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ESTIMATES FOR SOME KAKEYA-TYPE MAXIMAL OPERATORS 

JOSE BARRIONUEVO 

ABSTRACT. We use an abstract version of a theorem of Kolmogorov-Seliverstov- 
Paley to obtain sharp L2 estimates for maximal operators of the form: 

J(f(x) = sup - f(x - y) dy. 
xeSe? jSj s 

We consider the cases where _ is the class of all rectangles in RI congru- 
ent to some dilate of [0, 11n-l x [0, N-1]; the class congruent to dilates of 
[0, N-I]n-l x [0, 1]; and, in R2, the class of all rectangles with longest side 
parallel to a particular countable set of directions that include the lacunary and 
the uniformly distributed cases. 

INTRODUCTION 

Let q be a family of bounded open sets in Rn containing the origin. For a 
locally integrable function f, we define the maximal operator associated to W 
by 

(0.~~ ~~~0 1 w() u- f(x - y) I dy . 
sew ISIs 

The cases where q is either the family of all rectangles in Rn with prescribed 
eccentricity or the family of all rectangles having longest side parallel to a given 
set of directions, are of particular interest and have been studied by many au- 
thors. 

The techniques used to prove such theorems are divided into two categories. 
One is the use of very delicate geometric arguments, that is, covering lemmas, 
and is found in [Cor 1-4, Str 1-2, F]. The other makes use of the Fourier 
transform (g-functions, Littlewood-Paley theory) and can be found, for ex- 
ample, in [NSW, CDR, and CF]. In this paper we use a variant of a theorem 
of Kolmogorov-Seliverstov and Paley to obtain sharp L2 estimates for certain 
maximal operators that include the ones studied in the above references. Argu- 
ments of this type have previously been applied to geometric maximal operators 
in [SI, Ha]. In particular, we obtain simpler proofs of some of these results. 
We prove the following: 

Theorem A. For N > 2, let MN denote the class of all rectangles in Rn con- 
gruent to some dilate of [0, 1]n-1 x [0, N-1]. For a locally integrable function 
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f, let 

(0.2) MNf(X) = sup R If(y)I dy. 
XEREMNY IRIR 

Then IIMNfIIL2 (Rn) < Cf (log N)tIfIIL2(Rl) - 

When n = 2, this is Theorem 1 in [Cor 1], which is also a consequence of a 
result of Stromberg in [Str 1], both obtained by covering lemma arguments. 

We also consider the following more singular operator in R . 

Theorem B. If we let 3WN denote the class of all rectangles congruent to some 
dilate of [0, 1] x [0, N-1]n-1 and define MN as in (0.2) we obtain 

(0.3) llMNfIIL2(Rn) < CnN(n-2)j2(1og N) IfIIL2(Rn) 

An estimate like (0.3) has also been obtained in [CDR], but our argument is 
simpler. 

In R2 we obtain a stronger result: Let _ l be a lacunary set of directions 
in the plane (see ?3 for the precise definition) and for a fixed N > 1 and 
k = 1, ..., N, let Wjk be uniformly distributed directions between wj and 
wj+ I. We form the maximal operator 

(0.4) x/tNf(X) = SU IjIf (y)I dy 
xER IRI 

where the sup is taken over all rectangles in R2 with largest sides parallel to 
some Wjk . We prove 

Theorem C. 1I#NfIIL2(R2) < C(logN)ifItL2(R2) with C independent of N and 
f.- 

By an argument similar to the one in [Cor 1 and Str 1], Cordoba has proved 
in [Cor 3] a weak-type (2, 2) inequality for the operator xN. 

The proof of Theorem C contains as consequences, the results in [Str 1, Str 
2] treating the lacunary and uniformly distributed case separately. The lacunary 
case has also been proved by Stein [S1] for p = 2 using the same ideas and was 
extended to I < p < oo by Fourier transform methods in [NSW]. 

Using the trivial L?? estimates, together with the M. Riesz interpolation 
theorem, we obtain the LP results for p > 2. 

The advantage of the method used here is that the geometry involved in the 
proofs is very simple compared with the original covering lemmas arguments. 
Also, these covering lemmas only give weak-type (2, 2) estimates and the strong 
type inequalities are then obtained by interpolating with cruder estimates for 
p < 2. This does not work for Theorem C since there is no LP result for YIN 
for p < 2. On the other hand, our method is essentially L2, which is very 
restrictive. 

The paper is organized as follows: 
In ? 1, using the ideas in [SI], we prove an abstract form of a theorem of 

Kolmogorov which will be the general set up for proving the above maximal 
theorems. The general idea here is to linearize the operators and then use the 
Hilbert space structure of L2 to obtain some algebraic inequalities that imply 
the boundedness of the maximal operator. 
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In ?2 we prove some simple estimates for convolutions in Rn that contain 
all the geometry necessary in the proof of the maximal theorems. 

Finally in ?3 we, after making some simplifications, apply the results of the 
preceding chapters to prove the above theorems. 

In the rest of this paper C (or C1, C2, ...) will denote a constant not 
necessarily the same on each occurrence. 

This paper is based on the author's Ph.D. thesis [B], written at the University 
of Rochester under the direction of Allan Greenleaf. 

1. THE ABSTRACT SETTING 

We will now describe a general method for proving L2 estimates for maximal 
operators that will be used in ?3 to prove Theorems A, B and C. These ideas 
were first used by Kolmogorov and Seliverstov (see [KS 1, KS2] and also [Z, vol. 
II, p. 161 ]) and later by Paley to establish some results on pointwise convergence 
of Fourier series. They were later extended by E. M. Stein to different problems 
in harmonic analysis. The following proposition is an abstract form of these 
(see also [S1, Ha]). We will, for simplicity, consider only the selfadjoint case 
that will be sufficient for our purposes though simple modifications allow one 
to treat nonselfadjoint operators. 

Proposition 1.1. Let A be a countable set and let {T }1eA be a family of self- 
adjoint linear operators on L2(S, dx), where (S, dx) is a c-finite measure 
space. Suppose that the following conditions hold: 

(i) TF are uniformly bounded. 
(ii) T, f (x) > 0 if f (x) > 0 for all u . 
(iii) If f > 0, then 

(1.1) TuTv f(x) < MT,ljp(v)f(x) + NvTp (,)f(x), 

a.e. for all , and v where (p is a fixed function from A into A and where 
MA, Nv are linear operators on L2(S) satisfying the following estimates 

(1.2) sup M,,f (x) < Mllf IIL2 

and 

(1.3) sup N,ff(x) < NllfIfL2 

for some constants M, N. 
(iv) For a dense subspace X of L2(S), we have 

(1.4) sup Taft(x) is finite. 

Then II sup/l Tff(x)IIL2 < Clf IIL2, where C can be taken to be M + N. 

Proof. Write A = Ul=1 Ai where each Ai is finite and for all i, Ai c Aj+l . We 
will first prove the proposition for the finite case. Let m be a positive integer 
and let ,u(x) be any measurable function with values on Am. By condition (iii) 
we have that for any f > 0 

(1.5) T,u(x) Tv f(x) < Mu(x) T,p(v)f(x) + Nv T,p(,u(x))f(x). 
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Since the operators T,, are selfadjoint and positive, by taking adjoints on equa- 
tion (1.5), we obtain 

(1.6) Tv T*(x)f(x) < Tp(v)MZ(x)f(x) + T(,(x))Nv*f(x), 
and since f(x) > 0, we take v = ,u(x) and obtain that 

(1.7) (T,(X)f, TZ(x)f) < (MZ(X)f(x), T;(Y(X))f(x))+(Nz(x)f(x), T;(x(X))f(x)). 

Let f > 0 be fixed. Given e > 0, we choose u(x) so that 

(1.8) (1 +e)Tj(X)f(x) > sup T,f(x). 
ILEAm 

Then by (1.7), (1.2) and (1.3) we have that if lIf 1L2 < 1 
2 

(1.9) sup T1f(x) <(1 +e)(M+N) sup Tv(#)f(x) 
I,EAm L2 IgIEAm L2 

for all f E L2 with lIfIIL2 < 1 since (1.9) is independent of ,u(x). And, since 
e can be made arbitrarily small, we have that 

2 

(1. 10) sup TMf(x) < (M + N) sup T(,)f(x) 
ILEA,, L2 AGAm AmL2 

If we assume further that f E X, then by (iv) 
2 

(1.11) sup T,f(x) < (M+N) supT,j(x) < 0 
YEAm L2 8 L2 

for feL2nX and IfIL2 < 1. 
This proves the proposition for the finite case and f E L2 n X. But the 

right-hand side of (1.11) is independent of m so that if we let m -* oo, we 
obtain 

(1.12) supT#f(x) < (M+N) 

for all f E X with lIfIIL2 < 1. Since X is dense in L2 we have that (1.18) 
holds for all f E L2 with lf IIL2 < 1 which is the desired conclusion. 

In the rest of the paper, we will be working on Rn with the usual Lebesgue 
measure. 

2. GEOMETRIC CONSIDERATIONS 

To estimate T# Tvf, we will need to use some simple properties of convolu- 
tions in R . 

The following fact is well known, see [H6r, p. 102]. 

Proposition 2.1. Let u and v be distributions on Rn with compact support. 
Then u * v is a distribution with compact support and 

supP(u * v) c supp u + suppv = {x + y: x E suppPu, y E suppv} . 

Definition. A set R in Rn will be called a rectangle if it is congruent to 
[a,bil]x... x[an,bn] forsome as and bi with a <bi, 1 <i<n. 
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Definition. Let E be a fixed number satisfying 0 < < 1 . We define W to 
be the class of all rectangles in Rn that are symmetric about the origin and 
congruent to some dilate of [-I, I]n-I X [-i, 2] Similarly we define W, to 
be the class of all cylinders in Rn that are symmetric about the origin and 
congruent to some dilate of the cylinder 

X = (XI, -Xn) ER n :x2 +. + x2_ < 1and lXnl < Q 

An element of F, is a cylinder D centered at the origin with a base of radius 
h and height ch and thus it can be described by the parameter ,u = (h, U) 
where 6 E Sn-I is a normal vector to the base of the cylinder. This association 
will be one to one if we identify the points (h, 6) and (h, -6) on R+ x Sn-I 

Thus, each D E , will be denoted by DAg. 
For a given ,u = (h, 0), let R" denote the class of all rectangles in q that 

are congruent to [ h, ̂ ]n- 1 x [- , h ] and have its largest face perpendicular 
to 0. 

The following lemma states that, for our purposes, all the rectangles in Wu 
and DA E F, are equivalent. 

Lemma 2.2. Let ,u = (h, 0) and let ,u be as above. Then for all R E ,u we 
have that for all x E Rn 

(2.1) IDXD (X) < RIXR(X) < IDI X,DI (X) 

where ,u' = ( n - lh, 0) and C1 and C2 are constants depending only on the 
dimension n and not on 1u or E. 

The proof is simple and is left to the reader. 
Now, let j = (h, 6), V = (K, y) and let R1 e& R, E2 ?,v. Let foI(x), 

~o2(x) be given by 

pi(x) = 
FR- IR(x) i = 1, 2. 

To estimate (PI * (P2(x), we have the following easy proposition that we prove 
for completeness. 

Proposition 2.3. With the above notation, we have that for all x E Rn 

(2.2) (PI * (O2(X) < CIE 

where E is a rectangle in Rn symmetric about the origin congruent to [- a2, a2 n-1 

x [-b, b] with a and b satisfying 

(2.3) a = max(2h', 2K'), where h' = (n - 1)112 h and K' = (n - 1)1/2K, 

(2.4) b = max(2Ea, d sin Uy), where d = min(2h', 2K'). 
E is oriented in such a way that its largest face is normal to 6 or y according 

to whether h > K or K > h. Oy denotes the angle between 6 and y. The 
constant C depends only on the dimension n and not on the rectangles R1 and 
R2. 

Proof. We want to estimate 

(2.5) ( * (o2(x) = j fol(x - y)P2(y) dy. 
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By Lemma 2.2 we have that 

(PI(x)* (P2(x) < CqI * 2(x), where 1(x) = IDIxDl (X), 

(2.6) f2(X) ID I XDU,(x) with,u' = ( n-h, 0) = (h', 0), 

= (n-lK, y) = (K', y). 

There is no loss of generality in assuming that h > K. Then, by changing 
coordinates if necessary, we can also assume that 0 = en, that is 

Da, ={(xI, .. ,x) E Rn: xl + +xn2+ 1 < h'2 and lxnl <?eh'/2}. 

By applying Lemma 2.2 again, we have that 

(2.7) P1 * p2(x) < CVIg * y2(x) 

where 

(2.8) VIg(x) = 1ixk(X) V/2(X)= A 'Xp2(X) 

where Rl is the rectangle {x E Rn: lxii < h'/2, i = 1,..., n - 1, and 
lxnl < eh'/2} and R2 is the rectangle x E Rn: xj < K'/2, i = , ...,n- , 
and lxnl < eK'/2} rotated by an angle of Oy about the e2, ..., en-,-plane, 
that is 

R2 = {x E Rn : Xil < K'/2 for i = 2, 3,.., n - 1; 
{xl cos Oy + xn sin Oy < K'/2 and lxn cos Oy - x1 sin Oyj < e'/2}. 

In order to estimate 1 * /2(x), we will use the following formula that can 
be easily obtained 

(2.9) qVI * Vi2(X) , l (y),2(x -y)dy 1R1 nR 
JR, I R2lI 

where IR = (h') n and 1R21 = (K') en 
There are two cases: 
Case (i). 2ea > d sin O y: in this case since we assumed h > K, we have 

4gh' > 2K' sin Oy . By Proposition 2.1 we have that VI * y2 will have support 
contained in the rectangle E = {x: 1xil < h' for i < n - 1, lxnl < 26h'} and 
thus JEl = 2n+' (h')ne. It is clear from (2.9) that for all x in E we have 

VIl* V2 (X) < I _) 
JR, I (h')ng 

Thus 

(2.10) VI * yi2(x) < 2n+I XExE(x)- 

Case (ii). d sin Oy > 28a, that is 2K' sin Oy > 4ch'. 
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By Proposition 2.1, I1 * t2 is supported on the rectangle E = {x E Rn 

Ixil < h' for i < n - 1, lXnl < K'sinOy} and IEI = 2n+l(h')n-'K'sin0y. By 
(2.9) we have that 

( 2. 1 ) YV'1 * Vt2 (0) 
K 
(K(h') (K'/lne) sin 1 y 

2n+ 

(h') 
n- 1K' sinO - El 

And by translating R2, it is clear that the measure of JR, n (x + R2)1 cannot 
increase so that we have 

2n+ 1 
(2.12) V1 * V2(x) < 2n? for all x in E. 

JEl 
Thus 

(2.13) V * yg2(x) < 2n+ 1E XE(x) for all x E R. 

By (2.6), (2.7), (2.10) and (2.13), we have that 

(2.14) (PI * (o2(X) < CI JXE(X) for all x E Rn 

where C is a constant depending only on the dimension n and E is the 
rectangle described in the statement of the proposition. 

A similar result holds for some more singular measures on R2: for h > 0 
and 0 E [ ' , I ] , let U(h, 0) be the distribution whose action on test functions 

.~ ~~ 4 

is given by 

(2.15) U(h, )(f)=A2 f(tcos 0, tsin 0)dt, f E CO (R2). 

Then we have 

Proposition 2.4. If f E CO (R2) is nonnegative, then for all (x, y) E R2, we 
have that 

(i) U(h, 0) * U(K, 0) * f (x, y) < 2U(2 max(h, K), 0) * f (x, y), or 
(ii) U(h, 0) * U(K ,Y) * f(x, y) < (4/IEI)xE * f(x, y) 

where E is a rectangle of dimensions 4max(h, K) and 2 min(h, K) sin G0 - yl, 
symmetric about the origin and with its longest side parallel to 0 or y according 
to whether h > K or h <K . 

The proof is similar to the preceding one and is left to the reader. 

Remark. Since for any rectangle E as above, there exists a parallelogram P 
centered at the origin, containing E such that 

(a) its longest sides are parallel to the longest sides of E; 
(b) the shortest sides of P are parallel to one of the coordinate axis; 
(c) IP1 < 21E1, 

we obtained that the conclusion (ii) above can be replaced by 
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3. PROOF OF THEOREMS 

Before we proceed in proving the theorems, we will make some simplifications 
in order to apply the results of the preceding paragraphs. 

Since MNf = MNIfl, it is enough to prove Theorem A for nonnegative 
functions. 

For N > 2 fixed, let m be an integer such that 21 < N < 21+1. Then if R 
is a rectangle in RI containing x congruent to [0, h]h-l x [0, hN-1J where 
h > O satisfies 2i < h < 2i+1 for some i E Z, we have that for all f > 0 

(3.1) IRI f(y)ldy < Cnf * yRjIXR'(X) 

where R' is a rectangle centered at the origin, congruent to [-2i, 2i]n-1 x 
[-2 -t, 2l-m] and with sides parallel to R, that is, R' belongs to M2- and 
has the same orientation as R. Thus R' = R. with u = (2i, 0), i E Z, 

0 E Sn-I . Also, by continuity of the Lebesgue integral, we can assume that 0 
belongs to a dense countable subset Q of Sn-I. 

Thus, Theorem A is equivalent to 

Theorem A'. Let Q {Wj}IEZ be a dense countable subset Of Sn-1. For 
ju (i, j) e Z2, let R, be the rectangle in 2-m congruent to [-2i, 2i] x 
[-2i-m, 2i-m] with wj as a normal to its largestface. Define T, and Tm by 

(3.2) 71f(x) = I XRM% * f(x) 

(3.3) Tmf(x) = sup I Tmf(x)j . 
it 

Then 

(3.4) 1||Tmf ||L2(Rn) < CnM11f11L2(Rn) 

Proof By positivity, we only need to prove (3.4) for f > 0. 

Clearly Tm is a bounded selfadjoint operator on L2 and if f(x) > 0 a.e. 
then T,7f(x) > 0 everywhere for all ,u. 

In order to apply the ideas of ? 1, we need to estimate Tm, Tm f(x) for f > 0 . 
Let 4u = (i, j) ? v = (k, 1), then by Proposition 2.3, we have that 

(3.5) TM T,mf(x) < Cl IEXE * f(x) 

where C1 depends only on the dimension n and E is a rectangle in Rn 
symmetric about the origin, congruent to [-a, a2]n-1 x [-b2 5 ] with a and 
b satisfying (2.3) and (2.4) and E is oriented according to the statement 
of Proposition 2.3. Thus E is an element of some M2-s where s satisfies 
1 < s < m - I and E is parallel either to RIL or R, according to whether 
i < k or k < i. Thus if o: Z2 *Z2 is defined by q,((i, j))=(i', j) where i' 
satisfies 2i'- I < (n - 1)1/22i < 2i , we have that 

(3.6) TX, T'Mf(x) < Cl(TP(#))f(x) + Tv(v)f(x)) 
where s = s(,u, v) < m - 1. We still have to eliminate the dependence of s on 

Lu and v and this is done by summing in s. One has 
m-1 

(3.7) TMTmf(x) < C1 >j Tps(#)f(x) + Ts)f(x). 
s=1 
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By repeating the steps on the proof of Proposition 1. 1, we obtain 
m-i 

(3.8) II Tmf mfI2(Rn) < 2C1 Z| ITS fIIL2(Rn). 
s=1 

The proof is now completed by induction on m: 
m = 1: T1 is dominated by the Hardy-Littlewood maximal operator, so 

IITfIIL2 < CIIfIIL2. Suppose that for all s < m we have that IITsfIIL2 < 

CsIIfIIL2 where C is independent of s and f . We can assume that C > Cl . 
Then by (3.8) 

m-1 
(3.9) IITmfL2 < 2C2 < 5IIfIIL2 ? C2m2IIfIIL2 

s=1 

This completes the proof of Theorem A' and hence of Theorem A. 
As a corollary we immediately obtain an improved version of Theorem 1 

in [Cor 1]. This was previously obtained by Stromberg in [Str 1] by covering 
lemma arguments. 

Corollary 3.1. Let 

MNf(x) = sup R j If(y)Idy, 
XE:R I{RI 

where the sup is taken over all rectangles in R2 satisfying 

(3.10) largest side of R 
N. 

shortest side of R 

Then for all f E L2(R 2) 

(3.11) IIMNf 1IL2(R2) < C(log N)1fL2R. 
Proof. This is just the case n = 2 of Theorem A. 

To prove Theorem B, we first have to introduce some more notation. As in 
the statement of Theorem A, let Q = {Wj }jEz be a countable dense subset of 
Sn- 1 . In order to simplify the argument, we will assume that for each wj E Q, 
there exists a Wk in Q such that Wk is orthogonal to wj . Let m be a positive 
integer. For ,u = (i, j) E Z2 , let C. be the cylinder, symmetric about the origin, 
congruent to {x = (x, .. , X): -2i- I < xl < 2i-1, (x22 +* XI) 1/2 < 2i-m} 
and such that its axis is parallel to wj . 

Define Smf(x) by 

(3.12) SZmf(x)= 1 
CMI x~ 

An argument similar to the one preceding Theorem A' shows that Theorem 
B is equivalent to the following. 

Theorem B'. With the above notation, let 

(3.13) Sm f(x) = sup ISZm f(x) . 

Then for all f E L2(Rn), we have 
n< 2 

(3.14) IIStmfI1IL2(Rn) < C2mn(2 MllfI1IL2(Rnl) 
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x 

FIGURE 

Proof. For ,u = (i, j), let ((u) = (i, k(j)) where wj is orthogonal to wk. 
Thus, if T,7nf is defined as in Theorem A', we have that for all f > 0. 

(3.15) Smf(x) < 2m(n-2) Tm(, )f(x) a.e. for all ,u E Z2. 

The theorem is then a consequence of the following. 

Lemma 3.2. For all ,u, v E Z2 and f > O we have 

rn-i 

(3.16) SmSv'f(x) < C2m(n-2) E T(M))f(x) + T(5))f(x) 
s=1 

where C is a constant depending only on the dimension,B: z2 z - 
2 is a fixed 

function and (p is the function on Z2 described above. 

Thus applying the reasoning of Proposition 1.1, we obtain from (3.16) that 
m-1 

(3.17) lISmfI122(Rn) < C2m(n-2) E IITSfIIL2(Rn) 
s=1 

By Theorem A', 11 TsfIiL2(Rn) < CS for all f E L2(Rn) satisfying IIfIiL2(Rn) < 
I. Thus we have 

(3.18) IISmf|1I 2(W) < C2m(n-2)m2 for all f with lIfIIL2(Rn) < 1. 

In order to complete the proof, we just need to prove Lemma 3.2. 

Proof of Lemma 3.2. The proof is a combination of the ideas in Proposition 
2.3 and Theorem A'. Let u = (i, j), v = (k, l) and assume that i > k. By 
(3.15) we have that for f > 0 

(3.19) SmSSmf(x) < 2m(n-2)Tm mS1f(x) 

where 

(3.20) T,(,)f(x)= 1 IXR * f(x) and Svmf(X) Xc1 * f(x) 

and after changing coordinates, if necessary we can assume that RM = {x E Rn: 

jxpi < 2i-1 for p < n - 1 and IxnI < 2i-1-m}. See the figure for n = 3. 
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An argument similar to the one in Proposition 2.3 shows that 

(3.21) Tm7(cm5 (x) < IE XE * f(x) 

where E is the rectangle {x E Rn: xpxI < 2i for p < n - 1, lXnl < d} where 
d = max(2i-m+l, 2k cos wle7). Thus if fl(i, j) = (2i, j) we get 

(3.22) T9m(P)Svmf(x) < CTs(Yv)) f(x), where s(,u, v) < m - 1. 

As in Theorem A', we add in s and get 
m-1 

(3.23) SumSm f(x) < C 2m(n-2) E Tfl(5(,u))f(x) if i > k. 
s=1 

The case i < k is obtained by "interchanging" ,u and v. Note that (3.16) 
includes both cases. This finishes the proof of the lemma and of the theorem. 

We will now show by examples that the power of log N in Theorem A and 
the power of N in Theorem B cannot be improved. 

Example A. For N > 1, x = (xI, ..., xn) in Rn, let CN be the "cylinder" 
{x E Rn: I < X12 + X2 < N2, 0 < xi < N for 2 < i < n}. 

Let 

fN (X) (x2 + X2)1/2XCN(X), 
then 

(3.24) IIfNIIL2 = CN n2)l2(log N)"2 

If x satisfies x2 + X2 j2, an easy computation shows that 

(3.25) MNfN(X) > CjlI logj 

and thus 

(3.26) IIMNfNIIL2(Rn) > C E N n2 ( J) Nn-2(log N)3. 
j=i 

Combining (3.24) and (3.26), we obtain that 

(3.27) IIMNfNIIL2(Rn) > C(log N)IIfNIIL2(Rn). 

Example B. Let f be the characteristic function of the unit ball in Rn so that 

lif IL2(Rn) = Cn 
For x in Rn satisfying {Ix > N, it is easy to see that 

(3.28) MNf(x) = CN(n-l)lxl-n 
and thus 

(3.29) IIMNfIIL2 > CN(n '. 

The following maximal operator has been considered by Cordoba in [Cor 3]. 

Let {wjo1}j? I be a lacunary sequence converging to zero, that is, there exists a 

number A satisfying 0 < A < 1 and such that 

(3.30) jt , ? < W ,0 
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Let N satisfy N > l, and for k = O, 1, ..., N- l, let Wjk satisfy 

(3.31) Wj+1,0 < Wjk < Wj,O 

and 

(3.32) Ik -k21 < wjkl- Wjk2I <? |Ik -k21 

where Aj = wj, o - wj+1, 0 and a satisfies 0 < a < 1. 
For locally integrable f in R2 consider the maximal operator 

(3.33) J(Nf(X) = sup jI f(y )Idy 
XER {{RI 

where the sup is taken over all rectangles in R2 having largest side parallel to 
(1, Wjk) for some j > 1 and k < N- 1. 

Then it is proved in [Cor 3] that eN satisfies the following weak-type esti- 
mate 

(3.34) l{x:JANf(x) > a > O}| < CA,a(log3N)a2If 12L2(R2) 

where C, a depends on A and a but not on N or f. Theorem C, stated in 
the introduction, shows that tN is bounded on L2(R2), with the same norm 
essentially. 

There is no loss in generality in assuming that the rectangles involved in 
(3.33) are centered at x and have dimensions 2ml x 2m2 where mI, M2 E Z. 
These affect X# only by a multiplicative constant. 

If Ro is such a rectangle, with dimensions 2m1 x 2M2 (mI > M2) and with 
its largest side parallel to (1, wj0k1), then we have that for f > 0 

(3.35) IJO If(Y)ldy ? 8Sm2T(mI, jo, k)f(X) 

where for x = (x, y) in R2 we have 

(3.36) Smf(x ,Y) = 2m+1 j f(x, y-s) ds 

and 

(3.37) T(i,j,k)f(x,y) = 1 f(X-S, y-SWjk) ds. 

Since Sm is dominated by the one-dimensional Hardy-Littlewood maximal op- 
erator acting in the y-variable which is bounded on LP for p > 1 , Theorem C 
is then a consequence of 

Theorem C'. For iEZ, j= ,2. and 0<k<N-1, let u=(, I,k) 
and define TMf by 

(3.38) Tf(x Y) 1 J f (x-s y -- swjk) ds, 

and 

(3.39) Tf(x, y) = sup ITMAf(x, Y)I 
it 
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then 

(3.40) IITfIIL2(R2) ? CA, a(logN)IIf IL2(R2). 

Proof. Again, it suffices to prove (3.40) for f > 0. Let j = (ij, Ii, k1), 
v = (U2, j2, k2) and let us estimate T,Tf(x, y). These estimates will fall 
into two different cases. 

Case l. Ij1 - 12 > 2. 
Assume, for the moment, that 12 > Ii . Then we have two subcases. 
Subcase 1.1. i2> ij . By Proposition 2.4 

(3.41) TyTVJ(x, y) ? lXE *f(X, Y) 

where E is a parallelogram with longest sides parallel to (1, Wj2k2) and length 
2i2+1 and vertical sides of length 2d = 2i'+1(wjIk1 - Wj2k2). 

Since wJ1k, /(WJ1k, - Wj2k2) < 1/( l - ) we have 

(3.42) TyTVf(x, y) < ? AMuTP(,)f(x, y) 

where ~o(i, j, k) = (i + I, j, k) and 

1 r2'Wjk 

(3.43) A(j,j,k)f(X , Y) 
= f(x, y - s) ds. 

Subease 1.2. il > i2. 

In this case, and inequality like (3.41) still holds with E being a parallelogram 
with longest side parallel to (1, Wj]k. ) and horizontal sides of length 2d where 

d = 2i2 . (Wjlk1 - Wjlk2) 
Wjl kl 

By (3.30) we have that d satisfies 212(1 - A) < d < 2-2 so that 

(3.44) Ty TAf(x, y) < l BvTp(4)f(x, y) 

where 

(3.45) B(i, j k)f(x, Y) = 2i1 j f(x - s, y)ds. 

The case where il > j2 is treated similarly and so we obtain that if jil -12 
>2 

(3.46) T Tvf(x,) 1 -, (ATp(,)f(x , y) + A T(,)f(x,y) 
+ ByTp()f(x, y) + BvTp(#)f(x, y)). 

Case 2. il - 21 <1. 
We again will first assume that 12 > jI and divide Case 2 into two subcases. 
Subcase 2.1. il > ii. 
Similarly to Subcase 1.1, by Proposition 2.4 we have that an estimate like 

(3.41) holds where E is a parallelogram with longest side parallel to (1, Wj2k2) 
and length 2i2+1 and vertical sides of length 2d where d satisfies 

(3.47) and (3.32. < d < 211wjo, 

by (3.31) and (3.32). 
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Now if [z] denotes the greatest integer less or equal than z, let LN be 
defined by 

(3.48) LN [ ( N ) log2] + I 

and for I = 0, 1,., LN let 
(3.49) 

(2i+l+l (I A - l)wj 2 +(I-A)awj}oN-'t 

Cbi,j,k)f (x, ~) N I+?(~awolf~(~-~ajN'f(x, y - s)ds. 

Then, as in the proof of Theorem A', one has 
(3.50) 

TMTVf(x, y) < 8 (Tf(M)f(x, y) + T()(x, y) + E C T9(v)f(x,y)) 

Subcase 2.2. iI > i2. 
As in Subcase 1.2, an estimate like (3.41) still holds only with the difference 

that now d satisfies 
(3.51) 2i2a(l - A)/N < d < 2 i2 

With LN as above, let 

(3.52) D[j,k)f(X,y) = (Y(/ )a) f(x-s, y)ads. 

We then obtain 
(3.53) 

Tp1Tvf(x, y) < 8 (Tp(P)f(X, y) + T,(v))f(X, y) + EiD!iT{(M )f(x,Y)) 

Similarly when Ii > 12. By (3.46) and (3.53) we obtain that for all ,u and v 

TyTv f(x (, y) < CA (TP(M,) + Tp(v) + AuT,(,v) + AvTq,(1i) 

LN 

(3.54) + BMT T,(v) + Bv Tqp(u) + j Cl To(Iv) 
1=0 

+ Cl T9(y) + DI Tp(V) + DfITl(hi)) f(x, y) 

where CA = C/(1 - A). 
Since operators A, B,, Cl and DI are dominated by a one-dimensional 

Hardy-Littlewood maximal operator acting in the x or y directions, we obtain 

(3.55) ilTf|IL2(R2) < 1 -(j + LN)IIlfIL2(R2) 

where LN is given by (3.48). Or equivalently 

(3.56) || TfIlIL2(R2) < CA a(log N)llfIL2(R2) 

with CA,a independent of N and f . 
This completes the proof of Theorem C'. 
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The proof of Theorem C' contains as consequences L2 versions of results 
previously obtained by different methods. See [Str 1, Str 2 and NSW]. 

Corollary 3.2. Let {w,1}00= be a lacunary sequence converging to zero. Let 

(3.57) Xl (x) = sup j If(Y) I dy, 
xER I4RI 

where the sup is taken over all rectangles in R2 with its longest side parallel to 
(1, Wn) for some n . Then 

(3.58) IL#lfIIL2(R2) ? CAIIfIIL2(R2). 

The proof of (3.58) is just a repetition of Case 1 in the proof of Theorem 
C'. This is also proved in [SI] using the same method. 

Corollary 3.3. Let el, e2, ..., eN be N uniformly distributed directions in R2 
and let 

(3.59) Jt N f (X) = Sup I+ fIfy) I dy 
xER IRI 

where R is any rectangle with one side parallel to the one of the ej's. Then 

(3.60) 1/(N fIIL2(R2) <? C(log N) IIfIIL2(R2) . 

The proof of the corollary is a slight modification of Case 2 in the proof of 
Theorem C'. 

Remark. It is an easy consequence of Fubini's theorem that Theorem C and its 
corollaries still hold in Rn as long as we have that the set of directions involved 
in the respective maximal operators lie in a fixed two-dimensional subspace of 
Rn . 
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