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CLINICAL STANDARDS FOR LUNG HEALTH

Clinical standards for the dosing and management of TB drugs
S U M M A R Y

B A C K G R O U N D : Optimal drug dosing is important to

ensure adequate response to treatment, prevent devel-

opment of drug resistance and reduce drug toxicity. The

aim of these clinical standards is to provide guidance on

‘best practice’ for dosing and management of TB drugs.

M E T H O D S : A panel of 57 global experts in the fields of

microbiology, pharmacology and TB care were identi-

fied; 51 participated in a Delphi process. A 5-point

Likert scale was used to score draft standards. The final

document represents the broad consensus and was

approved by all participants.

R E S U LT S : Six clinical standards were defined: Stan-

dard 1, defining the most appropriate initial dose for

TB treatment; Standard 2, identifying patients who

may be at risk of sub-optimal drug exposure; Standard

3, identifying patients at risk of developing drug-related

toxicity and how best to manage this risk; Standard 4,

identifying patients who can benefit from therapeutic

drug monitoring (TDM); Standard 5, highlighting

education and counselling that should be provided to

people initiating TB treatment; and Standard 6,

providing essential education for healthcare profes-

sionals. In addition, consensus research priorities were

identified.

C O N C L U S I O N : This is the first consensus-based Clini-

cal Standards for the dosing and management of TB

drugs to guide clinicians and programme managers in

planning and implementation of locally appropriate

measures for optimal person-centred treatment to

improve patient care.

K E Y W O R D S : tuberculosis; pharmacokinetics; pharma-

codynamics; adverse drug reaction; management; dosing

Treatment of TB is aimed at more than simply curing
a patient. Possible drug-related adverse effects (AEs)
must be balanced against effective treatment to
reduce ongoing transmission, prevent future disease,
development of drug resistance and chronic post-TB
disease. Effective treatment for TB is highly depen-
dent on early diagnosis, and rapid and adequate
treatment initiation. Sub-optimal drug exposure often
facilitates the emergence of drug-resistant TB, and it
is now well-known that drug-related AEs are also
common. By studying the absorption, distribution,
metabolism and excretion (ADME) of individual TB
drugs, as well as the effect of drug transporters,1

important differences in pharmacokinetics (PK) have
been observed between patients. These inter-individ-
ual differences help to explain why some patients
show poor treatment response, or have a higher risk
of suffering from significant AEs.2 The introduction
of hollow-fibre infection models has contributed
significantly to our understanding of the relation
between drug exposure and antibacterial effect.3

Detailed dose fractionation studies have identified
optimal drug dosing strategies that maximise the
treatment efficacy and reduce the risk of acquired
drug resistance.4 An example of the value of these
critical evaluations is our reconsideration of how best
to dose rifampicin (RIF),5 a drug that has been in
clinical use since the 1960s. Initial dosing recommen-
dations were mainly influenced by price consider-
ations and not optimal efficacy. It is now widely
known that its maximum therapeutic effect is not
achieved at the standard recommended dose,6,7 a

recognised limitation of current treatment regimens.

Newer TB drugs such as bedaquiline (BDQ), delam-

anid (DLM) and pretomanid (Pa),8–10 as well as

repurposed antibiotics (such as moxifloxacin [MFX]

and linezolid [LZD]) are widely used in the treatment

of drug-resistant TB, but optimal dosing strategies are

still being investigated.11–13

AIM OF THE CLINICAL STANDARDS

Our aim is to provide guidance on ‘best practice’ for

dosing and management of TB drugs, identifying

important clinical considerations to inform dosing

decisions for both adults and children. For some TB

drugs, selecting the most appropriate dose is chal-

lenging, as there is limited evidence to inform dose

adjustments in specific circumstances. In these

situations, the pharmacological principles described

should guide dosing decisions.14 Fortunately, there is

a rapidly growing body of literature informing better

TB drug dosing, including in children.15

This consensus-based document describes the

following activities:

1. Defining the most appropriate initial dose for TB

treatment (Standard 1).

2. Identify patients who may be at risk of sub-optimal

drug exposure (Standard 2)

3. Identify patients at risk of developing drug-related

toxicity and how best to manage this risk (Standard

3).
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4. To identify patients who can benefit from TDM
(Standard 4).

5. Highlighting education and counselling that should
be provided to people initiating TB treatment
(Standard 5).

6. Provide essential education for healthcare profes-
sionals (Standard 6).

In addition, consensus research priorities were
identified.

METHODS

A panel of global experts was identified to represent
the main scientific societies, associations and groups
active in global TB management and TB treatment
research. Of the 57 experts initially invited, six did
not respond after one invitation reminder. All
respondents (n ¼ 51) were asked to comment via a
Delphi process on six draft standards developed by a
core team (n ¼ 8) of researchers; everyone provided
valid answers and constructive input. The final panel
included TB clinicians (n ¼ 24), TB public health
specialists (n ¼ 5), TB paediatricians (n ¼ 5),
pharmacologists (n ¼ 12), microbiologists/biologists
(n ¼ 4) and a TB trials methodologist (n ¼ 1). A 5-
point Likert scale (5: high agreement; 1: low
agreement) was used to indicate agreement with the
standards. At the first Delphi round, agreement was
high, with a median value of .4.6 (for all standards).
Due to the high agreement (defined as quartile
deviation [Q3-Q1/2] �0.6),16 no major changes to
the draft standards were made. Based on substantial
initial agreement, a draft document was developed by
the expert panel. The document underwent two
rounds of revisions, and the final version was
approved by consensus (100% agreement).

STANDARD 1

Every patient should receive the most appropriate
drug dose when starting TB treatment to avoid too
low or too high drug exposure, which could result in
treatment failure or adverse drug effects

In the current WHO guideline, advice is provided
regarding dose adjustment for bodyweight and renal
function.17 However, other factors contribute to
variability in the pharmacokinetics of TB drugs, such
as age, malnutrition, hepatic function, diabetes (DM)
and HIV status, pregnancy, disease severity, genetic
factors predisposing for rapid drug metabolism,
drug–drug interactions with concomitant treatment,
drug absorption and food-drug interactions. Selecting
the most appropriate doses for children is hindered
even more by insufficient data on PK, bioavailability
and treatment efficacy, especially among the most
vulnerable paediatric populations (including those
living with HIV, those who are malnourished and

those who fall in understudied age groups such as ,2
years). These aspects therefore require careful con-
sideration in conjunction with drug susceptibility
testing (DST) results (phenotypic and/or genotypic)
collected from the patient (or likely source in the
context of children) when selecting the optimal
treatment regimen and drug dosages to avoid
treatment failure and/or AEs.18 Details on individual
drugs and factors that require consideration are
presented in Figure 1.

Weight-based dose selection of TB drugs should be
carefully considered in cases with extremely high or
low body weights, and in children, especially when no
maximal dose limit is provided. It is important to
appreciate that severe states of malnutrition are
associated with changes in body composition, hypo-
proteinaemia, gastrointestinal disturbances (such as
diarrhoea and malabsorption) and decreased renal
function.19,20 This can impact the PK of some TB
drugs, thereby necessitating dose adjustments.21 In
children, age-related maturation of drug metabolism
pathways may be more important than weight,
although the two are usually closely correlated.
Age-related effects on renal clearance and metabo-
lism of TB drugs are also present in very young
children (,2 years old), often resulting in reduced
absorption, metabolism and elimination. A full
understanding of the age, weight and potential
hormonal impacts on drug metabolism in adolescents
is understudied. Increasing age is associated with a
decline in renal function, requiring dose adjustment
of renally excreted drugs (e.g., amikacin [AMK]). The
risk of hepatotoxicity (e.g., for isoniazid [INH],
pyrazinamide [PZA]) also increases with age.22

Therefore, age and weight must be taken into
consideration when deciding on the dose.23–25

For renally cleared drugs, dose adjustments are
required in individuals with renal impairment,
including those receiving renal dialysis, to avoid
supra-therapeutic drug exposure and the potential for
increased risk of AEs.26 Similarly, for TB drugs that
are predominantly metabolised by the liver or may
cause hepatotoxicity, dose adjustments or alternative
drugs require consideration in patients with severe
hepatic impairment.26 In patients with chronic liver
disease (e.g., cirrhosis), potentially hepatotoxic drugs
should be avoided, particularly if there are alterna-
tives available, given that the risk of severe hepatox-
icity and even liver failure is markedly increased.

A risk factor for developing TB disease in case of
TB infection,27 DM is also associated with delayed
treatment response and lower cure rates. The
increased risk of relapse and the emergence of drug
resistance, particularly in case uncontrolled glucose,
are potentially related to altered drug exposure due to
delayed gastric emptying and/or drug–drug interac-
tions with hypoglycaemic agents.28,29 Metformin can
be considered a preferred agent as its hypoglycaemic
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effect was not affected by TB drugs, especially
RIF.30,31 Patients who develop nausea and vomiting
while on metformin require alternative treatment.

As to the effect of HIV infection, more than half of
the studies that included both HIV-positive and HIV-
negative TB groups showed statistically significant
alterations in total exposure and/or peak plasma
concentrations for at least one first-line TB drug, but
studies were too heterogeneous to derive consistent
conclusions.32 Special attention should be paid to
drug–drug interactions.

Pharmacogenomics is known to play an important
role in the metabolism of INH, influencing efficacy
and risk of AEs.33 A meta-analysis demonstrated a 2-
fold higher likelihood of bacteriological failure in
rapid acetylators compared to slow acetylators.34 A

randomised controlled trial demonstrated that INH
drug-induced liver injury could be prevented in slow
acetylators by a dose reduction to 2.5 mg/kg/day and
without early treatment failure.35 However, determi-
nation of NAT-2 genotype (acetylator status) is not
routinely available in most settings. Repurposing the
widely available GeneXpert (Cepheid, Sunnyvale, CA,
USA) platform to perform such tests holds promise for
implementation in programmatic care.36 The acetyla-
tor status can also be assessed by therapeutic drug
monitoring (TDM) if this incorporates the measure-
ment of both INH and its metabolite acetyl INH. One
single sample of plasma or saliva is enough for the
assessment of the concentration ratio (or metabolic
ratio) of acetyl INH to INH, which can be translated
to fast or slow acetylator status of the patient.37–39

Figure Factors contributing to variability in pharmacokinetics, as well as the efficacy and toxicity of drugs used to treat TB.* *Factors
which are likely (black), might (light grey) or are unlikely (white) to contribute to variability in drug efficacy or toxicity and which should
be considered when making drug selections or dose adjustments. †WHO-recommended doses for adults.173 ‡Reference values for
Cmax after a standard dose.64 §The PK/PD targets were previously reported and are dependent on the precise MIC methodology used
in the respective studies.104 Because of the systematic differences between some MIC methods, these targets cannot be used directly
with some MIC methods.114 The PK/PD targets should be used in a multiprofessional team experienced in TDM. ¶Reference values for
Cmax after standard dose.174 **Reference value for Cmax after standard dose.175 TDM¼ therapeutic drug monitoring; Cmax¼maximum
concentration (of a drug); RIF¼ rifampicin; AUC¼area under the curve; INH¼ isoniazid; EMB¼ethambutol; PZA¼pyrazinamide; MFX
¼moxifloxacin; LVX¼ levofloxacin; LZD¼ linezolid; BDQ¼bedaquiline; CFZ¼ clofazimine; CS¼ cycloserine; TRD¼ terizidone; DLM¼
delamanid; IPM/CIL¼ imipenem/cilastatin; MER¼meropenem; AMK¼ amikacin; ETH¼ ethionamide; PTH¼ prothionamide; PAS¼
para-aminosalicylic acid; Pa¼pretomanid; MIC¼minimum inhibitory concentration; fAUC¼ free area under the concentration time
curve; Cmin¼minimum concentration (of a drug); PK¼ pharmacokinetics; PD¼ pharmacodynamics.
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Rifamycins (RIF, rifapentine [RPT], rifabutin)
induce several cytochrome P450 (CYP450) enzymes
and drug transporters, which can significantly de-
crease concentrations of drugs eliminated via these
routes.40,41 Conversely, INH inhibits a range of
CYP450 enzymes, including CYP3A4 and therefore
can increase concentrations of drugs metabolised by
this enzyme.42 As the inductive effect of RIF generally
outweighs the inhibitory effect of INH, the overall
effect is a net decrease in the concentrations of many
drugs. Caution should be exercised in the co-
administration of nephrotoxic TB drugs (e.g.,
AMK) with other nephrotoxic drugs (e.g., tenofovir),
with regular monitoring of renal function. Older
patients, people living with HIV and other immuno-
compromised patients with TB requiring polyphar-
macy are at particular risk of drug–drug interactions.

The presence of food can either enhance or reduce
drug absorption. As described in the product informa-
tion, co-administration with food is required for drugs
such as BDQ, DLM, Pa, RPT and clofazimine (CFZ),
whereas RIF and INH should preferably be taken on
an empty stomach,43–45 but they can be taken with a
light meal or snack to prevent or alleviate gastrointes-
tinal AEs and subsequent non-adherence.

When DST demonstrates low-level resistance
(LLR), clinicians should consider these findings and,
ideally, select a different drug to which the isolate is
fully susceptible or increase the dose and use TDM
when available. For some drugs, a higher dose can be
tolerated and achieve the target exposure (Table 1).
Although such a decision can be justified based on

pharmacological principles, supportive clinical data
are scarce and higher doses to overcome LLR should
be avoided where possible. Lower-than-standard
doses should be avoided and may only be considered
with an otherwise strong core regimen when severe
AEs to some drugs, such as LZD, cannot be otherwise
avoided or managed.46

STANDARD 2

Patients should be re-evaluated when demonstrating

slower response to TB treatment than expected

Further investigation is warranted when patients
are showing signs of sub-optimal treatment response,
such as lack of clinical improvement or persistent
sputum smear or culture positivity (.2 months for
drug-susceptible TB), despite phenotypically proven
drug susceptibility. Patients should be evaluated for
the following risk factors associated with sub-optimal
drug exposure: sub-optimal drug dosing, drug–drug
interactions, food–drug interactions, gastrointestinal
conditions (e.g., malabsorption and diarrhoea), dia-
betes, HIV/AIDS, non-adherence, host genetic factors
predisposing for rapid drug metabolism (e.g., NAT2
genotype), pathogen factors strains with borderline
or LLR as determined using phenotypic and/or
genotypic DST. As drug penetration in TB cavities
can be sub-optimal, verification of drug concentra-
tions and/or higher dosages may be required for
adequate treatment response.47

Although it is critically important to assess for

Table 1 Overview of low-level drug resistance mechanisms for key first and second-line TB drugs and their corresponding PK/PD
targets for TDM and increased dosing strategies

Drug Range*

Mode of
susceptible MIC

distribution* CC* LLR mutation(s)†
Typical LLR
MIC-range*

Standard
dose?‡

High
dose‡

Maximum
dose§ TDM?

Target
AUC/MIC¶

RIF 0.016–0.25 0.06 0.5 Borderline resistance
mutations#

0.125–4 No 20–35 mg/kg 2,100 mg Yes .271

INH 0.016–0.125 0.06 0.1 inhA (c-15t) 0.25–1 No 10 mg/kg 900 mg Yes .567
LVX 0.125–1 0.5 1 gyrA A90V, S91P

and D94A
2–4 No 15–20 mg/kg 1,500 mg Yes .146

MFX 0.064–0.25 0.125 0.25 gyrA A90V, S91P
and D94A

0.125–2 No 10–15 mg/kg 800 mg Yes .53

* All figures in mg/L tested using non-standardised protocols as reported in the literature.109,110 These values apply to MGIT and cannot necessarily be used for
other growth media because systematic differences may exist compared with MGIT.114

† A higher dose should only be considered, if no additional mutations are present that may raise the MIC even further, thereby conferring high-level resistance (e.g.,
katG S315T in addition to inhA c-15t or gyrA D94G in addition to gyrA A90V).109,110,176,177 Therefore, the detection of high-level resistance mutations or MICs of
.1 mg/L for MFX (i.e., the WHO clinical breakpoint) and, .1 mg/L for INH (CLSI currently recommends .0.4 mg/L) are exclusion criteria for the use of these
agents, irrespective of the dose used.109,110,176

‡ When one of these low-level resistance mutations is present, the standard dose is insufficient and should not be used. The level of evidence for whether, and to
what extent, low-level resistance can be overcome with a high dose is very low and largely based on expert opinion.178–180 The use of high-dose MFX has been
endorsed by the WHO to overcome low-level resistance as part of the long individualised regimen by extrapolating data to high-dose GFX, which is being
extrapolated further to high-dose LVX in this publication.110 Given these uncertainties, increased dosing for low-level resistant isolates should be avoided but may
be critical where only less effective or more toxic drugs are available. If higher doses are used in this context, the cautious approach would be to use TDM to verify
the drug exposure and not to consider the agent in question as a core drug of the regimen.
§ Drug safety at higher dosages is important, active monitoring and use of TDM can help to increase safety.
¶ The PK/PD targets were previously reported and are dependent on the precise MIC methodology used in the respective studies.104 Because of the systematic
differences between some MIC methods, these targets cannot be used directly with other MIC methods.114 The PK/PD targets should be used in a multi-
professional team experienced in TDM.
# L430P, D435Y, H445L/N/S, L452P, and I491F.109

PK¼ pharmacokinetics; PD¼ pharmacodynamics; TDM¼ therapeutic drug monitoring; CC¼ critical concentration; LLR¼ low-level resistance; MIC¼minimum
inhibitory concentration; AUC ¼ area-under the concentration time curve; RIF ¼ rifampicin; INH ¼ isoniazid; LVX ¼ levofloxacin; MFX ¼ moxifloxacin; MGIT ¼
Mycobacteria Growth Indicator Tube; CLSI¼ Clinical and Laboratory Standards Institute.
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medication adherence and underlying reasons contrib-
uting to potential non-adherence, it is equally impor-
tant to assess for other factors that could contribute to
sub-optimal drug exposure (e.g., the right dose has
been prescribed and no drug– or food–drug interac-
tions compromising drug exposure are present).
Patients with other medical conditions such as gastro-
intestinal conditions, DM48,49 and/or HIV/AIDS50 may
benefit from TDM, which allows for dose individual-
isation based on measurement of drug concentrations
(Figure 1).51,52 If these issues have been ruled out or
considered unlikely, repeating DST is recommended to
exclude any possibility of drug-resistant disease,
especially in situations including presence of cavitary
disease, and/or prior history of TB treatment, or
pregnancy. When DST results are discrepant, appro-
priate adjustments should be made. If drug suscepti-
bility of the Mycobacterium tuberculosis isolate is
reconfirmed for a patient who is not responding
adequately to treatment, it is important to consider
the potential for rapid metabolism of INH.34,35 Ideally,
a pharmacogenetic test or TDM should be performed
to determine the acetylator status of the patient.

As drug exposure reflects all these underlying
factors, TDM may be recommended in patients not
responding to treatment when available (Figure 1).51–54

STANDARD 3

The risk of TB drug toxicity should be minimised by
initial screening and ongoing clinical monitoring.
Toxicity specific to TB drugs should be prevented and
appropriately managed to prevent harm and limit its
contribution to poor treatment-adherence

As a result of receiving a multidrug combination,
TB patients may experience various AEs.55 Although
the global prevalence of AEs is generally under-
reported, AEs are more commonly experienced
(range: 8–96%) than previously appreciated.56 AEs
include gastrointestinal disturbances, hepatotoxicity,
ototoxicity, nephrotoxicity and peripheral neuropa-
thy (Table 2).56 Cutaneous reactions (not dose-/
concentration-dependent) to first- and second-line
TB drugs have also been reported.57 Certain AEs can
be life-threatening if not identified early and prompt-
ly managed.58,59 Several risk factors, which can be
classified as patient, drug and social, contribute to AE
risk and require consideration of dose adjustments
(Table 2).60

Patient-related risk factors for AEs include age, sex
and whether pregnant or nursing, which contribute to
individual variability in PK and associated exposure-
dependent AEs. Drug exposure can be affected by
ADME, which naturally varies with the extremes of
age. For example, the NAT2 enzyme does not seem to
fully mature until later childhood.61 Older patients
exhibit changes in body composition and reduction of

renal and liver function, predisposing them to AEs.62

Furthermore, comorbidities such as HIV/AIDS, DM,
and liver and renal diseases are frequently associated
with PK variability and AEs, either through organ-
specific changes or drug–drug interactions.63,64 First-
line TB drugs can be used during pregnancy, but
safety data to support the use of TB drugs during
pregnancy are scarce for second-line drugs.65 FQs and
BDQ should be used with caution, while ETH and
aminoglycosides should be avoided.66 Human data
on DLM and Pa are lacking. The characteristic AE
profiles of individual TB drugs require careful
consideration in specific patient populations and
dose adjustments, and avoidance of the drug may be
required/indicated (Table 2).

The joint effects of excessive alcohol consumption
and smoking, especially cigarettes, can increase the
frequency of severe AEs, most notably in patients
with prior hepatic steatosis or cirrhosis.67 Alcohol use
during TB treatment has also been associated with
peripheral neuropathy, hyperuricaemia and optic
neuritis.68 In addition to monitoring drug exposure
and potential dose adjustment, assessment of poten-
tial substance use and the need for specific support for
lifestyle improvements should be integral to TB
care.69 States of malnutrition also increase the risk
of toxicity.70

Routine monitoring and patient counselling/health
education is important during TB treatment to avoid
and identify AEs early.71,72 Careful medical history
taking is crucial as AEs are not always volunteered by
the patient.73 Patients should be reassured that TB
treatment is generally safe and AEs can be managed if
they occur. Although children tend to experience
fewer AEs than adults, monitoring recommendations
follow the same principles as in adults (Table 2).74

Although nausea is the most common, the most
important AE to first-line TB drugs is hepatotoxicity,
as it can be life-threatening. Liver function test
derangements are often mild and transient but can
be severe. Drug-induced liver toxicity has been
described for all first-line drugs (i.e., RIF, INH,
PZA) apart from EMB.75 In addition, all patients/
parents/care givers should be informed about the red/
orange discoloration of urine and other body fluids
by RIF, which is universal and not an AE.

Patient awareness and routine monitoring of visual
acuity and colour vision (Ishihara chart) to detect
optic neuritis is important if treatment involves EMB
or LZD (baseline and monthly checks recommend-
ed).76 Monitoring for visual changes can be challeng-
ing in young children, or critically ill patients, and
may not be feasible in many settings or where patients
have pre-existing eye disease, especially cataract.
Despite known challenges in testing visual changes
in young children or critically ill patients, this should
still be an objective of routine follow-up, or an
alternative agent should be considered.
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Table 2 Toxicity associated with TB drugs, potential risk factors for developing drug toxicity and recommended monitoring practices*

Drug Toxicity

Patient populations
at potentially greater

risk of toxicity)

Suggested
monitoring
(frequency) Comments

Drug-susceptible TB
INH � Hepatotoxicity

� Peripheral
neuropathy

� Cutaneous
reactions

Older patients (.65
years), sex (male),181

diabetes mellitus,182

host genetics (NAT2
variants for isoniazid
slow or intermediate
acetylators,131,183,184

HIV,185 liver disease

Liver function tests,
peripheral sensibility
(monthly)

To minimise risk of peripheral
neuropathy, co-administrated of
vitamin B6 is recommended,
particularly in patients at risk
(e.g., children, during pregnancy
or if alcohol abuse or other
predisposing condition is
present). In patients with liver
disease (without cirrhosis) and
with AST and ALT .5x ULN,
consider an alternative regimen
like RIF, EMB and LVX. In patients
with cirrhosis, consider use of an
alternative regimen (with an
injectable, EMB and LVX)

RIF � Hepatotoxicity
� Gastrointestinal

disturbances
� Cutaneous

reactions

Sex (male),181 HIV,185 liver
disease, polypharmacy
(drug-drug interactions)

Liver function (monthly) Check for drug-drug interactions
with all accompanying drugs,
online data bases available.
Educate patients about
discoloration of body fluids.

In patients with cirrhosis, consider
use of an alternative regimen
(with CPM, EMB, and LVX)

RPT � Hepatotoxicity
� Gastrointestinal

disturbances

Sex (male),181 HIV,185 liver
disease, polypharmacy
(drug-drug interactions)

Liver function (monthly) Check for drug-drug interactions
with all accompanying drugs,
online data bases available

PZA � Hepatotoxicity
� Optic neuritis
� Nephropathy
� Gout, joint and

muscle pains
� Gastrointestinal

disturbances
� Cutaneous

reactions

Older patients (.65
years), sex (male),181

HIV,185 liver disease,
renal disease

Liver function (monthly) Watch out for rash, drug-induced
liver injury and arthralgia. Omit in
older patients (.65 years). In
patients with liver disease
(without cirrhosis) and with AST
and ALT . 5x ULN, consider an
alternative regimen with RIF,
EMB and LVX. In patients with
cirrhosis, consider use of an
alternative regimen (with CPM,
EMB and LVX). In patients with
creatinine clearance ,30 mL/
min, consider using EMB and
PZA only 3 times a week (at the
usual dose)

EMB � Ocular neuritis Children (,2 years),186,187

diabetes mellitus,188

older patients (.65
years), HIV,185 renal
disease189

Colour/visual acuity
(monthly)

Reduce or stop with renal
insufficiency. Use commonly
avoided in young children and
patients that cannot reliably
report colour/visual acuity

� Multidrug-resistant TB
FQs (LVX/MFX) � Neurotoxicity

� QTc prolongation
� Musculoskeletal
� Gastrointestinal

disturbances

HIV (185), children (,2
years), children and
older patients (.65
years) (increased risk of
tendon damage)

(Electrolytes), QTcF
interval,1 painful
tendons/joints
(monthly)

LVX is less likely to cause QTcF
prolongation than MFX.190 MFX
can cause liver toxicity. LVX
needs dose reduction with renal
insufficiency

Risk of Achilles tendinitis or rupture
(especially when combined with
corticosteroids), arthralgia and
and aortic aneurysm/dissection
(rare events). Reduced seizure
threshold. Clostridium difficile
associated diarrhoea

BDQ � QTc prolongation Children (,2 years),186,187

HIV185
Electrolytes, liver

function, QTcF interval
(2 weeks, 12 weeks
and 24 weeks)

An increased monitoring of
baseline, 2 weeks and monthly
ECGs during the treatment is
recommended if BDQ is used in
combination with other QT-
prolonging drugs such as FQs
and CFZ.

Check for drug-drug
interactions191
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Table 2 (continued)

Drug Toxicity

Patient populations
at potentially greater

risk of toxicity s)

Suggested
monitoring
(frequency) Comments

LZD � Hepatotoxicity
� Optic and

peripheral
neuropathy

� Myelosuppression

Older patients (.65
years), HIV,185 host
genetics

Colour/visual acuity, full
blood count, peripheral
neuropathy (monthly)

Beware of lactic acidosis and
serotonin syndrome due to drug
interactions

CS/TRD � Neurotoxicity:
seizure, headache,
lethargy,
confusion, mood
change,
drowsiness,
anxiety, psychosis,
depression,
suicidal ideation

Epilepsy, depression,
psychosis, severe
anxiety

Mental health evaluation
(monthly)

Beware of suicide ideations and
peripheral neuropathy. Avoid or
monitor combination with INH
and thionamides (increased risk
of neurotoxicity). Administer
concomitantly pyridoxine
(vitamin B6)

CFZ � Gastrointestinal
disturbances

� Pink, red or
brownish-black
discoloration of
skin, body fluids
and faeces

� Photosensitivity
� QTc prolongation

Severe hepatic impairment Electrolytes, liver
function, QTcF interval

Skin discoloration or
hyperpigmentation is common
and can be disturbing to
patients. Take with food to
improve bioavailability and
gastrointestinal tolerance.
Protect skin from the sun

DLM � Ocular toxicity
� QTc prolongation

Children (,2 years),186,187

HIV185
Electrolytes, liver

function, QTcF interval
(2 weeks, 12 weeks
and 24 weeks)

Imipenem-
cilastatin/
meropenem3

� Neurotoxicity
(confusion,
seizures)

History of seizures, renal
impairment

Used in combination with
amoxicillin-clavulanic acid.
Beware of LFT rise with
meropenem and reduced seizure
threshold with imipenem/
cilastatin. Clostridium difficile
associated diarrhoea

AMK � Nephrotoxicity
� Ototoxicity
� Electrolyte

disturbances

Older patients (.65 years),
HIV (185), renal,
vestibular, auditory or
severe hepatic
impairment

Renal and electrolyte
function, audiometry
(monthly)

TDM for AMK involves trough
levels to avoid toxic
concentrations and is highly
recommended if available.76,92

Formal hearing testing must be
done for children and adults at
baseline and at 2 weeks and
regularly thereafter at fortnightly
or monthly intervals. Avoid in
patients that cannot perform a
hearing test

ETH/PTH � Hepatotoxicity
� Gastrointestinal

disturbances
� Endocrine

disorders
(gynaecomastia,
hypothyroidism)

HIV185 Liver function, TSH/T4 Monitor combination with CS or
TRD (increased risk of seizures)
and PAS (increased risk of
gastrointestinal disturbances and
hypothyroidism). Administer
concomitantly pyridoxine
(vitamin B6)

PAS � Gastrointestinal
disturbances

� Hypothyroidism
� Hepatotoxicity

Electrolytes, liver
function, TSH/T4

Monitor combination with ETH/PTH
(increased risk of hypothyroidism
and gastrointestinal
disturbances)

Pa � Peripheral
neuropathy

� Gastrointestinal
disturbances

� Hepatotoxicity

Liver function

* ECG monitoring is recommended using the Fridericia method of QT correction. Check concomitant QTc prolonging drugs if QTcF . 450 ms; STOP all QTc
prolonging drugs if QTcF. 500 ms. Sometimes other drugs can be spared to avoid stopping TB treatment.
INH ¼ isoniazid; AST ¼ aspartate transaminase; ALT ¼ alanine aminotransferase; ULN ¼ upper limit of normal; RIF ¼ rifampicin; EMB ¼ ethambutol; LVX ¼
levofloxacin; CPM ¼ capreomycin; RPT ¼ rifapentine; PZA ¼ pyrazinamide; FQ ¼ fluoroquinolone; MFX ¼ moxifloxacin; BDQ ¼ bedaquiline; ECG ¼
electrocardiogram; CFZ¼ clofazimine; LZD¼ linezolid; CS¼ cycloserine; TRD¼ terizidone; DLM¼ delamanid; LFT¼ liver function test; TDM¼ therapeutic drug
monitoring; AMK¼ amikacin; ETH¼ ethionamide; PTH¼ prothionamide; TSH¼ thyroid stimulating hormone; PAS¼ para-aminosalicylic acid; Pa¼ pretomanid.
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In currently recommended regimens for multidrug-
resistant TB (MDR-TB) treatment, one of the Group
A drugs most commonly associated with serious AEs
is LZD.72 The risk of bone marrow suppression with
LZD requires regular full blood count monitoring
(baseline, 2 weeks, then monthly). Peripheral neu-
ropathy is commonly associated with long-term use
of LZD and less frequently with INH, CS and
FQs.72,77 These possible and serious AEs require
patient and care provider awareness, as well as
monthly peripheral neuropathy and vision assess-
ment. Peripheral neuropathy in young children can be
difficult to diagnose and signs may include refusal to
bear weight or complaints of pain or irritability.

Several drugs increase the QTc interval, which
when significantly elevated (.500 ms), can increase
the risk of heart arrhythmias and even cardiac
arrest.78 Adults and children alike require regular
ECG monitoring (baseline, 2 weeks, monthly) when
receiving BDQ, DLM, or when two drugs that
prolong the QT interval are being used in combina-
tion (such as FQs and CFZ).71 Fortunately, BDQ-
related QTc prolongation is uncommonly associated
with clinically significant outcomes such as torsades
de pointes. Drug interactions, electrolyte levels and
thyroid function should be checked and if necessary,
corrected.

The risk of Achilles tendinitis (mostly presenting
with pain along the tendon or back of the heel) and
rupture, as well as aortic aneurysm/dissection (al-
though uncommon) is important and should be
considered with long-term FQ use.79 Despite fear of
bone and joint abnormalities in children treated with
FQs, a growing body of literature indicate no major
safety concerns in this population.80

Depression with suicidal thoughts and other
psychiatric illnesses might be associated with TB
disease itself, but it is a particular concern with CS/
terizidone use, and has also been reported with INH
treatment. Regular review, support and counselling is
recommended, especially in at-risk groups, not only
at the time of diagnosis, but also throughout
treatment.81

STANDARD 4

Patients can benefit from TDM in specific situations
for specific drugs using resource-and setting-appro-
priate assays

TDM is intended to detect patients with sub- or
supra-therapeutic (potentially toxic) concentrations
(Figure 1). TDM should be considered for people at
highest risk of PK variability, with clinical conditions
in which PK variability carries serious consequences,
and for drugs which make up the backbone of
multidrug regimens or for which the therapeutic
window is narrow.53,82 The implementation of TDM

can be tailored for specific TB services making use of
various types of assays (e.g., high-performance liquid
chromatography-ultraviolet, liquid chromatography–
mass spectrometry or nanophotometer).54,83 Dose
changes guided by TDM should take other clinical
parameters into consideration (e.g., severe cavitary
disease).47 High priority populations to consider for
TDM include those with HIV co-infection, DM,
malnutrition, or children, because these factors
increase the probability of pharmacokinetic variabil-
ity and are independently associated with poor TB
treatment outcomes (Figure 1). In many TB-endemic
settings, these conditions frequently overlap.84 In
malnourished children with TB, sub-therapeutic
exposure has been demonstrated despite patients
receiving WHO-recommended doses.85 Furthermore,
PK variability and sub-therapeutic exposures are
likely exacerbated by a concurrent enteropathogen
burden, which can present additional challenges for
TB eradication.86

Both DM and/or HIV co-infection conditions
predispose patients to malabsorption or delayed drug
absorption, depending on the stage of treatment or
disease severity, but also represent a priority situation
for TDM given the potential for drug–drug interac-
tions.50,87,88 Certain programmatic settings have
adopted routine TDM for people with HIV47 and
DM who initiate TB treatment, and have found that
frequent dose adjustments are required to achieve
timely microbiological cure.89

In patients with central nervous system TB,
cerebrospinal fluid concentrations of RIF are only a
small fraction of exposure in the serum, and TDM
should be routinely performed. High-dose intrave-
nous and oral RIF combined with TDM can be used
to target high exposure in serum,90 and thereby
increase concentrations in the cerebrospinal fluid.

Specific drugs to prioritise for TDM are show in
Figure 1. For certain drugs, such as LZD, measure-
ment of the trough concentration is important to
mitigate AEs such a mitochondrial toxicity associated
with myelosuppression and neuropathy.11,46,91 In the
uncommon scenario where AMK is used, TDM
should be used to avoid ototoxicity and nephrotox-
icity.92

Although TDM is currently not readily available in
several settings, new developments will facilitate
broader implementation.83 Modifications to adjust
to different settings include investment in high-
throughput equipment, such as mass spectrometry,
and human expertise at a central level, bypassing cold
chain requirements with microsampling techniques
such as dried blood spots (DBS)93 and volumetric
absorptive microsampling, but also the utilisation of
currently experimental matrices such as saliva- and
urine-based point-of-care testing.94–97 As TDM
technology becomes more readily available, costs
are becoming more affordable for resource-limited
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settings, and with the rise of digital health technol-
ogies, access to experts can be more readily facilitat-
ed.

STANDARD 5

Each patient should undergo counselling/health
education regarding their TB treatment and potential
adverse effects to improve treatment results, orga-
nised according to feasibility and cost-effectiveness
criteria, based on the local organisation of health
services and tailored to the individual patient’s needs

A patient-centred approach is an important pillar
of the WHO’s End TB Strategy. A key aspect of this
approach is to provide counselling and education to
all TB patients as described in the Clinical Stan-
dards.71,98 AEs are a frequent cause of poor
adherence, treatment interruption and loss to fol-
low-up.99 Patients who are aware of potential AEs
may be more likely to notify their healthcare team,
facilitating more timely management of AEs, poten-
tially reducing the severity of AEs and preventing
unfavourable outcomes.100 Early consultation with
the TB healthcare team may also allow symptomatic
treatment of some AEs, such as nausea or skin rash,
and reassurance that such effects often improve as
treatment progresses.

The initial education of patients (or parents of
children with TB) should include information fo-
cussed on the prescribed TB medications and the most
common AEs, as well as less common, but more
severe or important AEs. Anticipatory guidance
about the natural history of these AEs could be
shared, such as that many AEs will resolve or
substantially improve after the first 1–2 weeks of
treatment. Patients should also be provided with
specific guidance about when to contact the health-
care team and who to contact. As AEs pose a
significant challenge to uninformed patients and care
givers, which could lead a to drop-off in treatment,
education about AEs should occur on a regular basis,
within a trusting relationship with the patient and as
a component of comprehensive psychosocial sup-
port.101

STANDARD 6

Education for healthcare professionals is important
when applying tailored dosing to better understand
the link between clinical condition and drug expo-
sure. Additional technical education is required when
TDM is used to ensure the quality of the procedure;
this includes sampling requirements, drug exposure
targets and how to adjust the dose based on drug
concentrations

As TB management is delivered by multidisciplin-
ary teams that include physicians, nurses, counsellors,

clinical pharmacologists, laboratory staff, and clini-
cal microbiologists, professional education is re-
quired for personalised dosing based on clinical
pharmacological principles. Education should in-
clude 1) an understanding of how clinical conditions
can influence drug exposure, more specifically, how
ADME is impacted and how this translates to drug
exposure, which should also consider factors such as
comorbidities, drug–drug interactions and disease
severity;26 2) how the dose-exposure and pathogen
susceptibility relate to treatment outcomes (PK and
pharmacodynamics [PD] targets) and AEs for bal-
ancing efficacy against potential toxicity for priori-
tised drugs (RIF, INH, PZA, FQs and LZD), including
when a ‘‘personalised dose’’ should be consid-
ered;53,102,103 and finally, 3) adjustment of dosing
based on drug concentrations (TDM) needs to be
understood in relation to sampling requirements,
including limited sampling schedules.53,103,104 Such
training is currently mainly available in specialised
TDM centres in high-resource areas and should be
expanded for all settings considering or already using
TDM.105,106

Specialised TB nurses are essential for TDM and
training is required to ensure appropriate timing of
blood samples in relation to drug intake and
transport logistics, as well as monitoring of AEs.
For clinical pharmacologists and pharmacists there is
a need for training in TB pathogenesis in relation to
PK/PD targets, as the lengthy treatment duration and
characteristics of the disease differs from other
pathogens where TDM is applied. A close collabora-
tion within laboratory units is critical, as trained
laboratory staff are essential to establish drug
concentrations assays. Furthermore, there is a need
for education in the application of validation and
quality control programmes,107 sample stability and
transportation requirements, as well as point-of-care
testing and the use of alternative sample matrices,
such as DBS, other microsampling techniques, saliva
or urine.103 Clinical microbiologists at TB laborato-
ries should be trained to provide genotypic and/or
phenotypic DST for use in TDM,108 including
guidance of standard vs. high dose assisted by
quality-assured MIC determination.109–111

The resources and healthcare level affect how
educational efforts should be structured.103 At the
community level, a dedicated team is needed to
understand how to apply personalised dosing based
on screening assays for key drugs to determine low,
normal and high drug exposure. The regional level
should be trained to support local teams on difficult
cases and provide basic training, as well as quantita-
tive assays for individualised dosing. Finally, the
central level should be able to provide training
modules for other levels, a quality assurance pro-
gramme107 and advanced quantitative assays,112

including multiple sample matrices (blood, DBS,
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saliva, urine) to facilitate the analysis of samples by
mail from rural areas or other outpatient settings and
also provide dosing software to calculate the drug
dose for optimal exposure.54

PRIORITIES FOR FUTURE RESEARCH

Efficacious and safe TB medication will always be a
priority for future research. This is especially impor-
tant for effective but toxic drugs such as LZD, which
would benefit from being replaced by a less toxic
derivative.113 High-quality MIC (using a method that
is calibrated against the European Committee on
Antimicrobial Susceptibility Testing reference meth-
od) and PK/PD data need to be collected and
correlated with clinical outcome data during clinical
trials to set appropriate breakpoints for phenotypic
DST and define PK/PD targets that can be subse-
quently used during TDM.114 This has not been done
sufficiently to date, resulting in an incomplete
understanding of the mode of action of TB agents.
Moreover, operational research can contribute essen-
tial evidence on drug dosing in special patient
populations including adolescents, pregnant women,
malnourished patients and the elderly, as these
patients tend to be excluded from Phase 3 clinical
trials. Easy-to-use assays facilitating TDM in regional
TB clinics and health centres that allow a rapid
turnaround time will contribute to better patient
management. Cost-effectiveness studies are particu-
larly important in the context of high-burden settings
with limited resources, to convince programme
managers to offer TDM as part of programmatic
care for selected patients without additional costs.

Physicians, pharmacists and other healthcare pro-
fessionals are encouraged to adequately document
personalised dosing practices and impact on treat-
ment.53 Evaluation of clinical programmes results in
better management of TB treatment.115–117 When re-
designing a TB register, it is recommended to capture
data on personalised dosing and TDM, to include a
set of core variables which are essential to describe,
measure and evaluate the cascade of care in adults, as
well as children.98 Individual data are preferred over
aggregated data, but this depends on the local
arrangements. As systematic evaluation of drug
dosing, as well as of AEs, is relatively easy with the
implementation of computerised, individual registers,
this should be considered. This analysis should be
included in the annual TB report compiled by TB
programmes in many countries.

New drugs (BDQ, DLM, Pa)115,116 should be
included in active drug safety monitoring data to
identify AEs of concern, which should be reported to
regulatory authorities and the WHO.

Specific attention is needed for children, as child-
friendly formulations are not always available for all
drugs and in all countries.98,118 Formulation can have

substantial effects on PK and thus safety and efficacy,
as well as on palatability.119,120 Appropriate use of
the available child-friendly formulations, and record-
ing the formulation used where feasible, would
contribute useful information.

Data protection laws and other restrictions at the
country or regional level may limit the type of data
that can be collected and may necessitate amending
modalities of data collection and storage. Although
the long-term follow-up of patients is not considered
feasible,98 if, for any reason patients, are followed up
after treatment completion for rehabilitation or
research purposes, any change of status (e.g., TB
recurrence) or long-term AEs need to be notified to
health authorities to update the TB register.98

CONCLUSION

Programmatic TB treatment has saved many lives and
is suitable for most patients, but careful risk
stratification is warranted, and certain patients would
benefit from a more person-centred approach, for
example, by tailoring the optimal drug dose needs to
relevant patient features, DST results, the drugs
required for effective treatment, as well as the local
environment and available resources. The Clinical
Standards articulated here are intended to ensure that
TB treatment is safe and effective in every single
patient.
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R É S U M É

C O N T E X T E : Une posologie optimale est importante

afin de garantir une réponse adéquate au traitement, de

prévenir le développement de résistances aux

médicaments et de réduire la toxicité liée aux

médicaments. L’objectif de ces normes cliniques est de

donner des indications de « bonne pratique » en matière

de posologie et de gestion des agents antituberculeux.

M É T H O D E S : Un panel de 57 experts internationaux

spécialisés en microbiologie, pharmacologie et soins

antituberculeux a été identifié ; 51 ont participé à un

processus Delphi. Une échelle de Likert à 5 points a été

utilisée pour noter les premières ébauches des normes. Le

document final est fondé sur un large consensus puisqu’il

a été approuvé par tous les participants.

R É S U LTAT S : Six normes cliniques ont été définies :

Norme 1, définir la dose initiale la mieux adaptée au

traitement de la TB ; Norme 2, identifier les patients

potentiellement à risque d’exposition sous-optimale aux

médicaments ; Norme 3, identifier les patients à risque

de développer une toxicité liée aux médicaments et

déterminer comment diminuer au mieux ce risque ;

Norme 4, identifier les patients pouvant bénéficier d’un

suivi thérapeutique pharmacologique (TDM) ; Norme 5,

définir les informations et conseils à fournir aux patients

placés sous traitement antituberculeux et Norme 6,

enseigner les fondamentaux aux professionnels de santé.

Les priorités de recherche ont également été définies, sur

la base d’un consensus.

C O N C L U S I O N : Il s’agit des premières normes cliniques,

fondées sur un consensus, en matière de posologie et de

gestion des antituberculeux. Elles ont pour objectif

d’orienter les cliniciens et les responsables de

programme en matière de planification et de mise en

place de mesures locales adéquates pour un traitement

optimal centré sur le patient, afin d’améliorer la prise en

charge.
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