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‡ Institut de Mathématique de Bourgogne, UMR 5584 du CNRS, BP 47 870,

21078 Dijon Cedex, France
(e-mail: bonatti@u-bourgogne.fr)

(Received 21 November 2002 and accepted in revised form 16 January 2003)

Abstract. In an explicit family of partially hyperbolic diffeomorphisms of the torus T 3,
Shub and Wilkinson recently succeeded in perturbing the Lyapunov exponents of the center
direction. We present here a local version of their argument, allowing one to perturb the
center Lyapunov exponents of any partially hyperbolic system, in any dimension and with
arbitrary dimension of the center bundle.

0. Introduction
One of the classical problems of the theory of dynamical systems is the understanding of
the Lyapunov exponents. From Oseledets’ Theorem we know that Lyapunov exponents
are defined for almost every point with respect to any given invariant measure, and are
independent of the point if moreover the measure is ergodic. Pesin’s theory recovers some
hyperbolic behavior for the points whose Lyapunov exponents are all non-zero (see for
instance [FHY]). In particular, these points have well-defined unstable and stable invariant
manifolds. For these reasons, an ergodic invariant measure µ is called hyperbolic if all its
exponents are different from zero.

On the other hand, the presence of zero exponents creates many obstacles to a good
ergodic description of the system and is often related to some pathologies. For this reason,
it is important to understand in which situations the zero exponents could be removed by
perturbations.

In the negative direction a recent result by Bochi [Boc] shows that, for C1-generic non-
Anosov conservative diffeomorphisms on compact surfaces, almost every point has zero
Lyapunov exponents. For a higher dimensional version see [BocVi]. We hope that this
kind of result is typical only of the C1-topology and that zero Lyapunov exponents are
no longer generic for more regular systems. It is possible to illustrate this contrast in
the a priori simpler case of linear cocycles: from Bochi we know that zero exponents
are generic for non-hyperbolic continuous cocycles of SL(2, R) but this is no longer true
assuming that the cocycle satisfies a Hölder condition; see [BoVi], [BoGVi].
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Our motivation is a very surprising result by Shub and Wilkinson [ShWi]. They deal
with a conservative system on the torus T 3 that is a skew product of an Anosov
diffeomorphism of the torus T 2 by rotations. This dynamics is partially hyperbolic, the
center foliation being defined by a fibration π : T 3 → T 2, where the fibers are circles.
This fibration, by general results from the theory of partial hyperbolicity, persists under
perturbations. Shub and Wilkinson build a conservative perturbation of this system (by a
smooth arc) in order to create positive exponents in the direction of the center leaves for
Lebesgue almost every point; it seems a priori impossible because the center leaves are
compact curves with bounded length, and so each center leaf cuts the set of points with
non-zero center Lyapunov exponents in a zero measure set (for the Lebesgue measure of
the leaf). The apparent contradiction disappears when one realizes that in fact the new
center foliation has a non-absolutely continuous holonomy.

Before stating our results we need to recall some definitions and elementary properties
of partially hyperbolic diffeomorphisms.

0.1. Partial hyperbolicity. Let f be a diffeomorphism on a compact manifold M and
denote by f∗ the differential of f . An f∗-invariant splitting TM = E1 ⊕ · · · ⊕ Ek is called
a dominated splitting if each Ei is a continuous f∗-invariant sub-bundle of TM and if there
is some integer n > 0 such that, for any x ∈ M , any i < j and any non-zero vectors
u ∈ Ei(x) and v ∈ Ej(x), one has

‖f n∗ (u)‖
‖u‖ <

1

2

‖f n∗ (v)‖
‖v‖ .

One of the bundles Ei of a dominated splitting is uniformly contracting (respectively
uniformly expanding) if, up to increasing the integer n above, one has ‖f n∗ (u)‖ ≤ 1

2‖u‖
(respectively ‖f n∗ (u)‖ ≥ 2‖u‖) for any vector u ∈ Ei . We say that f is partially
hyperbolic if it admits a dominated splitting TM = Es ⊕ Ec or TM = Ec ⊕ Eu or
TM = Es ⊕ Ec ⊕ Eu, where Es and Eu denote uniformly contracting and expanding
sub-bundles, respectively.

Recall that the properties of having a dominated splitting or of being partially hyperbolic
are C1-open properties, and the bundles of the splitting depend continuously on the
diffeomorphism.

Consider now a Riemannian metric on M . This metric allows us to define the Jacobian
of f on the bundle Ei , denoted by J i

f (x), as the modulus of the determinant of the
restriction of f∗(x) to Ei(x).

If f leaves invariant some ergodic measure ω, then the Lyapunov exponents of f are
well defined and constant ω-almost everywhere, so that one can speak of the exponents of f

for ω. Moreover, the Lyapunov spaces, at each point where they are defined, are contained
in the spaces Ei(x); this allows us to speak of the Lyapunov exponents in restriction to the
sub-bundle Ei .

Remark 0.1. If ω is an f -invariant ergodic measure for f and if TM = E1 ⊕ · · · ⊕ Ek is a
dominated splitting of f , then for each i the sum �(f,ω,Ei) of the Lyapunov exponents
of ω in restriction to Ei is well defined and is equal to

∫
M log J i

f (x) dω.
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Since the sub-bundle Ei varies continuously with f one gets that the function J i
f (x)

also depends continuously on f and so does �(f,ω,Ei).

0.2. Statement of the results. Let M be a compact manifold and ω some volume form
on M . We say that a C2-diffeomorphism f is Cr -stably ergodic for ω (with r = 1, 2)
if it preserves ω and if ω is ergodic for any ω-preserving C2-diffeomorphism g in a
Cr -neighborhood of f .

THEOREM 1. Let M be a compact manifold and ω be a smooth volume form on M .
Assume that f is an ω-preserving C1-stably ergodic diffeomorphism of M , and assume
that f admits a dominated splitting of the following type: Es ⊕ Ec ⊕ Eu, where the sub-
bundles Es and Eu are uniformly contracting and expanding, respectively.

Then there is a C2-diffeomorphism g arbitrarily C1-close to f for which the sum
�c(g, ω) of the center Lyapunov exponents (that is corresponding to Ec

g) of ω is non-zero.

Using Remark 0.1 above and Theorem 1 one obtains the following.

COROLLARY 0.2. The set of diffeomorphisms whose sum of the center Lyapunov
exponents (for ω) is non-zero contains a C1-dense open subset of the (open) set of partially
hyperbolic diffeomorphisms which are C1-stably ergodic for ω.

The existence of an open set of C2-partially hyperbolic diffeomorphisms which are
C1-stably ergodic for ω is assured by recent work of Dolgopyat and Wilkinson [DoWi,
Corollary 0.5].

Consider any Cr Riemannian metric on M . As f is C1-stably ergodic, for any
C1-perturbation g of f , the sum �c(g, ω) of the center exponents of g for ω is given
by

�c(g, ω) =
∫

M

log J c
g (x) dω(x),

where J c
g is the absolute value of the determinant of the restriction of Dg to the center

bundle of g, for the Riemannian metric on M .
So Theorem 1 is a direct consequence of the following.

PROPOSITION 0.3. Let (M,ω) be a compact manifold endowed with a Cr volume form,
r ≥ 2. Let f be a C1 ω-preserving diffeomorphism of M , admitting a dominated splitting
TM = Es ⊕Ec ⊕Eu, where Eu is non-trivial and is uniformly expanding, and Es (maybe
trivial) is uniformly contracting.

Then there are arbitrarily small C1-perturbations g of f such that
∫

M

log J c
g (x) dω(x) >

∫
M

log J c
f (x) dω(x).

In the result above we asked that the bundles Es and Eu be uniformly contracting
and expanding, respectively, because we were a priori interested in partially hyperbolic
diffeomorphisms. However, this property is not used in any argument of the proof: the
only property used is the domination. So our arguments actually prove the following.
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THEOREM 2. Let M be a compact manifold and ω be a smooth volume form. Let f

be an ω-preserving C1-diffeomorphism of M , admitting a dominated splitting TM =
E1 ⊕ · · · ⊕ Ek, k > 1.

Then there are ω-preserving diffeomorphisms g, arbitrarily C1-close to f , for which
the integral

∫
M

log J i
g(x) dω(x) is different from 0 for each i ∈ {1, . . . , k}.

Remark 0.4. Our local argument above has allowed us to deal with a large class of
diffeomorphisms. This generality has a cost: we lost some smallness and regularity of the
perturbation. In [ShWi] the perturbation inducing the positive center exponent is obtained
by a smooth arc of diffeomorphisms ft such that f0 = f and any ft , t 	= 0, has positive
center Lyapunov exponent (in fact the proof in [ShWi] consists in controlling the second
derivative of the unstable Lyapunov exponent with respect to the parameter). Here, we
produce an arc of Cr -diffeomorphisms, converging to f in the C1-topology when the
parameter goes to 0, but the arc is not differentiable at the parameter 0. Furthermore,
our general argument does not work in a Cr -topology when r > 1.

0.3. An application. We finish this section by giving an example where Theorem 1
applies.

Let M be a compact manifold endowed with a C2-volume form ω and let X be a
C1, volume-preserving Anosov flow of M . Let f be the time-one map of X: it is a
C1-partially hyperbolic diffeomorphism whose center bundle is directed by X, that is
Ec = RX.

Then Proposition 0.3 implies that there is an ω-preserving diffeomorphism g arbitrarily
C1-close to f such that

∫
M

log J c
g (x) dω(x) > 0. The theory of partial hyperbolic systems,

see [HPS], implies that any diffeomorphism g sufficiently C1 close to f admits a center
foliationFc

g conjugated to the center foliation of f . Moreover each leaf ofFc
g is g-invariant

and the length dc(x, g(x)) of the smaller center segment joining x to g(x) is uniformly
bounded by some constant d . Then

PROPOSITION 0.5. For any diffeomorphism g C1-close to f and any leaf Lc of Fc
g , the

set of points of Lc having positive Lyapunov exponents has Lebesgue measure 0 in Lc.

Proof. This is a consequence of the following argument (due to Mañé): if some leaf Lc

intersects the set with center positive (non-zero) exponents in a set of positive Lebesgue
measure (equivalent to the arc length in Lc) then the leaf must be exponentially expanded
by the map. But this is not possible because the center leaves can grow at most in a linear
way: the distance between x and gn(x) along the center leaf through x is at most nd . �

As a consequence, and as in [ShWi], we get that Fc
g is not absolutely continuous with

respect to Lebesgue for any ω-preserving g close to f such that
∫
M log J c

g (x) dω(x) > 0.
We can strengthen the results if the diffeomorphism is stably ergodic, since in this case

it follows that not only the integral of the center exponent is positive, but the exponent
itself is positive on a full measure set (i.e. ω-almost everywhere). From Theorem 1 and the
paper by Dolgopyat and Wilkinson [DoWi, Corollary 0.5] we can obtain an open set with
ergodic diffeomorphisms.
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COROLLARY 0.6. Let f be the time-t map, t 	= 0, of an ω-preserving Anosov flow.
There exists a C1-open neighborhood U ⊂ PH2

ω(M) (the set of partially hyperbolic C2

diffeomorphisms leaving the measure ω invariant) of f and a C1-open and dense subset
U0 ⊂ U in which any diffeomorphism is stably ergodic and the Lyapunov center exponent
of ω is not zero.

1. A three-dimensional case
In this section, in order to present the idea of the proof of Proposition 0.3 in a clearer
setting, we assume very strong simplifying hypotheses (which will be removed in the next
section):
• M is a compact 3-manifold endowed with a C2-volume form ω.
• f is an ω-preserving diffeomorphism of M .
• f leaves invariant a dominated splitting TM = Es ⊕ Ec ⊕ Eu where all the bundles

are one-dimensional.
• f admits a non-periodic orbit p0 and C1-local coordinates (x, y, z) centered at p

such that the expression of ω in these coordinates coincides with Lebesgue measure
on R

3, and the bundles Es , Ec and Eu are directed by ∂/∂x, ∂/∂y and ∂/∂z,
respectively. This condition implies the integrability of the bundles Es⊕Eu, Es⊕Ec,
Ec ⊕ Eu, which is not generic. This condition will simplify the argument, but is not
essential to it, as will be shown in the next section.

Remark 1.1. These hypotheses are satisfied by the time one map of the vector field
obtained by suspending a linear Anosov map A of the torus T 2, and also by any map
obtained as the product of A of T 2 by a rotation of the circle S1.

Let V be a neighborhood of p0 where the local coordinates (x, y, z) are defined,
endowed with the Euclidean metric. For any r > 0 small enough, we denote by Br the ball
of radius r (for this metric) centered at p0.

Let B(0, 1) be the unit ball of R
3, and denote by µ the Lebesgue measure on B(0, 1).

Given any ball Br ⊂ V we denote by ϕr : Br → B(0, 1) the diffeomorphism whose
expression in the coordinates is a homothety of ratio 1/r . Given any volume-preserving
diffeomorphism h of B(0, 1) coinciding with the identity map on a neighborhood of the
boundary S(0, 1) = ∂B(0, 1), we denote by hr the diffeomorphism of M with support in
Br which coincides with ϕ−1

r ◦ h ◦ ϕr on Br .
We consider a volume-preserving diffeomorphism h of B(0, 1) coinciding with the

identity map on a neighborhood of S(0, 1) and preserving the first coordinate x.

THEOREM 3. For any such h, C1-close enough to the identity and different from the
identity map, one has ∫

M

log J c
fr

(x) dω(x) >

∫
M

log J c
f (x) dω(x)

for any r > 0 small enough, where fr = f ◦ hr .

1.1. A local estimate. Let us write h(p)∗(∂/∂z) = hu(p)∂/∂z + hc(p)∂/∂y .
We assume that ‖h − id‖C1 < 1 so that hu(p) > 0 for any p ∈ B(0, 1).
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LEMMA 1.2. With the notations above, if h is not the identity map then∫
B(0,1)

log hu(p) dµ(p) < 0.

Proof. Given any vertical segment γ (i.e. tangent to the z direction), we will first prove
that the integral of hu along γ is non-positive. Denoting by l(γ ) the arc-length of the curve
γ we have, since h is the identity close to the boundary of the ball, that∫

γ

hu(γ (ζ ))
dζ

l(γ )
= 1.

Then, since the logarithm is convex, it is possible to use the Jensen inequality to show that

l(γ )

∫
γ

log hu(ζ )
dζ

l(γ )
≤ l(γ ) log

∫
γ

hu(ζ )
dζ

l(γ )
= 0.

To see that the inequality is in fact strict we need to exhibit at least one point where hu

is less than one. Assume by contradiction that hu is constant equal to 1; as h coincides
with the identity close to the boundary, this implies that the coordinate z is preserved
by h. Recall that h preserves the coordinate x, so it leaves invariant each segment
σx0,z0 = {(x, y, z) ⊂ B(0, 1) | x = x0 and z = z0}. Furthermore, h coincides with
the identity map in a neighborhood of the boundary: so in any segment σ on which h is
not the identity, there is a point where the derivative (in restriction to σ ) is less than 1,
contradicting the fact that h preserves the volume. �

We denote I (h) = ∫
B(0,1)

log hu(p) dµ(p).

1.2. Perturbation of the action of f on the unstable direction. We fix some h as in the
subsection above and for any ball Br we denote fr = f ◦ hr . The aim of this section is
to describe the integral of the logarithm of the unstable Jacobian of fr . The difficulty here
is the control of the unstable direction, since it obviously changes after the perturbation.
We bypass this problem by substituting the true dynamics fr by some linear cocycle having
the same Lyapunov exponent for Lebesgue almost every point. Let us now describe this
cocycle.

We consider the one-dimensional fiber sub-bundle Eu
f of TM which is the unstable

bundle of f . For notational simplicity we write u(p) for the unit vector generating Eu
f (p).

Notice that this sub-bundle is not invariant by fr (but is invariant by f ). We now describe
an action Fr of fr on Eu

f , that is, for every p ∈ M , Fr(p) : Eu
f (p) → Eu

f (fr (p) is a linear
map defined as follows.
• The action of Fr coincides with the action of f∗ (we recall that f∗ is the differential of

f ) for all points outside the set Br ∪f −1(Br) (which is possible because fr coincides
with f so that Eu

f is fr -invariant on this set) since we would like to keep as much as
possible the information about the expansiveness of f .

• In Br , the action of Fr is the action of f∗ on the projection of (hr )∗u on Eu
f parallel

to the center bundle Ec
f of f , so that we keep artificially Eu

f as an invariant direction.

• Consider some point p ∈ f −1(Br). If the negative orbit of p (by f or equivalently
by fr ) is disjoint from Br then Fr coincides with f∗ at p. In the other case let q̃ ∈ Br
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and q = hr(q̃) ∈ Br be the points whose first passage in f −1(Br) by fr and f

respectively is precisely p, and denote by n(p) the integer such that p = f n(p)(q).
• The action of Fr on q̃ ∈ Br ignored a small vector v(q) at q in the Ec

f direction.
We consider the image f

n(p)∗ (v(q)) and we consider its projection w(p) on Eu
f

parallel to the new center bundle Ec
fr

. So w(p) is the correction we have to add

to the vector F
np
r (u(q̃)) ∈ Eu

f (p). We call A(p) the multiplicative effect of this
correction. Finally Fr(p) is the composition of f∗(p) by the homothety of ratio
A(p).

In what follows we make this procedure more precise.
For any p we denote f∗(u(p)) = λ(p) · u(fr(p)) with λ(p) = J u

f (p), and
Fr(p, u(p)) = (fr (p), λr (p) · u(fr(p))), where λr(p) is defined by:

λr(p) =




λ(p), if p /∈ B ∪ f −1(B),

λ(hr (p))hu
r (p), if p ∈ B, where hu

r (p) = hu(ϕr(p)),

λ(p)A(p), if p ∈ f −1(B).

We have to define A(p), for p ∈ f −1(Br). For any p ∈ f −1(Br) we define n(p) as the
least natural number such that p = f

n(p)
r (q̃) with q̃ ∈ Br (and n(p) = +∞ if the negative

orbit of p is disjoint from Br ). If n(p) = +∞ we choose A(p) = 1.
Let us write q = hr(q̃), which implies p = f

n(p)
r (q̃). We define (hr )∗(u(q̃)) =

hu
r (q̃) · u(q) + v(q). Then

(f
n(p)
r )∗(u(q̃)) = hu

r (q̃)

n(p)−1∏
0

λ(f i(q))u(p) + f
n(p)∗ (v(q)),

and

(F
n(p)
r )(u(q̃)) = hu

r (q̃)

n(p)−1∏
0

λ(f i(q))u(p).

F
n(p)
r (u(q̃)) is well defined because Fr is already defined out of f −1(Br).

Let Pu
r,p be the projection of TM|p on Eu

f (p) along the new center bundle. We denote

w(p) = Pu
r,p(f

n(p)∗ (v(q))).

Then A(p) is the multiplicative correction term we get when we replace F
n(p)
r (u(q̃))

by the projection Pu
r,p((f

n(p)
r )∗(u(q̃))), that is

A(p) = ‖Pu
r,p((f

n(p)
r )∗(u(q̃)))‖

‖Fn(p)
r (u(q̃))‖

= 1 + 〈w(p), u(p)〉
hu

r (q̃)
∏n(p)−1

0 λ(f i(q))
.

Notice that Fr is a measurable, uniformly bounded linear cocycle over fr , which is
a conservative diffeomorphism. Consequently, the Lyapunov exponent of the Lebesgue
measure is well defined for Lebesgue almost every point for this cocycle. Now let us show
that its integral is indeed the unstable exponent of fr .

Remark 1.3. Let m be the first return time in Br of a point p ∈ Br . By construction we
have that Fm

r (u(p)) is the projection of (f m
r )∗(u(p)) on the unstable bundle Eu

f along the
new center-stable bundle Ecs

fr
. Using the invariance of Ecs

fr
we have that this is true for any

future iterate that is a return to the ball.
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LEMMA 1.4. For every point p where the Lyapunov exponents are defined, the Lyapunov
exponent of p for Fr is the unstable Lyapunov exponent of p for fr .

Proof. Let p be some point of Br , and N > 0 such that f N
r (p) ∈ Br . Then, by Remark 1.3,

FN
r (u(p)) is just the projection of (f N

r )∗(u(p)) on Eu
f along the new center stable bundle.

This bundle is transversal† to Eu
f , and the vector (f N

r )∗(u(p)) belongs to an unstable
cone field whose angle with Eu

f is uniformly bounded, so that this projection affects
the norm in a uniformly bounded way and this correcting term disappears by taking the
logarithm and dividing by the iterate. Finally, the vector (f N

r )∗(up) is transversal to the
center stable bundle so that its exponential growth is the unstable Lyapunov exponent. �

From the last result we obtain the following.

COROLLARY 1.5.

∫
log J u

fr
(p) dω(p) =

∫
log (λr (p)) dω(p).

To see this, it suffices to note that the first integral corresponds to the integral on the
expansive Lyapunov exponent of fr and the second to the exponent of the cocycle, both
being the same (when they are defined) in consequence of Lemma 1.4.

1.3. The proof of Theorem 3. Denote by σu and σu
r the integral of the unstable Jacobian

for f and fr , respectively, i.e.

σu =
∫

log J u
f (p) dω(p) =

∫
log (λ(p)) dω(p)

and

σu
r =

∫
log J u

fr
(p) dω(p) =

∫
log (λr (p)) dω(p).

Our aim is to show the following result.

PROPOSITION 1.6. For any small r > 0 the difference σu − σu
r is strictly positive.

First, let us remark that λ(p) = λr (p) for p /∈ B ∪ f −1(B) and then

σu −σu
r =

∫
Br

[log(λ(p))− log(λr (p))] dω(p)+
∫

f −1Br

[log(λ(p))− log(λr (p))] dω(p).

† Here we use that h is C1-close to the identity so that the invariant (stable, unstable and center) bundles of fr

are close to the invariant bundle of f .
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Notice that∫
Br

[log(λ(p)) − log(λr (p))] dω(p)

=
∫

Br

log(λ(p)) dω(p) −
∫

Br

log(λr (p)) dω(p)

=
∫

Br

log(λ(p)) dω(p) −
∫

Br

log[λ(hr(p))hu
r (p)] dω(p)

=
∫

Br

log(λ(p)) dω(p) −
∫

Br

log[λ(hr(p))] dω(p) −
∫

Br

log(hu
r (p)) dω(p)

= −
∫

Br

log(hu
r (p)) dω(p)

= −vol(Br)I (h).

In the same way
∫
f −1(Br )

[log(λ(p)) − log(λr (p))] dω(p) = − ∫
f −1(Br )

log(A) dω(p).
In particular∣∣∣∣

∫
f −1(Br )

[log(λ(p)) − log(λr (p))] dω(p)

∣∣∣∣ ≤ vol(Br ) max
f −1(Br )

log(A(p)).

So we get

σu − σu
r ≥ vol(Br)

[
−I (h) − max

f −1(Br )
log(A(p))

]
. (1)

Let nr be the least strictly positive integer n such that f n(Br) ∩ Br is not empty.

LEMMA 1.7. There is some α ∈ ]0, 1[ and some constant C > 0 such that, for any r , one
has

max
f −1(Br )

|log(A(p))| ≤ Cαnr .

Proof. It is enough to find some α such that |A(p) − 1| ≤ C0α
nr .

Let us use the notation introduced for the definition of A(p), p ∈ f −1(Br): we write
p = f np (q̃), q ∈ Br and q = hr(q̃), and notice that n(p) ≥ nr . Then (hr )∗(u(q̃)) =
hu

r (q̃) · u(q) + v(q), and w(p) is the projection Pu
r,p(f n(p)(v(q)).

We have to show that
‖w(p)‖

hu
r (q̃)

∏n(p)−1
0 λ(f i(q))

≤ C0α
nr . (2)

By definition of the domination, there are constants C1 > 0 and α ∈ ]0, 1[ such that for
any point x ∈ M , any integer n ∈ N and any unit vectors w1 ∈ Eu

f (x) and w2 ∈ Ec
f (x),

one has ‖f n∗ (w1)‖ ≤ C1α
n‖f n∗ (w2)‖.

Then
‖f n(p)∗ (v(q))‖∏n(p)−1
0 λ(f i(q))

≤ C1α
n(p)‖v(q)‖ ≤ C1α

nr ‖v(q)‖.

Define C2 = max[‖PW (v)‖/‖v‖] where W is a plane in the center-stable cone, v is a
non-zero vector in the center-stable cone, and PW (v) is the projection of v on Eu

f parallel
to W . So ‖w(p)‖/‖f n(p)∗ (v(q))‖ ≤ C2. Let C3 be the max of 1/hu

r (x) for x ∈ B, so that
1/hu

r (q̃) ≤ C3. Now the inequality (2) follows immediately writing C0 = C1 · C2 · C3. �
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Proof of Proposition 1.6. Lemma 1.2 asserts that I (h) < 0. Using (1) and Lemma 1.7, it
is enough to find some r such that Cαnr < −I (h), that is, such that nr is sufficiently large.
As p0 is non-periodic, nr goes to +∞ when r goes to 0. �

End of the proof of Theorem 3. Notice that the perturbation hr has been chosen in order
to preserve the center-unstable bundle Ecu

f (recall that h preserves the first coordinate).
Moreover, as hr preserves the volume form ω, the center-unstable Jacobian of hr is
constant and equal to 1 (for any Riemannian metric on M coinciding with the Euclidean
one on the local coordinates we fixed in the neighborhood of p). So the integral of the
logarithm of the center-unstable Jacobian of fr is kept unchanged: it is equal to the one
of f . Observing that the center-unstable Jacobian is the product of the center Jacobian and
the unstable one, one gets that∫

M

log J c
fr

(x) dω(x) −
∫

M

log J c
f (x) dω(x)

=
∫

M

log J u
f (x) dω(x) −

∫
M

log J u
fr

(x) dω(x) = σu − σu
r > 0. �

2. Partially hyperbolic diffeomorphisms: C1-perturbations
The aim of this section is to prove Theorem 1 in the following setting.

M is a compact k-dimensional manifold endowed with a C1-volume form ω and
we denote by PH1

ω(M) the space (endowed with the C1-topology) of the ω-preserving
C1-diffeomorphisms f of M admitting a dominated splitting TM = Es ⊕ Ec ⊕ Eu in
three fiber bundles: Es (maybe trivial) is uniformly contracting and Eu is non-trivial and
uniformly expanding.

We choose a Riemannian metric ‖ · ‖ and we denote by J c
f (x) the center Jacobian of f

at a point x ∈ M for this metric.

THEOREM 4. There is a dense open subset of PH1
ω(M) of diffeomorphisms f for which∫

M

log |J c
f (x)| dω(x) 	= 0.

In fact we will prove Proposition 0.3, that is, for any diffeomorphism f ∈ PH1
ω(M)

there are arbitrarily small ω-preserving C1-perturbations g of f such that†∫
M

log J c
g (x) dω(x) >

∫
M

log J c
f (x) dω(x).

The proof is almost equal to the proof of Theorem 3: we will present a family of local
perturbations fr of f by composing f with a diffeomorphism hr whose support is a ball
Br of radius r around a non-periodic orbit p0. As in Theorem 3, hr is built by conjugacy
with a homothety of a diffeomorphism h on the unit ball of R

k . Two difficulties appear.
• The first difficulty is that we cannot choose hr in order to preserve exactly the integral

of the logarithm of a center-unstable Jacobian (or equivalently of the stable Jacobian:
the sum is always 0, due to the preservation of ω). To bypass this difficulty we

† We can see in the proof that the uniform contraction and expansion of the bundles Es and Eu is nowhere used.
The same argument, just using the domination, decreases

∫
M log Ju

f (x) dω(x) and increases
∫
M log Jc

g (x) dω(x).
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will perturb the sum
∫
M log |J u

f (x)| dω(x) + ∫
M log |J s

f (x)| dω(x) instead of just∫
M log |J u

f (x)| dω(x).
• In order to control the action of the perturbation on the unstable Jacobian, as in

the proof of Theorem 3 we build a cocycle Fu
r acting on the unstable bundle of f

and which coincides with f∗ out of Br ∪ f −1(Br ). This dissociates the role of the
perturbation on Br and on f −1(Br). The control of the action on f −1(Br) will
be identical as in Theorem 3. However, in Theorem 3, the action on the integral
of the unstable Jacobian due to the cocycle restricted to Br was just the product
vol(Br ) × I (h): this is no longer the case, but we will show that it remains true
‘asymptotically’ when r goes to 0.

2.1. Local perturbations. Let p0 be a non-periodic point of f (such a non-periodic
point always exists in our context). Let V be an open set containing p0. We can consider a
local chart ϕ : V → B(0, 1) ⊂ R

k (k = dim M) such that ϕ(ω) = Leb and that sends the
directions Es

p0
, Ec

p0
, Eu

p0
respectively to Ex = R

ds ×{0dc, 0du}, Ey = {0ds }×R
dc ×{0du},

Ez = {0ds , 0dc} × R
du , where ds, dc, du are the dimensions of Es

p0
, Ec

p0
, Eu

p0
, respectively.

We fix a Riemannian metric on M in such a way that ϕ is an isometry on the Euclidean
metric on B(0, 1).

As in the first section, we fix a volume-preserving diffeomorphism h of B(0, 1)

coinciding with the identity in the neighborhood of the boundary S(0, 1) and preserving
the ds first coordinates x1, . . . , xds . For any other radius r we can define the function
hr : B(0, r) → B(0, r) as the conjugation of h by the homothety of ratio r . Since there is
no confusion, we denote also by hr the map induced on M by hr that is the identity outside
Br = ϕ−1(B(0, r)) and ϕ−1 ◦ hr ◦ ϕ on Br .

Now we denote by fr = f ◦hr the perturbation of the diffeomorphism f , which clearly
preserves the measure ω.

Then Theorem 1 and Proposition 0.3 are a direct consequence of the following.

PROPOSITION 2.1. For any r > 0 small enough one has∫
M

log |J u
f (x)| dω(x) −

∫
M

log |J u
fr

(x)| dω(x)

>

∣∣∣∣
∫

M

log |J s
fr

(x)| dω(x) −
∫

M

log |J s
f (x)| dω(x)

∣∣∣∣.
We introduce the notations

σu
r =

∫
M

log |J u
fr

(x)| dω(x) and σu =
∫

M

log |J u
f (x)| dω(x).

In the same way we can also define σ s and σ s
r .

2.2. Local estimate. For any p ∈ B(0, 1) ⊂ R
k we define hu(p) as the Jacobian

(modulus of the determinant) of the linear map of Ez obtained as the composition of the
differential of h at p with the projection of R

k on Ez parallel to Ex ⊕ Ey . In other words
hu(p) is the Jacobian of the matrix (∂hi(p)/∂xj ), i > ds + dc and j > ds + dc, where hi

denotes the ith component of h in canonical coordinates.
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If we define analogously hs(p), our hypothesis that h preserves the ds first coordinates
implies that hs ≡ 1 on B(0, 1).

We define Iu(h) = ∫
B(0,1) log hu(p) d Leb(p) and one has:

LEMMA 2.2. For any h such that hu is not identically 1, one has Iu(h) < 0.

The proof is identical to the proof of Lemma 1.2, so we omit it.
Given a point p in Br , let hu

r (p) be the Jacobian (modulus of the determinant)
of the linear map Hu

r (p) : Eu
f (p) → Eu

f (hr(p)) obtained as the composition of the
differential (hr )∗(p) with the projection of Thr(p)M on Eu

f (hr(p)) parallel to Ecs
f (hr (p)).

Analogously, we can define the function hs
r (p).

LEMMA 2.3. With the above notations we have

lim
r→0

∫
Br

log(hu
r (p)) dω(p)

vol(Br)
= I (h)

and

lim
r→0

∫
Br

log(hs
r (p)) dω(p)

vol(Br)
= 0.

Proof. Let Ẽs
r , Ẽ

c
r and Ẽu

r be the bundles on B(0, 1) obtained as the image of the bundles
Es,Ec and Eu on Br by the composition of ϕ by the homothety of ratio 1/r .

Using the action of h on these bundles, one defines (in the same way as above) functions
h̃s

r and h̃u
r : B(0, 1) → ]0,+∞[. As ϕ is an isometry we get that h̃u

r (x) = hu
r (ϕ

−1(x/r))

and h̃s
r (x) = hs

r (ϕ
−1(x/r)). So,
∫

B(0,1)

log(h̃u
r (p)) dµ(p) =

∫
Br

log(hu
r (p)) dω(p)

vol(Br)

and ∫
B(0,1)

log(h̃s
r (p)) dµ(p) =

∫
Br

log(hs
r (p)) dω(p)

vol(Br)
.

To finish the proof it is enough to verify that h̃s
r (p) converges uniformly to 1 and that

h̃u
r (p) converges to hu when r goes to 0. For this, just notice that the bundles Ẽs

r , Ẽ
c
r and

Ẽu
r converge uniformly to Ex , Ey and Ez. �

2.3. The expanding cocycle. Here we define the actions induced by f and fr on a
convenient fiber bundle corresponding to the action on the expanding direction.

We consider the fiber sub-bundle Eu
f of TM (the unstable bundle of f ), with dimension

du. Notice that this sub-bundle is not invariant by fr , but is invariant by f .
Let Fr be the linear cocycle over fr and acting on Eu

f , such that for any p ∈ M the
linear map Fr (p) : Eu

f (p) → Eu
f (fr(p)) is defined as follows.

• If p /∈ Br ∪ f −1(Br ), we just define Fr (p) = (fr )∗(p) = f∗(p): this is possible
since Eu

f is invariant by f∗.
• If p ∈ Br , then Fr (p) is obtained as follows: first consider (hr )∗(p) acting on

Eu
f (p); its image is some subspace of TMhr (p). We compose (hr )∗(p) with the

projection Pu(hr(p)) : TMhr (p) → Eu
f (hr(p)) parallel to Ecs

f (hr (p)), getting a
linear map from Eu

f (p) to Eu
f (hr(p)). Finally we compose this map with f∗(hr (p)).
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• If p ∈ f −1(Br), let n(p) be the smallest positive integer such that p = f
n(p)
r (q̃)

for some q̃ ∈ Br (being ∞ when the negative orbit of p is disjoint from Br ).
If n(p) = +∞ we just define Fr (p) = f∗(p). If n(p) is finite, we correct
the expression by a multiplicative term that corresponds to recovering the center-
stable component of f r∗ that was forgotten by Fr (q̃). More precisely: Fr (p) =
f∗(p) ◦ Pu

r (p) ◦ (fr )
n(p)∗ (q̃) ◦ F−n(p)

r (p) where Pu
r (p) is the projection on Eu

f (p)

along Ecs
fr

(p).
We summarize this definition by the following:

Fr (p) =




(fr )∗(p), if p /∈ Br ∪ f −1(Br ),

(f )∗(hr(p)) ◦ Pu(hr(p)) ◦ (hr )∗(p), if p ∈ Br ,

f∗(p) ◦ Pu
r (p) ◦ (fr )

n(p)∗ (q̃) ◦ F−n(p)
r (p), if p ∈ f −1(Br).

Since our goal is to understand the behavior of the unstable volume, we also introduce
the trivial linear bundle over M whose fibers are R; denote this bundle by U . For notational
simplicity we write u(p) for the unit element in the fiber of U at the point p ∈ M .

We denote by Fr the linear cocycle over fr acting on U as Fr(p)(up) = λr(p)u(fr (p))

where λr(p) is the modulus of the determinant of Fr (p).
For any p we denote λ(p) = |det J uf (p)|, and Fr (p, u(p)) = (fr (p), λr (p) ·

u(fr(p))) where λr(p) is defined by the following.

Remark 2.4. It is possible to write the function λr(p) in the following way:

λr(p) =




λ(p), if p /∈ Br ∪ f −1(Br),

λ(hr(p))hu
r (p), if p ∈ Br,

λ(p)A(p), if p ∈ f −1(Br ),

where the function A(p) is the Jacobian of Pu
r (p) ◦ (fr )

n(p)∗ (q̃) ◦ F−n(p)
r (p).

PROPOSITION 2.5. With the notation previously defined we have

lim
r→0

σu
r − σu

vol(Br)
= I (h) < 0.

We devote the rest of this subsection to the proof of this proposition. As a first step we
show the next result.

LEMMA 2.6. For any h C1-close to identity and any small r one has

σu
r =

∫
M

log λr(p) dω(p)

and

σu =
∫

M

log λ(p) dω(p).

Proof. The cocycle is defined in order to have the same exponents of the diffeomorphism,
in the same way as in §1. Since the function λr(p) is integrable then the exponents of the
cocycle can again be obtained by integration and the lemma follows. �
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From this lemma one deduces the following corollary.

COROLLARY 2.7.

σu
r − σr =

∫
Br

log hu
r (p) dω(p) +

∫
f −1(Br )

log A(p) dω(p).

According to Lemma 2.3 we know that∫
Br

log hu
r (p) dω(p)

vol(Br )
→ I (h),

showing that it is sufficient to verify that the other term goes to zero.

LEMMA 2.8.

lim
r→0

∫
f −1(Br )

log A(p) dω(p)

vol(Br)
= 0.

Proof. Recall that A(p) is the Jacobian of Pu
r (p) ◦ (fr )

n(p)∗ (q̃) ◦ F−n(p)
r (p) (see

Remark 2.4). In order to estimate this term let us try to understand it in a geometric way.
Writing q̃ = f

−n(p)
r (p) and q = hr(q̃), one can decompose the linear map

(hr )∗(q̃) : Eu
f (q̃) → TqM = Eu

f (q) ⊕ Ecs
f (q)

as (hr )∗(q̃) = (Hu
r (q̃), Vr(q̃)) where Vr(q̃) is a linear map from Eu

f (q̃) to Ecs
f (q) and

where Hu
r (q̃) is the linear map defined in the paragraph before Lemma 2.3 and whose

Jacobian is hu
r (q̃).

Consider now (fr )
n(p)∗ (q̃) : Eu

f (q̃) → TpM . One decomposes the tangent space TpM

as TpM = Eu
f (p) ⊕ Ecs

f (p). In this decomposition, (fr )
n(p)∗ (q̃) can be written as

(fr )
n(p)∗ (q̃) = (Fn(p)

r (q̃), f
n(p)∗ (q) ◦ Vr(q̃)) : Eu

f (q̃) → TpM.

So we get

(fr )
n(p)∗ (q̃) ◦ F−n(p)

r (p) = (Id, f
n(p)∗ (q) ◦ Vr(q̃) ◦ F−n(p)

r (p)).

Recall that Pu
r (p) denotes the projection of Tp(M) on Eu

f (p) along the center stable
space Ecs

fr
(p) of fr at p. So Ar(p) is the Jacobian of

Pu
r (p) ◦ (Id, f

n(p)∗ (q) ◦ Vq̃ ◦ F−n(p)
r (p)) = Id + (P u

r (p) ◦ f
n(p)∗ (q) ◦ Vr(q̃) ◦ F−n(p)

r (p)).

One denotes Ar (p) = Pu
r (p) ◦ f

n(p)∗ (q) ◦ Vr(q̃) ◦ F−n(p)
r (p) : Eu

f (p) → Eu
f (p).

Using this notation, one has Ar(p) = det (Id + Ar (p)).

LEMMA 2.9. There exists C > 0 and α ∈ ]0, 1[ such that, for any small r > 0 and any
p ∈ f −1(Br), we have ‖Ar (p)‖ ≤ Cαn(p).

We postpone the proof of this lemma and now we finish the proof of Lemma 2.8.
Lemma 2.9 asserts that Id + Ar (p) goes uniformly to Id as r → 0, and so Ar(p) goes
uniformly to 1 as r → 0; using the fact that vol(f −1(Br)) = vol(Br) we obtain:

lim
r→0

∫
f −1(Br )

log A(p) dω(p)

vol(Br)
= 0,

as claimed. �

http://www.journals.cambridge.org


http://journals.cambridge.org Downloaded: 13 Jan 2011 IP address: 143.54.235.202

Removing zero Lyapunov exponents 1669

Proof of Lemma 2.9. First notice that the norm of the projection P̃ u
p : TpM → Eu

f (f )

along Ecs
fr

(p) is uniformly bounded in r and p; for this, it is enough to see that the angle
	 (Ecs

fr
, Eu

f ) is greater than some constant C1, because the bundle Ecs
fr

is close to Ecs
f .

Then notice that the norm ‖Vq̃‖ is also uniformly bounded by some constant C2 since
hr is C1-close to the identity and Vq̃ is obtained by composing the differential (hr )∗(q̃)

with the projection on Ecs
f (q) along Eu

f (q).

Consider now the linear map F−n(p)
r (p) : Eu

f (p) → Eu
f (q̃). This map is

obtained by composing the differential f
−n(p)∗ (p) : Eu

f (p) → Eu
f (q) with the linear map

(Hu
r (q))−1 : Eu

f (q) → Eu
f (q̃) (defined in the paragraph before Lemma 2.3). Notice that

the norm of (Hu
r (q))−1 is uniformly bounded (in r and q ∈ Br ) by some constant C3.

Using these three inequalities, we want to bound the norm of Ar (p) = Pu
r (p) ◦

f
n(p)∗ (q) ◦ Vr(q̃) ◦ F−n(p)

r (p) : Eu
f (p) → Eu

f (p). For this, consider a unit vector
w ∈ Eu

f (p). Then w1 = (F−n(p)
r (p))(w) is a vector of Eu

f (q̃) whose norm is bounded by
C3‖(f −n(p)∗ (p))Eu

f (p)‖, where (f
−n(p)∗ (p))Eu

f (p) denotes the restriction to Eu
f (p) of the

linear map f
−n(p)∗ (p). So w2 = Vr(q̃)(w1) is a vector of Ecs

f (q) whose norm is bounded
by C2C3‖(f −n(p)∗ (p))Eu

f (p)‖. Finally Ar (p)(w) = (P u
r (p) ◦ f

n(p)∗ (q))(w2) is a vector of
Eu

f (p) whose norm is bounded by

‖Ar (p)(w)‖ ≤ C1C2C3‖(f n(p)∗ (q))Ecs
f (q)‖ ‖(f −n(p)∗ (p))Eu

f (p)‖,
where (f

n(p)∗ (q))Ecs
f (q) denotes the restriction to Ecs

f (q) of the map f
n(p)∗ (q).

Finally, by definition of the domination, there are constants C4 > 0 and α ∈ ]0, 1[
such that for any point x ∈ M , any integer n ∈ N and any unit vectors w1 ∈ Eu

f (x) and
w2 ∈ Ecs

f (x), one has ‖f n∗ (w1)‖ ≤ C4α
n‖f n∗ (w2)‖. As a consequence,

‖(f n(p)∗ (q))Ecs
f (q)‖ ‖(f −n(p)∗ (p))Eu

f (p)‖ ≤ C4 · αn(p).

So the lemma follows by choosing C = C1C2C3C4. �

2.4. The contracting cocycle. We keep the notation of the last subsection. Now we
consider the sub-bundle Es

f of TM invariant by f −1 and again we use a trivial bundle
S (analogous to U ) in order to control the effect of the perturbation on the contracting
components. It is possible to write the perturbation as gr = f ◦ h−1

r ◦ f −1, with support
on f (B). Choosing a Riemannian metric on f (Br) that makes f an isometry we can write
the corresponding cocycle as in the last section, just replacing f by f −1 and hr by gr .
With this definition it is possible to verify that the sum of the stable Lyapunov exponents
of the diffeomorphism is the same as the sum of the exponents of the cocycle and we can
write the difference between the perturbed and the unperturbed cases as a difference of
integrals. Again, from Lemma 2.3 we get that

lim
r→0

σ s
r − σ s

vol(Br)
= 0,

showing that the perturbation almost does not affect the sum of the exponents in Es .
This result together with the estimate of the perturbation in the expanding direction

(Proposition 2.5) ends the proof of Proposition 2.1: the action of the pertubation on the
sum of the integrated expanding exponents is greater than the action on the sum of the
integrated contracting exponents.
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2.5. Concluding the proof. Since the diffeomorphism preserves the volume measure ω

and then the sum of all exponents must be zero, it follows from the results of the last
subsections that the difference between the sum of the integrated center exponents for fr

and the sum of the integrated center exponents for f is different from zero, as claimed
(this ends the proof of Theorem 1, Theorem 4 and Proposition 0.3).

Notice that the perturbed diffeomorphism fr is fr = f ◦ hr where hr can be chosen
smooth: if f is Cr , the perturbation fr is Cr too.

Finally, the proof of Theorem 2 follows exactly from the same argument: consider
a volume-preserving diffeomorphism f admitting a dominated splitting E1 ⊕ · · · ⊕ Ek .
Then, for any 1 < i < k, one can build a volume-preserving C1-perturbation f i

r of f such
that, for any small r , the action of the perturbation on the sum of the integrated exponents
corresponding to Ei+1 ⊕ · · · ⊕ Ek is greater than the action on the sum of the integrated
exponents corresponding to E1 ⊕ · · · ⊕Ei−1. As a consequence, the perturbation f → f i

r

increases the sum of the integrated exponents corresponding to Ei .
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