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else if and length

sort
sign

else

sort
sign

end;
end;

end;
length

Fig. 4 shows the use of this switch curve on a nearby system when
A; b taking their values at� = 0:4; but the switch curve is the same
as in Fig. 3. The system’s trajectory still converges to almost its same
maximum limit cycle (shown as dotted curve) showing some robust-
ness of the disturbance switch curve. Any 2 × 2 matrixA; and any 2 ×
1 matrixb can be entered in the above using the switch curve specified
by � to explore other robustness properties.

For completeness, Fig. 5 shows the use of the switch curve (line
y = 0) in selecting the most stressful disturbance for state response.

III. CONCLUSIONS

Time maximum disturbances that are bounded can be synthesized in
feedback form using the obtained closed analytic form for the switch
curve of stable second-order systems. Although this switch curve of
closed analytic form was obtained for the maximum time severity dis-
turbance index, it is easy using the above ideas to get the switch curve in
closed analytic form for the usual time optimal task [3] for the damped
harmonic oscillator and all other second-order systems.
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Synthesis of Controllers for Continuous-Time Delay
Systems with Saturating Controls via LMI’s

Sophie Tarbouriech and João Manoel Gomes da Silva, Jr.

Abstract—The stabilization of linear continuous-time systems with time
delay in the state and subject to saturating controls is addressed. Suffi-
cient conditions obtained via a linear matrix inequality (LMI) formulation
are stated to guarantee both the local stabilization and the satisfaction of
some performance requirements. The method of synthesis consists in de-
termining simultaneously a state feedback control law and an associated
domain of safe admissible states for which the stability of the closed-loop
system is guaranteed when control saturations effectively occur.

Index Terms—Control saturation, linear matrix inequalities (LMI’s),
local stability, time-delay systems.

I. INTRODUCTION

The problem of stabilizing linear systems with saturating controls
has been widely studied these last years because of its practical interest:
see, for example, [2] for a bibliographical overview. In this context, sig-
nificant results have emerged in the scope of global [20] or semiglobal
stabilization [18]. These studies require some stability properties for
the open-loop system. Relaxing these assumptions, the local stabiliza-
tion has been investigated [26], [5].

The stabilization of linear systems with a delayed state is also a
problem of interest, because the existence of a delay may be a source
of instability (as the occurence of the controls saturation) [10]. Dif-
ferent conditions for the stabilization of time-delay systems via mem-
oryless control laws have been obtained. For an outline about the last
results on the delay systems, consult, for example, [15], [11], and ref-
erences therein, and the proceedings of the 13th World IFAC Con-
gress (San Francisco, USA—July 1996) or the 35th IEEE-CDC (Kobe,
Japan—December 1996).

Regarding linear systems with both delayed state and bounded con-
trols, some results on local or global stabilization via memoryless con-
trol laws have been stated. We may cite [4], [7], [8], [16], [19], and [25].
The stability conditions presented in these papers are mainly based on
the use of matrix measure, complex Lyapunov equations or, still, Razu-
mikhin’s approach.

This paper deals with the synthesis of stabilizing controllers for
linear systems with state delay and saturating controls. The objective
of the control design is twofold. It consists in determining both a
memoryless state-feedback control law to ensure some performance
requirements for the closed-loop system when the control is not
saturated, and a set of safe initial conditions for which the asymptotic
stability of the saturated closed-loop system is guaranteed. The
performance requirements are treated in terms of closed-loop poles
placement: the concept of�-stability is used (see [14], [15], and refer-
ences therein). The method used is based on the Lyapunov–Krasovskii
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approach [9]. The synthesis of both a suitable gain matrix and an
associated set of initial conditions is carried out by solving linear
matrix inequalities (LMI’s) [3].

The paper is organized as follows. Section II presents the system with
its properties and the problem to be solved. Section III deals with some
preliminaries. The synthesis of the controller is presented in Section
IV. Section V illustrates the results on a numerical example borrowed
from the literature. Finally, in Section VI, concluding remarks end the
paper.

Notations: <+ is the set of nonnegative real numbers. The nota-
tion X � Y (respectively,X > Y ); whereX andY are sym-
metric matrices, means that the matrixX � Y is positive semidefi-
nite (respectively, positive definite). For any real matrixA; AT , and
A(i) denote the transpose and theith row of matrixA; respectively.
In denotes the identity matrix in<n�n: �max(P ) and�min(P ) de-
note, respectively, the maximal and minimal eigenvalue of matrixP:

cof�g denotes a convex hull.C� = C([��; 0];<n) denotes the Banach
space of continuous vector functions mapping the interval[��; 0] into
<n with the topology of uniform convergence.k � k refers to either
the Euclidean vector norm or the induced matrix two-norm.k�kc =
sup���t�0 k�(t)k stands for the norm of a function� 2 C� : When
the delay is finite, then “sup” can be replaced by “max.”Cv� is the set
defined byCv� = f� 2 C� ; k�kc < v; v > 0g:

II. PROBLEM STATEMENT

Consider the linear continuous-time delay system subject to input
saturation described by

_x(t) = Ax(t) + Adx(t� �) +Bsat(u(t)); (1)

with the initial condition

x(t0 + �) = �(�); 8� 2 [��; 0]; (t0; �) 2 <+ � Cv� (2)

wherex(t) 2 <n is the state,u(t) 2 <m is the saturating control input,
� is the time-delay of the system, andA; Ad, andB are known real
constant matrices of appropriate dimensions. Pair(A;B) is assumed
to be stabilizable.

In the present paper, we consider a saturated state feedback,
sat(u(t)) = sat(Kx(t)); K 2 <m�n; with each component defined
for i = 1; � � � ;m

sat(K(i)x(t)) = sign(K(i)x(t))min(jK(i)x(t)j; u0(i)); (3)

whereu0(i) > 0; 8i = 1; � � � ;m: Thus, we consider the following
nonlinear system:

_x(t) = Ax(t) + Adx(t� �) +Bsat(Kx(t)): (4)

In general, for a given stabilizing state feedbackK, it is not possible to
determine exactly the region of attraction of the origin with respect to
system (4). Hence, a domain of initial conditions, for which the asymp-
totic stability of the system (4) is ensured, has to be determined. When
the open-loop system(u = 0) is stable, the global stabilization can
be studied (see [8] and references therein). Throughout the paper, no
assumption on the stability of the open-loop system is made. In this
sense, the problem to be solved is a problem oflocal stabilization.

Remark II.1: When saturations do not occur, we getsat(K(i)x(t))
= K(i)x(t); 8i = 1; � � � ; m: Thus, for allx(t) 2 S(K;u0) defined as

S(K;u0) = fx 2 <n;�u0 � Kx � u0g; (5)

system (4) admits the linear model

_x(t) = (A+BK)x(t) +Adx(t� �): (6)

We cannot conclude, however, that any trajectory initiated inS(K;u0)
is a trajectory of system (6).

Let us now define the�-stability [14].
Definition II.1: Consider the solutionss of the equation

det(F (s)) = 0; F (s) = sIn � (A + BK) � e�s�Ad: The linear
system (6) is said to be�-stable ifRe(s) + � < 0: Or, equivalently,
the system

_y(t) = (A+BK + �In)y(t) + e
��
Ady(t� �) (7)

is stable. In other words, system (6) is stable with the decay rate�:

The objective of the paper can be summarized as follows.
Problem II.1: Find both a state feedbackK and a set of initial con-

ditionsD0 such as follows.

1) The asymptotic stability of the closed-loop system (4) is guar-
anteed inD0; that is,8�(�) 2 D0; 8� 2 [��; 0]; system (4) is
asymptotically stable.

2) The linear closed-loop model (6) (that is, without saturations) is
�-stable in the sense of Definition II.1; that is, the trajectories of
(6) contained in the regionS(K;u0) are stable with a decay rate
�:

In [4], [16], and [25], conditions of stability for the closed-loop
system (4) are given in a general form (by using condition of norm
and matrix measure or Riccati equation) without explicitely defining
the set in which the asymptotic stability is effectively ensured. At
the converse, based on the Lyapunov–Krasovskii approach [6], our
objective consists in quantifying a set of admissible initial conditions
from which the asymptotic stability of the closed-loop saturated
system is guaranteed.

Remark II.2:

• When no limits on the control vector are taken into account (sat-
uration-free case), then the setD0 of the initial conditions that
may be stabilized is the setCv� considered in (2), provided that
the Krasovskii–Lyapunov theorem is satisfied [6].

• In both the delay-free(� = 0) and the saturation-free case, the
resolution of Problem II.1 simply consists in stabilizing a linear
system _x(t) = (A + Ad)x(t) + Bu(t) for which different so-
lutions are available depending on the stabilizability property of
pairs(A;B) or ((A + Ad); B):

III. PRELIMINARIES

Let us write the saturation term as

sat(Kx(t)) = D(�(x))Kx(t); D(�(x)) 2 <m�m
; (8)

whereD(�(x)) is a diagonal matrix for which the diagonal elements
�(i)(x) are defined fori = 1; � � � ; m as

�(i)(x) =

�
u0(i)

K(i)x
; if K(i)x < �u0(i)

1; if �u0(i) � K(i)x � u0(i)

u0(i)

K(i)x
; if K(i)x > u0(i)

(9)

and0 < �(i)(x) � 1:System (4) can then be written in the equivalent
form

_x(t) = (A+BD(�(x))K)x(t)+ Adx(t� �): (10)
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The coefficient�(i)(x) can be viewed as an indicator of the degree
of saturation of theith entry of the control vector. In fact, the smaller
�(i)(x); the farther is the state vector from the region of linearity
S(K;u0): Notice that�(i)(x) is a function ofx(t):

If we consider any compact setS0 � <n; it follows that for anyx(t)
belonging toS0; one may define a lower bound for�(i)(x) as

�min(i) = minf�(i)(x); x 2 S0g: (11)

Therefore,8x(t) 2 S0; the scalars�(i)(x); i = 1; � � � ;m; satisfy
�min(i) � �(i)(x) � 1: Define now matricesAj ; j = 1; � � � ; 2m; as
follows [13]:

Aj = A+BD(
j)K (12)

whereD(
j) is a diagonal matrix of positive scalars
j(i); for i =
1; � � � ;m; which arbitrarily take the value one or�min(i): Thus, if
x(t) 2 S0, then _x(t) can be determined from the following polytopic
model:

_x(t) =

2

j=1

�j;tAjx(t) + Adx(t� �) (13)

with 2
j=1 �j;t = 1; �j;t � 0: Note that the matricesAj are the

vertices of a convex polyhedron of matrices, and forx 2 S0, one gets
(A + BD(�(x))K) 2 cofA1; � � � ; A2 g: Note also that�min(i);
i = 1; � � � ;m; define the polyhedral set

S(K;u�0 ) = fx 2 <n; �u�0 � Kx � u�0 g; (14)

where every component of vectoru�0 is defined by(u0(i)=�min(i));
i = 1; � � � ;m: This set containsS0 and corresponds to the maximal
set in which model (13) can represent system (4) [or (10)].

IV. SYNTHESIS OF THECONTROLLER

Consider the following Lyapunov function:

V (xt) =x(t)TPx(t) +
t

t��

x(�)TSx(�) d�

P =P T > 0; S = ST > 0 (15)

wherext; 8t � t0; denotes the restriction ofx to the interval[t� �; t]
translated to[��; 0]; that is,xt(�) = x(t+ �);8� 2 [��; 0]:

Assume now that the following data is given as follows.

• A positive scalar� that represents the desired decay rate in the
zone of linear behavior.

• A vector�min such that each component�min(i); i = 1; � � � ; m;
satisfies0 < �min(i) � 1: This vector can be viewed as a
specification on the saturation tolerance.

Then, by settingJ = fj 2 [1; 2m];D(
j) 6= Img, which allows us
to consider all of the matricesAj described in (12), except the matrix
A+BK; the following proposition can be stated to solve Problem II.1.

Proposition IV.1: If two symmetric positive-definite matricesW 2
<n�n andR 2 <n�nexist, a matrixY 2 <m�n and a positive scalar
� solutions of the following LMI’s:

WAT + AW + Y TBT +BY + 2�W +R e��AdW

e��WAT
d �R

< 0 (16)

WAT +AW +R+ Y TD(
j)B
T +BD(
j)Y AdW

WAT
d �R

< 0; 8j 2 J (17)

W �min(i)Y
T
(i)

�min(i)Y(i) �u20(i)
� 0; i = 1; � � � ;m (18)

then the state feedback matrixK = YW�1 solves Problem II.1 with
respect to system (4) for every initial condition in the ball

B(�) = f� 2 Cv� ; k�k
2
c � �g with

� =
��1

(�max(W�1) + ��max(W�1RW�1))
: (19)

Proof: The existence of two symmetric positive-definite matrices
W 2 <n�n andR 2 <n�n; and a matrixY 2 <m�n satisfying
LMI (16), implies that the linear closed-loop system (6) is�-stable,
according to Definition II.1 (see also [15]). Furthermore, by some al-
gebraic manipulations, one can prove that the satisfaction of LMI (16)
also implies that

WAT + AW + Y TBT +BY +R AdW

WAT
d �R

< 0: (20)

From (20) and provided that LMI’s (17) are satisfied8j 2 J ; by set-
ting K = YW�1; P = W�1, andS = W�1RW�1; it follows by
convexity:

2

j=1

�j;t
x(t)

x(t� �)

T
M(j) PAd

AT
d P �S

x(t)

x(t� �)
< 0

(21)

with 2
j=1 �j;t = 1; �j;t � 0; andM(j) = (A+BD(
j)K)TP +

P (A+BD(
j)K)+S:Moreover, the satisfaction of LMI’s (18) means
that the ellipsoidS(W�1; ��1) = S(P; ��1) defined by

S(W�1; ��1) = fx 2 <n; xTW�1x � ��1g (22)

is included inS(K; u�0 ) [5]. Suppose now thatx(t) 2 S(K;u�0 ):
Hence, _x(t) can be computed from the polytopic system (13), and it
follows that the time-derivative of the Lyapunov functional defined in
(15) along the trajectories of system (13) is given by

_V (xt) =

2

j=1

�j;tx(t)
T (AT

j P + PAj)x(t)

+ 2x(t)TPAdx(t� �)

+ x(t)TSx(t)� x(t� �)TSx(t� �):
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From (21) and by using the fact that[x(t � �) � S�1AT
d Px(t)]

T

S[x(t� �)�S�1AT
d Px(t)] � 0 is equivalent to�x(t� �)TSx(t�

�) + 2x(t)TPAdx(t� �) � x(t)TPAdS
�1AT

d Px(t); we get:

_V (xt) �

2

j=1

�j;tx(t)
T (M(j) + PAdS

�1AT
d P )x(t) < 0: (23)

Thus,�3 > 0 exists such that_V (xt) � ��3kx(t)k
2 < 0 and

thereforeV (xt) � V (xt ); provided that model (13) is valid, that is,
provided thatx(t) 2 S(K; u�0 ):

Furthermore, the Lyapunov functional defined in (15) satisfies

�1kx(t)k
2 � V (xt) � �2kxtk

2
c ; (24)

with �1 = �min(P ) and�2 = �max(P ) + ��max(S):
From (23) and (24), ifx(t0 + �) = �(�) 2 B(�); 8� 2 [��; 0];

then it follows:

x(t)TPx(t) � V (xt) � V (xt ) � ��1; 8t � t0:

Hence, for any initial condition in the ballB(�); we get x(t) 2
S(W�1; ��1); 8t � t0: Because LMI’s (18) are satisfied, it follows
that x(t) 2 S(K; u�0 ); 8t � t0: Thus, for any initial condition
belonging toB(�), the model (13) represents the saturated system
(4). Hence, from (23) and (24), we can conclude that system (4)
verifies the conditions of the Krasovskii theorem [6] andV (xt) is a
local strictly decreasing Lyapunov function. Therefore, provided that
�(�) 2 B(�); the asymptotic stability of system (4) is ensured.

Remark IV.1:

• In the saturation-free case, only LMI (16) is of interest to prove
the closed-loop stability under the initial condition hypothesis (2).

• In the delay-free case, the Lyapunov function is the quadratic
oneV (x) = xTPx: Under the(A;B)-stabilizability hypoth-
esis, the termAdx(t) can be considered as an uncertain term. For
example, we can consider that this term is of the norm-bounded
type [17] and therefore decomposeAd asAd = DFE with
F TF � Ir: In this case, LMI’s (16)–(18) become the clas-
sical ones treating the problem of both saturation and uncertainty:
see, for example, the book [22]. Furthermore, if the pair((A +
Ad); B) is stabilizable, then Proposition IV.1 can be modified to
treat only the stabilization of saturated systems: see for example,
Proposition 3 in [5], in whichA is replaced byA + Ad:

Proposition IV.1 provides a condition allowing us to compute both
a matrixK and a ballB(�) of initial condition such that Problem II.1
is solved. It is interesting to come up with a solution such that the ball
of initial conditions is the largest as possible. In this sense, a first so-
lution consists in minimizing�: Another interesting solution consists
in minimizing the term[�max(P ) + ��max(S)) = (�max(W

�1) +
��max(W

�1RW�1)]:Nevertheless, the minimization of this term can
be very hard, even impossible, to directly obtain. Then by considering
some LMI’s imposing conditions on the maximal eigenvalue ofW�1

andR; some linear optimization criteria can be used. In particular, we
suggest the following optimization problem:

min�1 + ��

subject to

a) �1 > 0; �2 > 0;W > 0; R > 0; � > 0

b)
�1In In
In W

� 0

c) �2In �R � 0

d) �1 � �2

e) LMI's (16)–(18) of Proposition IV.1: (25)

The satisfaction of LMI b) implies that�max(W
�1) = �max(P ) �

�1: In the same way, the satisfaction of LMI c) means that�max(R) �
�2, which corresponds to have�max(W

�1RW�1) = �max(S) �
�2�

2
1 : Hence, we get�max(P ) + ��max(S) � �1 + ��2�

2
1 and from

LMI d) it follows �max(P )+ ��max(S) � �1+ ��2�
2
1 � �1+ ��31 :

Therefore, because� = 1=(�(�max(P) + ��max(S))); we get� �
1=(�(�1+ ��31)): If we minimize the criterion as defined in (25), then
we maximize the bound1=(�(�1 + ��31)) and thus greater� tends
to be. In other words, by using the optimal problem (25), we orient
the solutions of LMI’s (16)–(18) in the sense to obtain the ballB(�);
associated with the gainK = YW�1; as large as possible.

With respect to the optimization problem (25), we can formulate the
following comments.

1) In problem (25), we consider a criterion with multiple objectives
in which � is a positive scalar that can be used to assign relative
weight to�1 or �: Thus, the positive scalar� can be considered
as a parameter of synthesis. For a given pair(�min; �) [such that
LMI’s (a)–(e) are feasible], one can iterate on� in view to obtain
the best associated�:

2) In fact, the solution of (25) is a tradeoff between the performance
requirements in terms of decay rate� around the origin, the toler-
ance of saturation�min, and the size of the resulting ballB(�):
This tradeoff will be shown in the illustrative example. More-
over, if the designer imposes a certain level of requirements,
the problem (25) may be not solvable; i.e., the resulting LMI’s
(a)–(e) may be not feasible.

3) In practice, the given data are often constituted by both the decay
rate and a minimal ball of initial statesB(�min): Given the pair
(�min; �); the objective consists then, if possible, in fixing the
parameters�min(i); i = 1; � � � ;m and� to obtainW; Y and�
giving K = YW�1 and satisfying�min � 1=(�(�max(P) +
��max(S))): In this case, we have to add in the optimization
problem an upper bound for�1 depending on�min:

4) One difficulty regarding the application of Proposition IV.1 or
problem (25) resides in the necessarya priori choice of the vector
�min; that is, of the different matricesD(
j):We conjecture that
the smaller the components of vector�min; both the larger the
domain of admissible initial states and the more stringent the
performance specification for which it is possible to find a so-
lution, verifying the conditions given in Proposition IV.1 (and
therefore solving Problem II.1). This can be justified in part by
the fact that, for a given stabilizing matrix gainK; if we con-
sider vector�min with smaller components, larger is the region
S(K;u�0 ), where the ballB(�) can be contained. Moreover, we
claim that more stringent performances are associated, in gen-
eral, with larger gains and, in consequence, smaller regions of
linearity. These facts are illustrated through the proposed numer-
ical example. We are not able, however, to prove these conjec-
tures at this time. Nevertheless, in order to avoid thea priori
choice of�min; we can solve problem (25) (for a given�) iter-
atively in two steps as follows.

a) Fix�min and solve (25) forW; Y; R; �1; �2; �:
b) FixY and solve (25) forW; �min; R; �1; �2; �; in adding

the constraints0 < �min(i) � 1; i = 1; � � � ;m:
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Fig. 1. “�” �� = 1; “�” �� = 0:7; and “+” �� = 0:5.

The objective is to obtain the largest ballB(�) as possible, the
stopping criterion depends on the values of�1 and�: Note that,
for a given�; our method may be not able to give a solution to
problem (25).

5) To avoid some numerical problems, we can add some condition
number onR andW or consider a security margin in the verifi-
cation of LMI’s. For example, we can consider LMI (16) by re-
placing the right term of the inequality by�!I2n; with ! > 0
chosen small enough.

6) In the nonsymmetrical saturation case, we consider

sat(K(i)x) =

umax(i); if K(i)x > umax(i)

K(i)x; if �umin(i) � K(i)x � umax(i)

�umin(i); if K(i)x < �umin(i)

with umax(i); umin(i) > 0; 8i = 1; � � � ;m: With
this definition, results of Section III apply. Thus, Propo-
sition IV.1 and problem (25) apply by considering in (18)
min(umin(i); umax(i))

2 instead ofu20(i):

V. ILLUSTRATIVE EXAMPLE

Consider the example borrowed from [24]. System (1) is described
by the following data:

A =
1 1:5

0:3 �2
; Ad =

0 �1

0 0

B =
10

1
; � = 1:

We want to compute a saturated control law as defined in (3) withu0 =
15: In this sense, we apply optimization problem (25) with� = 7000:
We choose the coefficient of tolerance of saturation�min = 0:5 and

the desired decay rate� = 1: By using the LMI tool in MATLAB (with
accuracy= 0.01), we obtain the following matrices:

W =
0:6901 �0:0062

�0:0062 0:6629
; R =

0:0258 �0:0239

�0:0239 1:500

K = [�0:3592 � 0:1421]:

The ball of admissible initial conditionsB(�) is defined by
� = 1:7919 � 103: Fig. 1 depicts the evolution of� in function of the
chosen decay rate� for different given coefficients of tolerance�min

(with � = 7000): Thus, it shows the tradeoff among the size of the
ball of the admissible initial conditions, the desired decay rate, and
the tolerance of saturation. Note that if we decrease�min; that is, we
allow a greater level of saturation, then we obtain larger domainsB(�):
Furthermore, the larger is�; that is, the more stringent is the exigence
in terms of linear performance, then the smaller is the domainB(�) for
which we guarantee the asymptotic stability of the saturated system.

By numerical simulation, we show in Fig. 2 the trajectories of
the saturated closed-loop system and the different sets of interest,
namely, B(�); S(W�1; ��1) and S(K;u�0 ): Of course, the real
region of attraction of the origin is nonconvex and greater than the set
S(W�1; ��1); but such a region can be obtained in general only by
simulation and for very simple example.

We compare our approach with some published results.

• In [21], we have studied the same example via an approach based
on Riccati equations (ARE-based approach). The obtained ball
of admissible initial conditions is smaller because we obtain� =
21:0751: Hence, for this example, we have a gain of 8502.4%
relative to the size ofB(�):

• Consider the results proposed in [4] and, more especially,
Corollary 1, p. 873. Our notation�min corresponds tow in
[4]. By applying relation (2.27) in [4] to our system, it follows
�(kAdk=�2(A+((1+�min)=2)BK)) = ~r0; where the matrix
measure�2(M) = �max(M + MT )=2; whereas condition
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Fig. 2. State trajectories of the closed-loop saturated system with�(�) =
x(0); 8� 2 [�1; 0]: (S1):S(K;u ); (S2):S(W ;� ); (S3):B(�).

(2.28) reads:~r0 < (1 + ((1 � �min)kBk kKk=2�2(A +
((1 + �min)=2)BK))): Hence, by using our numerical data,
we get�min = w = 0:5 and~r0 = 0:6292, which implies that
condition (2.28) in [4] is not satisfied. Therefore, at the converse
of our results, from [4], it is not possible to conclude to the
stability of the closed-loop system (4). In this sense, our results
are less conservative than those of [4]. Moreover, by choosing
�min = w = 0:8, we get~r0 = 0:4835, which satisfies condition
(2.28) in [4] because~r0 < 0:8123:Nevertheless, we can observe
that for

�(�) =
115

�115
; 8� 2 [�1; 0]

the closed-loop system (4) is unstable, which contradicts the re-
sult given in [4] (see Fig. 2). Thus, the necessity to explicitely
define a set of admissible stabilizable initial conditions clearly
appears.

VI. CONCLUDING REMARKS

• The local stabilization of linear continuous-time systems with sat-
urating controls and time delay in the state was addressed through
the use of a Lyapunov–Krasovskii technique. The control law and
a domain of safe initial conditions, for which the stability asymp-
totic of the saturated closed-loop system is guaranteed, were de-
termined from a convex optimization problem with LMI con-
straints. An optimization problem was presented to maximize the
size of the ball of admissible initial values. The conservativeness
of the results proposed in this paper is partly because of the rep-
resentation chosen for the saturated system. Indeed, only the tra-
jectories of system (4) contained inS(K;u�0 ) can be represented
by those of system (13). Hence, all of the conditions obtained
from this representation are only sufficient. Furthermore, the con-
sidered optimization problem can lead to a conservative solu-
tion. Some other LMI relaxation schemes and optimization prob-
lems could be investigated. Given the complexity of the problem

caused by both the time delay and the saturation occurence, how-
ever, the proposed method provides an interesting systematic pro-
cedure for computing an admissible solution.

• In the time-varying delay case, that is, in the case in which the
delay satisfies:0 � �(t) � �max and _� � � < 1: In [12], the
authors study the quadratic stabilization of continuous-time sys-
tems with time-varying delay and norm-bounded time-varying
uncertainties, but without control constraints. Our results apply
by considering in the Lyapunov function defined in (15)(1=(1�
�))S instead ofS: Thus, the ball of initial condition will be de-
fined by� = ��1=(�max(P ) + (�max=(1� �))�max(R)):

• In this paper, the considered control was based on Krasovskii ap-
proach. Nevertheless, the Razumikhin approach [6], [15], [16]
could be considered. In the context of Problem II.1, we have
shown in [21] how the method based on Krasovskii approach
leads to less restrictive results than those obtained with the Razu-
mikhin approach.

• In this paper, the considered control law was of the memory-
less type. Nevertheless, the desired control law may be expressed
under the form:u(t) = sat(Kx(t) + K1x(t � �)): Then, we
can consider LMI’s (17),8j = 1 = 1; � � � ; 2m by replacing the
termAdW byAdW+BD(
j)Y1; to computeK = YW�1 and
K1 = Y1W

�1: In this last case, the knowledge about the delay
could be directly used in the control law. Such a study should be
the subject of a forthcoming publication.

• WhenB(�) is an arbitrarily large known bounded set, the problem
to be treated is related for systems without delay(� = 0) to the
semiglobal stabilization: see, for example, [1], [18]. Recall that,
in this case, such a study requires some stability properties for the
open-loop system: all of the eigenvalues ofA + Ad must have
nonpositive real part. In the delay case(� 6= 0); some studies on
the necessary open-loop stability, that is, on the system_x(t) =
Ax(t) + Adx(t � �); are needed. Such a study constitutes an
open problem.

• Proposition IV.1 could be extended to uncertain systems provided
some modifications of relations (16) and (17) Such an extension
should be studied in the future. A first answer for uncertain sys-
tems with polytopic uncertainty is proposed in [23].
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A Learning Approach to Tracking in Mechanical Systems
with Friction

Seong-Il Cho and In-Joong Ha

Abstract—This note describes a novel learning control scheme for
tracking periodic trajectories in mechanical systems with friction. It is
based on the fact that the solution of the closed-loop system tends to be
periodic in steady state. When the closed-loop system reaches the steady
state, the proposed learning control scheme updates the control input. By
doing this iteratively, the proposed learning control scheme eventually can
drive the tracking error to zero. Neither the information of the system mass
nor the parametric model for friction is required for successful tracking.
In particular, the proposed learning control scheme can be implemented
at cheap cost on a commercially available microprocessor. Furthermore,
its generality is well supported through rigorous convergence analysis.

Index Terms—Friction, iterative update, learning, periodic trajectory
tracking, steady-state oscillation.

I. INTRODUCTION

In motion control systems, friction is a primary source of distur-
bance, which can degrade control performance significantly. In this
context, various friction compensation methods have been considered
by many authors [2]. One of such friction compensation methods is
the model-based friction compensation approach taken in [3]–[9]. It
seems well suited for the case that an accurate parametric model for
friction is available. In reality, however, it is often hard to obtain an ac-
curate parametric model for friction. For this reason, a design method
without using a parametric model for friction was taken in [10], in
which state-dependent parasitic effects such as friction were approx-
imated by Gaussian neural networks. It requires a large computational
load, however, for the identification and compensation of friction.

On the other hand, it is well known that a learning approach is quite
effective in the case in whicha priori knowledge of the system model
is limited. In fact, learning control schemes have been popularly used
in robotic manipulators, gas-metal arc welding process, and CNC
machines [11]–[16]. Furthermore, the feasibility of a learning control
scheme for friction compensation has been well demonstrated in [15]
through experiments using a repetitive control scheme. The learning
control schemes are usually computationally simple and, hence, can
be implemented at cheap cost. Instead, iterative operations along with
some memory are required.

In this correspondence, we also take a learning approach to friction
compensation. Our learning control scheme extends basically the work
in [16] to the problem of periodic trajectory tracking in mechanical
systems with friction. In particular, our learning control scheme differs
fundamentally from the repetitive control schemes [14], [15] and the
conventional iterative learning schemes [11]–[13]. Roughly speaking,
we apply the periodic signal and then wait for the closed-loop system
to settle until making the update.

Compared with other friction compensation methods, the proposed
learning control scheme has the following merits. First, it requires a
small amount of computational load for the compensation of friction.
It does need some memory to store feedforward input for one period,
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