >0 5=5 >0 (15) SWnT = freR W e <sT') (22)
wherez,, ¥t > to, denotes the restriction afto the intervalt — r,¢]  is included inS(K, ug) [5]. Suppose now that(t) € S(K,ug).
translated td—r, 0]; that is,z¢ (#) = x(t + #),V8 € [—1,0]. Hence,z(t) can be computed from the polytopic system (13), and it
Assume now that the following data is given as follows. follows that the time-derivative of the Lyapunov functional defined in

« A positive scalar? that represents the desired decay rate in tH&) along the trajectories of system (13) is given by
zone of linear behavior.

* Avectoramin such that each componenti, i), i = 1,---,m,
satisfies0 < amin;y < 1. This vector can be viewed as a r
specification on the saturation tolerance. Z Ajaw(t A P+ PAaj)a(t)
Then, by setting? = {j € [1,2™]; D(v;) # L.}, which allows us
to consider all of the matriced; described in (12), except the matrix +20(t) PAqa(t — 1)

A+ BK, the following proposition can be stated to solve Problem I1.1. + ,r(t)'TSm(t) —z(t — T)'TS.r(f - 7).
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From (21) and by using the fact thpt(t — 7) — S~ 1AL Pu(¢)]T
Sle(t — 1) — ST AT P2(t)] > 0 is equivalent to-z(t — 7)7 Sx(t —
)4 22(t)" PAge(t — 1) < 2(t)T PA4S™ A Pa(t), we get:

om

Vi) <3 Nua(t) (M) + PA«ST A Pa(t) < 0. (23)

7=1

Thus,73 > 0 exists such thal’(z,) < —ms|jz(¢)|> < 0 and
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>0

(TIIn [n
b) {In W}

c) o2, —R>0
d) aq 2 g2
e) LMI's (16)—(18) of Proposition IV.1

The satisfaction of LMI b) implies thatma. (W 1) = Anax(P) <
a1. In the same way, the satisfaction of LMI c) means that<(R) <
o2, which corresponds to havgn..(W™'RW™") = M. (S) <
o207, Hence, we gehmax(P) + 7Amax(S) < 01 + o207 and from

thereforeV (x,) < V' (a4,), provided that model (13) is valid, that is, | p d) it followS Amax(P) + TAmax(S) < 01 + 70202 < o1 + 703,

provided that:(t) € S(I, ug).
Furthermore, the Lyapunov functional defined in (15) satisfies

2
co

(24)

Therefore, because = 1/(k(Amax(P) + TAmax(5))), we gets >
1/(x(a1+7c})). If we minimize the criterion as defined in (25), then
we maximize the bound/(x(s, + 7o7)) and thus greates tends

to be. In other words, by using the optimal problem (25), we orient
the solutions of LMI's (16)—(18) in the sense to obtain the Bl),

mille(OIF < Vi) < mlla

associated with the gai = YW ™!, as large as possible.

Wlth ™ = )\nﬁn (P) and7r2 = /\nﬂax(P) + /—An1ax(5)~
From (23) and (24), ife(to + 8) = ¢(8) € B(6), V8 € [-7,0],
then it follows: 1)

() Pa(t) < Vie) < Viwy) <k ', VE>to.

Hence, for any initial condition in the balB(é), we getx(t) €
S(W=t x™1), ¥t > to. Because LMI's (18) are satisfied, it follows
thatx(t) € S(K,uf), Vt > to. Thus, for any initial condition 2)
belonging to3(6), the model (13) represents the saturated system
(4). Hence, from (23) and (24), we can conclude that system (4)
verifies the conditions of the Krasovskii theorem [6] aridz:) is a

local strictly decreasing Lyapunov function. Therefore, provided that
o(0) € B(6), the asymptotic stability of system (4) is ensured.

Remark IV.1:

* In the saturation-free case, only LMI (16) is of interest to prove 3)
the closed-loop stability under the initial condition hypothesis (2).

« In the delay-free case, the Lyapunov function is the quadratic
oneV(x) = 2T Px. Under the(A, B)-stabilizability hypoth-
esis, the termi 2 (¢) can be considered as an uncertain term. For
example, we can consider that this term is of the norm-bounded
type [17] and therefore decomposk, as 4, DFE with
FTF < I,. In this case, LMI's (16)—(18) become the clas- 4)
sical ones treating the problem of both saturation and uncertainty:
see, for example, the book [22]. Furthermore, if the ait +
Ag), B) is stabilizable, then Proposition IV.1 can be modified to
treat only the stabilization of saturated systems: see for example,
Proposition 3 in [5], in whichd is replaced byd + A,.

Proposition 1V.1 provides a condition allowing us to compute both

a matrix i’ and a ball53(6) of initial condition such that Problem II.1

is solved. It is interesting to come up with a solution such that the ball
of initial conditions is the largest as possible. In this sense, a first so-
lution consists in minimizing:. Another interesting solution consists

in minimizing the termAmax(P) + 7Amax(S)) = Amax (W) 4+

T Amax (WL RW ™1)]. Nevertheless, the minimization of this term can
be very hard, even impossible, to directly obtain. Then by considering
some LMI’s imposing conditions on the maximal eigenvalu@iot’
and R, some linear optimization criteria can be used. In particular, we
suggest the following optimization problem:

min oy + €k
subject to
a) o > 0,00 > 0,W > 0,R > 0,6 >0

With respect to the optimization problem (25), we can formulate the
following comments.

In problem (25), we consider a criterion with multiple objectives
in which e is a positive scalar that can be used to assign relative
weight too; or . Thus, the positive scalarcan be considered

as a parameter of synthesis. For a given faifin, 3) [such that
LMI's (a)—(e) are feasible], one can iterateoim view to obtain

the best associated

In fact, the solution of (25) is a tradeoff between the performance
requirements in terms of decay rataround the origin, the toler-
ance of saturation...i,, and the size of the resulting ba(6).

This tradeoff will be shown in the illustrative example. More-
over, if the designer imposes a certain level of requirements,
the problem (25) may be not solvable; i.e., the resulting LMI's
(a)—(e) may be not feasible.

In practice, the given data are often constituted by both the decay
rate and a minimal ball of initial staté3(5..i. ). Given the pair
(6min, 3), the objective consists then, if possible, in fixing the
parametersy,,i,(;), ¢ = 1,-+-,m ande to obtain¥, ¥ andx
giving K = YW ! and satisfyingmin < 1/(k(Amax(P) +
TAmax(5))). In this case, we have to add in the optimization
problem an upper bound fer, depending 0@ ,in-

One difficulty regarding the application of Proposition V.1 or
problem (25) resides in the necessapriori choice of the vector
amin, thatis, of the different matrice®(~; ). We conjecture that

the smaller the components of vectanin, both the larger the
domain of admissible initial states and the more stringent the
performance specification for which it is possible to find a so-
lution, verifying the conditions given in Proposition V.1 (and
therefore solving Problem 11.1). This can be justified in part by
the fact that, for a given stabilizing matrix gaii, if we con-
sider vectormin With smaller components, larger is the region
S(K,ug ), where the balB(4) can be contained. Moreover, we
claim that more stringent performances are associated, in gen-
eral, with larger gains and, in consequence, smaller regions of
linearity. These facts are illustrated through the proposed numer-
ical example. We are not able, however, to prove these conjec-
tures at this time. Nevertheless, in order to avoid ahgriori
choice ofamin. We can solve problem (25) (for a givel) iter-
atively in two steps as follows.

a) FiXamin and solve (25) folV, Y, R, o1, 02, k.
b) FixY and solve (25) folV, amin, R, 01, 02, k, in adding
the constraintd < aini) < 1,i=1,---,m.
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Fig. 1. 0" —Qmin = 1; *X” —omin = 0.7; and *4+" —atmin = 0.5.

The objective is to obtain the largest b&|{S) as possible, the the desired decay rate= 1. By using the LMI tool in MATLAB (with
stopping criterion depends on the valuegrpfand«. Note that, accuracy= 0.01), we obtain the following matrices:
for a givens, our method may be not able to give a solution to

problem (25) W= 0.6901 —0.0062} _ { 0.0258 —0.0239
5) To avoid some numerical problems, we can add some condition —0.0062  0.6629 " —0.0239 1.500
number onR andW or consider a security margin in the verifi- & =[-0.3592  —0.1421].

cation of LMI's. For example, we can consider LMI (16) by re- . . . . )
placing the right term of the inequality bywI>,, withw > 0 The b_a" of agm'fSS'ble |r!|t|al condltlor\sB(é). 'S de_flned by
chosen small enough. 6 = 1.7919 % 10”. Fig. 1.dep|cts Fhe evolut!op dfin function of the
6) In the nonsymmetrical saturation case, we consider chpsen decay rate for dl_fferent given coefficients of toleran_ae,,m
(with e = 7000). Thus, it shows the tradeoff among the size of the
ball of the admissible initial conditions, the desired decay rate, and

tmax(i), T R@HT > Umax(i) the tolerance of saturation. Note that if we decrease,, that is, we
sat(Kyr) = § K, ff —Umin(i) < K@ < Umax(i) allow a greater level of saturation, then we obtain larger dontahs.
—Umini), If K@z < —tming) Furthermore, the larger i$, that is, the more stringent is the exigence
] ) in terms of linear performance, then the smaller is the dor3ain for
WIth max(i)s Umin(i) > 0, Vi = L. m. With  \yhich we guarantee the asymptotic stability of the saturated system.

this definition, results of Section Il apply. Thus, Propo- gy nymerical simulation, we show in Fig. 2 the trajectories of
sition IV.1 and problem (25) apply by considering in (18kne saturated closed-loop system and the different sets of interest,

3 7 . - 7 . 2 i F) 2 >
W (Urmin(5) s Umax(s) )~ INStEA Ofug;). namely, B(6), S(W~',x™') and S(K,«§). Of course, the real
region of attraction of the origin is nonconvex and greater than the set
V. |LLUSTRATIVE EXAMPLE S(W~', k™), but such a region can be obtained in general only by

) ) _ simulation and for very simple example.
Consider the example borrowed from [24]. System (1) is describedyye compare our approach with some published results.

by the following data: * In[21], we have studied the same example via an approach based

on Riccati equations (ARE-based approach). The obtained ball

A= { 1 1-5} Ay = {0 —1} of admissible initial conditions is smaller because we obtain
0.3 -2 0 0 21.0751. Hence, for this example, we have a gain of 8502.4%
B {1()} S relative to the size oB(6).
Tl - » Consider the results proposed in [4] and, more especially,
Corollary 1, p. 873. Our notation.i, corresponds tav in
We want to compute a saturated control law as defined in (3)wyite [4]. By applying relation (2.27) in [4] to our system, it follows
15. In this sense, we apply optimization problem (25) with 7000. — (|| Ad||/p2(A+ ((L+ amin)/2) BK)) = 7o, where the matrix

We choose the coefficient of tolerance of saturation, = 0.5 and measureus (M) = Amax(M + M7)/2, whereas condition
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(2.28) readsio < (1 + ((1 — amim)||B|| 1 K|/2p2(A +

((1 + amin)/2)BK))). Hence, by using our numerical data,
we getamin = w = 0.5 andry = 0.6292, which implies that
condition (2.28) in [4] is not satisfied. Therefore, at the converse
of our results, from [4], it is not possible to conclude to the
stability of the closed-loop system (4). In this sense, our results
are less conservative than those of [4]. Moreover, by choosing
amin = w = 0.8, we getry = 0.4835, which satisfies condition
(2.28) in [4] becausé, < 0.8123. Nevertheless, we can observe «
that for

115

o(f) = {_115} , V8 e[-1,0]
the closed-loop system (4) is unstable, which contradicts the re-
sult given in [4] (see Fig. 2). Thus, the necessity to explicitely
define a set of admissible stabilizable initial conditions clearly [1]
appears.

[2

VI. CONCLUDING REMARKS

The local stabilization of linear continuous-time systems with sat- 3)
urating controls and time delay in the state was addressed through
the use of a Lyapunov—Krasovskii technique. The control law and
a domain of safe initial conditions, for which the stability asymp- [4]
totic of the saturated closed-loop system is guaranteed, were de-
termined from a convex optimization problem with LMI con- [5
straints. An optimization problem was presented to maximize the
size of the ball of admissible initial values. The conservativeness
of the results proposed in this paper is partly because of the rep-[6]
resentation chosen for the saturated system. Indeed, only the tra-
jectories of system (4) containedd{ &, uf ) can be represented  [7]
by those of system (13). Hence, all of the conditions obtained
from this representation are only sufficient. Furthermore, the con- (8]
sidered optimization problem can lead to a conservative solu-
tion. Some other LMI relaxation schemes and optimization prob- [g]
lems could be investigated. Given the complexity of the problem
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caused by both the time delay and the saturation occurence, how-
ever, the proposed method provides an interesting systematic pro-
cedure for computing an admissible solution.

In the time-varying delay case, that is, in the case in which the
delay satisfiesd < 7(t) < Tmax and7 < ¢ < 1.1In[12], the
authors study the quadratic stabilization of continuous-time sys-
tems with time-varying delay and norm-bounded time-varying
uncertainties, but without control constraints. Our results apply
by considering in the Lyapunov function defined in (15) (1 —

¢))S instead ofS. Thus, the ball of initial condition will be de-
fined by = £7' /(Amax(P) + (Tmax /(1 = O))Amax(R)).

In this paper, the considered control was based on Krasovskii ap-
proach. Nevertheless, the Razumikhin approach [6], [15], [16]
could be considered. In the context of Problem 1.1, we have
shown in [21] how the method based on Krasovskii approach
leads to less restrictive results than those obtained with the Razu-
mikhin approach.

In this paper, the considered control law was of the memory-
less type. Nevertheless, the desired control law may be expressed
under the formu(t) = sat(Kz(t) + Kiz(t — 7)). Then, we

can consider LMI's (17)Yj = 1 = 1,---,2™ by replacing the
termA,W by AyW + BD(v;)Y1, to compute’ = YW ! and

K, = Y, W~". In this last case, the knowledge about the delay
could be directly used in the control law. Such a study should be
the subject of a forthcoming publication.

WhenB(§) is an arbitrarily large known bounded set, the problem
to be treated is related for systems without delay= 0) to the
semiglobal stabilization: see, for example, [1], [18]. Recall that,
in this case, such a study requires some stability properties for the
open-loop system: all of the eigenvaluesdft+ A, must have
nonpositive real part. In the delay case+ 0), some studies on

the necessary open-loop stability, that is, on the system =
Az(t) + Aqz(t — 7), are needed. Such a study constitutes an
open problem.

Proposition 1V.1 could be extended to uncertain systems provided
some modifications of relations (16) and (17) Such an extension
should be studied in the future. A first answer for uncertain sys-
tems with polytopic uncertainty is proposed in [23].
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1994, be implemented at cheap cost. Instead, iterative operations along with

some memory are required.

In this correspondence, we also take a learning approach to friction
compensation. Our learning control scheme extends basically the work
in [16] to the problem of periodic trajectory tracking in mechanical
systems with friction. In particular, our learning control scheme differs
fundamentally from the repetitive control schemes [14], [15] and the
conventional iterative learning schemes [11]-[13]. Roughly speaking,
we apply the periodic signal and then wait for the closed-loop system
to settle until making the update.

Compared with other friction compensation methods, the proposed
learning control scheme has the following merits. First, it requires a
small amount of computational load for the compensation of friction.
It does need some memory to store feedforward input for one period,
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