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Different pieces of the same puzzle: a multifaceted perspective
on the complex biological basis of Parkinson’s disease
Amica C. Müller-Nedebock1,2, Marieke C. J. Dekker3, Matthew J. Farrer4, Nobutaka Hattori 5,6,7, Shen-Yang Lim8,9,
George D. Mellick 10, Irena Rektorová 11,12, Mohamed Salama13,14,15, Artur F. S. Schuh16,17, A. Jon Stoessl18, Carolyn M. Sue19,
Ai Huey Tan 8,9, Rene L. Vidal 20,21,22, Christine Klein 23✉ and Soraya Bardien 1,2✉

The biological basis of the neurodegenerative movement disorder, Parkinson’s disease (PD), is still unclear despite it being
‘discovered’ over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its
pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory
and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen
“PD experts” from six continents (for global representation) and collated their personal opinions into this article. The views were
varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most
important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should
be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.
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INTRODUCTION
Since the first description of Parkinson’s disease (PD) in Western
Medicine over two centuries ago, significant progress has been
made to better understand, diagnose and treat the disease1. Yet,
despite this progress and years of research in the PD field, our
understanding of its biological basis remains incomplete. Over the
years, several different theories on the pathobiology of PD have
emerged and evolved, with the general consensus being that the
disease is complex with multiple factors (many still unknown)
contributing to disease manifestation and progression.
The aim of this article was to explore some of these theories by

asking PD clinician and laboratory scientists from around the
globe to answer the question “What do you consider to be the
starting point and the process that leads to the development of PD,
and why?”. They could also comment on where future research
efforts should be directed. Contributors were selected based on
geographic spread, gender equity and diversity of their research
interests. Overall, we had 12 contributions from six continents
(Africa, Asia, Australia, Europe, North America, and South America).
While authors sharing similar viewpoints were clustered together,

their written and unedited views are presented here as a
collection of their responses to the question.

PATHOGENIC SEQUENCE VARIANTS IN CONJUNCTION WITH
MITOCHONDRIAL DYSFUNCTION AND ALPHA-SYNUCLEIN
ACCUMULATION
Genetic studies that led to the identification of now well-
established PD genes, including PRKN, PINK1, SNCA and LRRK22,
have undoubtedly been key in elucidating the possible biological
basis of the disease. One of our contributors highlights variants in
these genes as an important contributing factor to the develop-
ment of PD.

Carolyn M. Sue, MD, PhD, Australia
As with most complex diseases, there are numerous pathological
processes that can contribute to the development of a final
common clinical phenotype such as PD. Contributions from each
process vary amongst affected individuals in the context of the
individual’s predisposition to develop the disorder. In PD, some
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individual’s genetic background often encodes their risk of
developing PD and for other individuals, their vulnerability to
the pathological processes that may be triggered by disease
process precipitants (e.g., toxin exposure).
Pathogenic mutations in causative PD genes are some of the

strongest predisposing risk factors3, with biallelic mutations in
some genes (e.g., PRKN, PINK1) being, by and large, fully penetrant.
Mutations in other PD genes (e.g., GBA and LRRK2) may increase an
individual’s risk, and are not associated with full penetrance. The
extent by which aging, environmental factors or changes in
lifestyle behaviors can modify disease onset in these mutation
carriers is the subject of current research endeavors4.
Wherever an individual lies along this genetic risk spectrum, the

two most important cellular processes that contribute to PD
pathogenesis are mitochondrial dysfunction and the accumulation
of aggregated alpha-synuclein. Each patient with PD may have
varying degrees of disruption to each of these cellular pathways
that when perturbed, interact to result in a cascade of events that
accelerates cellular dysfunction and ultimately leads to the
accumulation of toxic protein species such as aggregated alpha-
synuclein, and cell death. Strong disruptors of mitochondrial
function such as MPTP (or more accurately, MPP+) or rotenone,
can cause PD, regardless of genetic status. Milder causes of
mitochondrial dysfunction, such as biological aging, lead to more
modest reductions in bioenergetic function and a cascade of
cellular events including the generation and release of excessive
reactive oxygen species, abnormal intraorganellar trafficking,
inefficient protein clearance, impaired lysosomal function and
the accumulation of alpha-synuclein, all of which can contribute
and feed forward to the neurodegenerative process in PD5.
By contrast, aggregations of alpha-synuclein may result from

over production of endogenous alpha-synuclein (e.g., SNCA
triplications) that can overwhelm otherwise efficient protein
clearance pathways. Protein clearance may be impaired due to
mutations in GBA, be overloaded with increased exposure to
alpha-synuclein or fail as a consequence of reduced bioenergetic
function associated with the aging process. Mitochondrial
dysfunction can lead to impaired protein clearance and the
subsequent accumulation of aggregated alpha-synuclein. Com-
pleting the vicious cycle, aggregated alpha-synuclein impairs
mitochondrial and lysosomal function to accelerate the neurode-
generative process6,7.

LEUCINE-RICH REPEAT KINASE 2 (LRRK2): A ROOT CAUSE?
As emphasized by one of our contributing authors below,
LRRK28,9, has been repeatedly linked to PD since its discovery in
the early 2000s, with its encoded protein acting as a notorious
multitasker that may contribute to PD’s biological basis in
multiple ways.

Matthew Farrer, PhD, USA
Increased LRRK2 kinase activity is the single most important causal
factor as it is responsible for PD, whether sporadic10 or in families
with a dominantly-inherited disease8,9. Importantly, LRRK2-parkinson-
ism is clinically indistinguishable from idiopathic late-onset PD11. Half
of the genetically-identified LRRK2 individuals with PD that come to
autopsy manifest midbrain Lewy body disease12 and satisfy a
definitive pathologic diagnosis of PD13. Although there have been no
formal epidemiologic studies, and the incidence, prevalence and
penetrance figures cited in the literature are mostly clinic-based14,
LRRK2 pathogenic substitutions appear to confer the highest
individual genotypic/disease-penetrant and population-attributable
risk of PD15. LRRK2 coding substitutions tend to be population
specific; LRRK2 p.R1441G in the Euskera Basques16, p.G2019S in North
African Berbers17,18 and Ashkenazi Jews19, and p.G2385R in South
Eastern Asia20, define “patches” of PD on a world map. The majority

of these mutant alleles originated from one or few founders, their
frequencies evolutionarily increased by recent positive selection21.
What that selective allelic advantage is remains to be discovered. In
support, LRRK2 is highly expressed in cells of myeloid-lineage in the
peripheral immune system and in brain-resident microglia22,23, the
LRRK2 promoter contains interferon-gamma responsive elements24,
and its level of expression is clearly responsive to inflammatory
stimuli25. The locus has also been nominated in genome-wide
association studies (GWAS) of idiopathic PD26, progressive supra-
nuclear palsy27 and several chronic inflammatory disorders28,29. As
the immune system mediates a host’s response to its environment,
and PD has long been considered a multifactorial disorder30, it is
attractive to hypothesize successive periods of inflammation and LRRK2
activation may explain the penetrance of LRRK2-parkinsonism, and
such a mechanism may partially underlie the ontology and incidence
of idiopathic PD that is steadily increasing. Hence, LRRK2 biology
currently attracts much academic, philanthropic and pharmaceutical
research interest and investment.
All LRRK2 mutations that cause PD activate its kinase activity,

directly or indirectly, the most evident being p.G2019S that keeps
the hinge of kinase “activation segment” ajar31. Mutations in other
Mendelian genes for dominantly-inherited PD, such as vacuolar
protein sorting 35 p.D620N32,33, also result in constitutive LRRK2
kinase activation34. Hence, LRRK2 kinase inhibitors are now in
human clinical trials given their promise to halt disease progres-
sion. Nevertheless, how LRRK2 kinase dysfunction manifests in the
selective vulnerability of dopaminergic neurons35, and what inter-
(dopaminergic and/or non-cell autonomous) and intra-cellular
events underlie their demise is unknown. LRRK2 forms a large,
dimeric protein scaffold with several lysosomal targeting motifs36

and protein-interaction domains37. It is intimately associated with
endosomal-lysosomal processes, cytoskeletal and vesicular traf-
ficking38, and can phosphorylate multiple substrates including a
subset of Rab GTPases39. Therefore, LRRK2’s functions are
consequently pleiotropic.
While there is now much data and synthesis, the question of what

biology is necessary and sufficient for the ontology of PD remains
unanswered, and how can that be elucidated? One approach to an
integrated and holistic understanding is to use conditional cre-loxP
animal models40 that recapitulate mutant gene dysfunction. As PD is
multifactorial, and a function of the relationship between neurons,
glia, the immune system and the environment, then models should
have these components. It will also be necessary to compare findings
between models of different mutant genes implicated in PD to
identify their biological “intersection”. While the magnitude of locus
associations nominated through GWAS are too small and too
pleiotropic to drive comparable neuroscience41, implicating the
proteins encoded in a mechanistic “intersection” would be useful and
an important validation.

TOXIN EXPOSURE
Before the identification of genetic contributors such as LRRK2, PD
was believed to be an archetypal “non-genetic” disease; a view
that was supported by early observations that toxin exposure
could cause a parkinsonism phenotype42. To date, toxin exposure
is still considered an important but underappreciated (and
understudied) contributor to PD that could give important insights
into the disease’s pathobiology. This notion is also shared by two
contributing authors whose opinions are provided below.

Marieke Dekker, MD, PhD, Tanzania
Genetic susceptibility in combination with exogenous causes,
including toxins, are thought to have a cumulative impact on
the brain. This results in pathogenic protein accumulation, low-
grade inflammation and loss of dopamine-producing neurons.
Current disease hypotheses are largely based on research done
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in high-income countries. Let us focus on Sub-Saharan Africa
(SSA), where within a single generation’s time, life expectancy
has increased by 10 years to 62 years43, which has implications
for age-related disorders such as PD. The mean age of onset of
PD in a Tanzanian community-based study from 2008 was 69.4
years. However, a number of recent, mostly hospital-based,
studies in SSA report a trend towards a higher prevalence and a
possible lower age of PD onset of 55–60 years44–47

(unpublished data).
Africans are more genetically diverse among themselves than

they are with respect to other ethnicities48,49. Presently known PD
genes do not seem to play a significant role in Southern and
Western African PD patients47,49. Whole genome screening in SSA
PD patients is ongoing but very limited47,50. It is unclear whether
the lower life expectancy in SSA underestimates genetic factors. It
also begs the question of whether the magnitude of genetic risk
factors for PD is different in SSA, with perhaps a larger role for
inflammation or environmental toxins.
Inflammation in PD has been widely studied but regarded as

consequence rather than a cause. No infectious cause has been
found. There is epidemiological and in-vitro evidence of some
causal link between pesticide exposure and PD, especially in rural
populations51. Most of SSA inhabitants rely on subsistence
farming, and pesticide use is omnipresent. The longer life
expectancy and a young median age of the population make
for a large cohort of individuals in rural SSA, who are at risk for
potential exposure to neurotoxic substances.
Population stratification by different African populations could

enhance clinical neurological observations in PD. Eastern Africa
still has exceptional rural non-sedentary populations such as the
Tanzanian Hadzabe, one of the last hunter-gatherer tribes in the
world, and the Maasai, semi-nomadic pastoralists. Local Tanzanian
medical staff and residents, to the best of our knowledge, have
never identified a case of PD in the Hadzabe. A largely similar
observation applies to the much more numerous Maasai
(numbered at ~1 million). Over 40 years of clinical practice in
the area have identified just two cases of PD of Maasai origin, both
patients being non-pastoralist and with higher education.unpub-
lished data A common factor in the two tribes is a lack of
occupational exposure to insecticides, whereas tribe-specific
genetic risk factors are unknown. Although life expectancy is
shorter in (semi)nomads, it may also imply a lower-than-average
risk of PD in those individuals minimally exposed or unexposed to
pesticides. It is anticipated that the frequency of PD in SSA is set to
increase because of younger onset of disease, ageing, different
risk genes, and toxic exposures particularly pesticides. To better
understand this increase, large-scale and long-term studies on
genetic predisposition and environmental toxin exposure in PD
are needed. Also, inclusion of the world’s vanishing ethnic groups
with a nomadic or non-pastoralist lifestyle may still help to
increase understanding of what causes PD.
To learn a lesson from a neurological disease with a low

frequency in persons of African ancestry living in Africa, multiple
sclerosis (MS) is estimated to occur there at a rate of only 1–2/
100,000 in contrast to 100/100,000 in high income countries52. A
recently published study identified Epstein-Barr virus (EBV)
infection in late teens or early twenties as an essential risk factor
for the development of MS53. EBV infection typically occurs in
early childhood in Africa54 and its causal role with malaria in the
pathogenesis of Burkitt’s Lymphoma was among the first to
demonstrate a role for viruses in malignancies. It is likely that the
same environmental exposure to EBV infection in early childhood
in Africa is providing protection against the later risk of
developing MS. In a disease of unknown etiology, studies
involving “the absence of” may just be as important as studies
involving “the presence of”. Consequently, involving ethnic groups
in Africa with a relative absence of PD may help increase our
understanding of the causes of PD.

Artur F. S. Schuh, MD, PhD, Brazil
Much has been said about PD as being probably the fastest-
growing neurological disorder, which led some authors to call it a
pandemic55. The most common late-onset sporadic form of the
disease is widely recognized as a result of an interaction between
genetic and environmental factors, and the only way to change
this pandemic is to study these many factors. Fortunately, in
recent years, massive efforts have been made to understand the
genetic factors driving the disease - efforts with the virtue of
including previously underrepresented populations and the
potential to point out new pathophysiological pathways and
treatments. However, the genetic component may explain only
around one-third of the disease risk26, and it is implausible that it
is responsible for the alarming rising incidence observed in
previous decades. Preventing new cases and slowing down this
rising curve should be a priority, which can be achieved by also
dissecting out environmental factors.
In this regard, there is strong evidence to implicate pesticides as

a significant environmental factor associated with the disease,
especially paraquat, rotenone, and organochlorines56–58. Overall,
pesticides may increase the risk of PD and cause an earlier onset
and premature death59–61. Among them, paraquat is one the most
studied and is widely used as a herbicide in many crops
worldwide62. Acute poisoning can cause death in humans, and
chronic exposure has been associated with PD in epidemiology
studies63–66. Paraquat undergoes redox cycling, producing an
excess of oxidative and nitrosative stress, which harms the
mitochondria and endoplasmic reticulum and causes apopto-
sis62,67. The molecule is similar to MPP+, the active compound of
MPTP, which causes selective damage to substantia nigra42,68.
Many pathophysiological processes usually associated with PD
have been replicated by paraquat models, such as suppression of
proteasomal degradation, phosphorylation of parkin, and alpha-
synuclein modification and accumulation62,69. Interestingly, even
developmental exposures seem to produce nigrostriatal toxicity
later in life, which is boosted by combination with other
pesticides70.
Even though the scientific community is aware of its risks,

paraquat is still widely used in many countries. Pesticides are
loosely regulated in Latin America, where the prevalence of PD
seems even higher compared to the Global North and Asia. For
example, Brazil is one of the biggest consumers of pesticides in
the world, with hundreds of agrochemicals allowed here and
forbidden in other countries. Studying populations from develop-
ing countries with significant exposure to pesticides, some
banned in other countries, represents an excellent opportunity
to understand their relationship with PD and to provide insights
into disease pathogenesis. Also, efforts should be made to
develop reliable biomarkers of chronic and long-term exposure
to pesticides, considering it can happen many years before the
onset of the disease. Finally, multi-omic population studies,
combining genome and exposome (a measure of all the
exposures of an individual over their entire lifetime from
conception, and how these relate to health), may represent a
significant step to disentangling the complex network of
interactions leading to PD.

TOXIC ALPHA-SYNUCLEIN ACCUMULATION AND SPREADING
Over 20 years ago, it was discovered that misfolded alpha-
synuclein is the primary constituent of Lewy bodies71, and that
pathogenic variants in the alpha-synuclein gene (SNCA) cause
familial PD, thereby linking genetics to PD for the very first time72.
These discoveries sparked years of further research demonstrating
that alpha-synuclein accumulation is not only a hallmark of PD,
but that it can also cause neurodegeneration, and forms part of
PD’s pathobiology, as commented on below by two contributing
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authors. The authors comment on the link between alpha-
synuclein and mitochondrial dysfunction, the spreading of
alpha-synuclein in PD and highlight the utility of imaging tools
to detect, better understand and monitor this spreading.

Nobutaka Hattori, MD, PhD, Japan
Most neurodegenerative diseases such as PD, Alzheimer’s disease
and Progressive Supranuclear Palsy manifest protein toxicity as
one of their critical pathogenic mechanisms, the details of which
remain unclear. By systematically deconstructing the nature of
toxic proteins, we aim to elucidate and illuminate some of the
essential mechanisms of protein toxicity from which therapeutic
insights may be drawn. In PD, alpha-synuclein as a potential prion-
mimicking protein has been reported. Αlpha-synuclein can adopt
a β-sheet rich structure that forms toxic oligomeric aggregates
that accumulate within neurites in the central nervous system and
the peripheral nervous system. Such alpha-synuclein can be
secreted, taken up by neighboring cells (bodies, dendrites, or
axons), and thus induce seeding and spread of the toxic
oligomers. Suppose abnormal alpha-synuclein is generated in
the intestinal tract and inflammation occurs in the intestinal
tract73. In that case, it is thought that the seed may become
elongated and enter the bloodstream or spread to the brain by
ascending the vagus nerve or sympathetic nerves. Many people
can eliminate the abnormal alpha-synuclein seed, but if they
cannot do so, the seed potential is thought to increase and
propagate. In fact, it has been reported that T cells that recognize
synuclein peptides are more common in PD, making it highly
likely that some immunological mechanism is at work.
Recently, CHCHD2 as a causative gene for hereditary PD has been

identified74. CHCHD2 mutants result in reduced oxygen consump-
tion and ATP production. Although CHCHD2 is localized to
mitochondria and is known to be involved in the electron transfer
system, brain pathology of individuals with the CHCHD2 T61I
mutation has shown an accumulation of alpha-synuclein through-
out the brain. In addition, the co-expression of alpha-synuclein with
the CHCHD2 mutant in a Drosophila model resulted in increased
alpha-synuclein accumulation and a shortened lifespan. In the
knockout mouse model, expansion of alpha-synuclein and p62 has
been observed. Therefore, a hypothetical scenario of the two
possible series of molecular events is postulated intervening
between either synaptic alpha-synuclein deposition leading to
induction of mitochondrial dysfunction, or mitochondrial functional
deficits leading to accumulation of alpha-synuclein at the synapse6.
Notably, in both situations, Ca2+ rise and production of oxidative
stress mediators are pivotally involved in the interconnection
between mitochondrial impairment and alpha-synuclein synaptic
pathology. Abnormal alpha-synuclein seed and mitochondrial
dysfunction are closely related. In other words, the possibility that
mitochondrial dysfunction may induce protein toxicity should also
be considered.

Irena Rektorová, MD, PhD, Czech Republic
Based on a recent hypothesis75, alpha-synuclein in PD spreads in a
prion-like fashion either from the gastrointestinal tract all the way
to the brain following the Braak staging (so-called “body first” PD
or dementia with Lewy bodies; DLB) with more malignant and
symmetric course of the disease, or the brain pathology starts
asymmetrically in the amygdala/limbic system and from there it
spreads to the substantia nigra, locus coeruleus and other brain
(cortical and subcortical) structures and the body via the
autonomic nervous system (so-called “brain first” PD) with a
presumably less malignant disease course. Our work is focused on
studying which of these two options is the most plausible. We do
this performing behavioral-magnetic resonance imaging (MRI)-
immunohistochemical studies in several models of PD including a
transgenic TNWT-61 mouse model overproducing human alpha-

synuclein in the brain76,77, a toxic methamphetamine model
showing massive loss of TH-stained cells in the striatum78 or a
rotenone model that follows Braak staging with alpha-synuclein
spreading from gut to the brain via the vagal dorsal motor nucleus
(DMN)79.
We used MRI and the diffusion kurtosis imaging (DKI) method

which precisely evaluates non-gaussian diffusion of water
molecules in gray matter and is an indicator of the heterogeneous
environment with restrictions to diffusion. We confirmed that DKI
is a sensitive translational marker of alpha-synuclein and alpha-
synuclein-induced brain pathology early in the course of the
disease (in preclinical stages)79 as well as a dynamic marker for
monitoring the spread of brain pathology in all of these animal
models and in humans with PD of various cognitive sub-
types77,79,80. Mean kurtosis values correlated with the amount of
alpha-synuclein in the thalamus of TNWT-61 mice76. However,
once alpha-synuclein reached the cortex and cognitive symptoms
occurred, neurodegeneration (brain atrophy) was the major player
on the scene78–80.
Another question still remains to be answered: How does alpha-

synuclein spread in the brain? It has been hypothesized that brain
atrophy progression in Lewy body diseases is shaped by
(increased) connectivity and local vulnerability, with alpha-
synuclein spreading trans-synaptically, via brain networks81.
Synaptic plasticity can be studied by functional MRI (fMRI). Resting
state fMRI is characterized by low-frequency BOLD (blood oxygen
level dependent) fluctuations and various analytical methods can
be used for studying large-scale brain networks connectivity.
Temporal dynamics of large-scale brain networks alterations can
be further assessed by dynamic fMRI82 and EEG microstates (MS);
the latter representing transient, quasi-stable patterns of EEG that
provide us with detailed information about spatial and temporal
characteristics of EEG within well-described brain networks83.
Hyperconnectivity/ hyperactivity of motor and particularly cogni-
tive brain networks have been documented in early stages of PD
with normal cognition84,85 as well as in prodromal stages of
Alzheimer’s disease or frontotemporal dementia86 or prodromal
DLB83. These alterations affect disease-specific vulnerable net-
works and are considered as compensatory mechanisms, however
representing rather maladaptation. In line with this notion, we
have demonstrated that increased occurrence of visual network
EEG MS in prodromal DLB is associated with lower dominant alpha
frequency (which is a supportive diagnostic biomarker of DLB)83.
This network overactivity seems to decrease as the disease
progresses86,87.
Taken together, our work indicates that diffusion MRI may

detect early microstructural changes that reflect alpha-synuclein-
induced brain changes already in preclinical stages of PD and can
be used to monitor brain pathology spreading until major
neurodegeneration occurs. We hypothesize that this brain
pathology spreads via large-scale disease-specific brain networks
that show hyperconnectivity (hyperactivity) in early disease stages.

A COMPLEX INTERACTION OF MULTIPLE FACTORS
To date, the vast majority of PD research has been conducted
based on the assumption that PD is a single disease88. However,
the complex nature of PD has led some, including four
contributing authors, to reconsider PD as multiple diseases
(instead of a single entity), triggered by complex interactions of
many factors that cumulatively push cells past their tipping point.

Mohamed Salama, MD, PhD, Egypt
PD is best described as a complex disease, of which the
complexity is observed on different layers. The first layer of
complexity can be seen in its nature; our understanding of PD has
changed recently from being a localized neurologic disorder to
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accepting it as a systemic disease with multiple affections of
various systems which reflects an advanced understanding of
disease initiation and progression89. Another layer of complexity is
expressed in the diverse clinical subtypes and even different
phenotypes within each of these subtypes90. The new apprecia-
tion of PD as a mixture of different disorders motivated Farrow
and colleagues to conceptualize what they called the “Parkinson’s
Diseases Mountain Range model”88. It is generally believed that
PD develops in response to the interaction of genetic and
environmental factors, which has been proven previously in
several works including research done by our group in Egypt91.
The conventional patho-mechanistic model adopted for develop-
ing PD is the initial trigger (most probably a genetic risk) that
increases the vulnerability to the effect of an environmental factor.
This linear–chronological model, however, will not be able to
accommodate the recent definition of PD as a diverse and
complex mixture of disorders.
I believe that a “threshold model” could better embrace the

different mechanisms for developing PD replacing the old (trigger
and modifiers) linear one. In this model, the detrimental factor for
developing the disease is the threshold after which cells will go
into the cycle of degeneration. So, we could have different types
of triggers that may lead to the development of the disease. These
different triggers—that can work simultaneously—will build up
stress on different systems until reaching the damage threshold,
which usually does not start in the same time point in all systems,
hence, developing the initial stage(s) of the disease. This could
justify the earlier non-motor signs of PD that reflect early, non-
midbrain damage. The idea of having a threshold, that once
exceeded leads to damage, has been widely accepted as a
mechanism for neurodegenerative disorders92.
We understand now that the disease initiation process is not

following a single model. So, in one case, a pathogenic gene
variant could interact with different environmental factors causing
the disease (gene-environment interaction)93. In another case,
different genetic variants could interact to cause the disease
(gene–gene interaction)94, or different pollutants can interact to
lead to the disease (environment-environment interaction)95. This
can be even extended to involve more factors e.g., social stressors,
metabolic diseases . etc. This model could allow us to adopt a
more holistic – exposomic understanding of factors leading to PD
instead of looking for a single interaction, which cannot be
validated given the complex exposures a human being could have
throughout their lifetime.
Given the diversity in causes, mechanisms and disease

processes, it seems mandatory to adopt a more diverse
stratification strategy for PD cases. This strategy should accept
having different diseases within the spectrum of PD. This better
understanding will be reflected in precision medicine approaches
tailored to each specific sub-type’s features and needs.

George D. Mellick, PhD, Australia
The fundamental question regarding the biological basis for PD
has led to tensions between geneticists and toxicologists, clinical
“lumpers” and “splitters” and pathologists using very strict or more
liberal diagnostic criteria. We now need to move beyond
disciplinary boundaries to make progress. PD should be con-
sidered a syndromic spectrum of many different primary
conditions. We know this because rare inheritable forms of
Parkinsonism are genetically validated to involve different
processes. Genetics has provided many critical clues to etiology
since linkage studies in the Contursi kindred heralded the
synuclein era72. Similarly, the “discovery” that toxins such as
MPTP can induce Parkinsonism in humans and the identification
of environmental risk factors demonstrate that non-genetic
variables also have substantial impact. The truth is that every
person living with PD has a unique expression of the dysfunction

and precise balance of factors contributing to this idiosyncratic
disease journey.
Excepting that there are unique combinations of contributing

factors, there are also commonalities, which can inform our
thinking and help to focus research efforts.

i. PD is progressive and degenerative. Whilst death of
dopaminergic neurons is an obvious consequence of the
pathology, etiological investigations need to extend well
beyond these cell types and brain tissue. The spread of
synucleinopathies is important evidence that the initial
problem(s) likely arise from areas outside the brain96,97.

ii. PD involves the transformation of a “normal” homeostatic
process past a tipping point towards a pathological spiral
into cellular degeneration; a cascade of secondary and self-
reinforcing sequalae such as neuroinflammation, abnormal
protein aggregation and metabolic imbalance. Where
precisely this is initiated remains elusive, and it may well
differ from person to person. The fact that an identical
genetic lesion can lead to different pathologies attests to
this98.

iii. The disease is triggered many years before symptoms of
Parkinsonism become obvious and is ongoing in many
people who never present with any symptoms99.

I believe that appreciating the commonalities while embracing
each patient’s idiosyncrasies is key to understanding causal
triggers and etiologically informed interventions.

Christine Klein, MD, Germany
When Bastiaan Bloem invited me to jointly write a Seminar
“Parkinson’s Disease” for the Lancet in 2020, we both felt that the
more appropriate title for this piece would have been “Parkinson’s
Diseases”100, reflecting not only the plethora of known—mostly
genetic—causes of clinical syndromes resembling idiopathic PD
but also the fact that each person with PD suffers from his/her
own PD not only in terms of disease expression but also cause and
modifying factors. Clearly, genetics has been a key driver in our
understanding of the etiology of PD and now as a contributor to
first attempts at targeted treatment, all of this sparked by the
discovery of alpha-synuclein mutations as the first established
monogenic cause of PD 25 years ago72.
With additional forms of monogenic PD discovered in rapid

succession, it quickly became obvious that there are multiple
primary causes of PD101, which collectively explain almost 15% of
PD(s)102. and Westenberger et al. in preparation Elegant functional
work on shared pathways of the encoded proteins has led to the
notion that multiple different pathogenic events converge on one
(or more) final common pathway(s) resulting in dopaminergic
neurodegeneration and, eventually, the clinical manifestation of PD.
After alpha-synuclein toxicity, mitochondrial dysfunction is

probably the next best-established factor in the etiology of PD.
Very recently, mitochondria were found to be directly connected
to alpha-synuclein conversion from monomeric to oligomeric
states in neurons with intracellular seeding events occurring
preferentially at mitochondrial membranes where the mitochon-
drial lipid cardiolipin triggered the oligomerization of mutated
alpha-synuclein103. However, it has also been demonstrated that
“mitochondrial forms” of PD due to pathogenic variants in PRKN
do not necessarily result in the formation of Lewy bodies,
although typical Lewy body pathology has also been described
in carriers of biallelic pathogenic PRKN variants104. To my mind,
these findings do not contradict each other but rather support the
notion that PD(s) is/are etiologically diverse.
Monogenic forms of PD, at least those that appear to be fully

penetrant (such as PRKN pathogenic variants or alpha-synuclein
triplications), raise the intriguing question as to when PD begins in
carriers of such variants. In keeping with the recent biological
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classification of Huntington’s disease characterizing individuals for
research purposes from birth starting at Stage 0 (individuals with a
pathologically expanded repeat but without any detectable
pathological change)105, one may postulate that there are
“congenital” forms of PD, as well. This notion has major
implications not only for our understanding of (some of) the
etiology/ies of PD but also its preclinical phases, offering a much
larger and much earlier window of potential intervention. A knock-
in Huntington’s disease mouse model (HdhQ7/Q11) showed clear
changes in cortical circuit physiology shortly after birth, which was
“self-corrected” in the second week of life. Treating pups during
the first week of life with an ampakine, thereby correcting the
glutamatergic circuit defect, prevented the development of
Huntington’s disease-like signs in these mice106. These findings
suggest that functional abnormalities at the earliest stages of life
can potentially be rescued and that treatment of (inherited)
neurodegenerative diseases might have to start at the soonest
possible time point.
Even with my geneticist’s hat on, I cannot reasonably postulate

that “all PD” is genetic even though some of the ‘causal’ PD genes
have been shown to play a role also in rare variant burden and even
common variant risk107. Indeed, we have seen fascinating and
independently confirmed developments also in the field of genetic
risk factors and polygenic risk scores26,108,109 contributing to the
etiology of PD. Furthermore, it is conceivable that pathogenic
events occur and accumulate over an individual’s lifetime: For
example, we have recently demonstrated a relationship between
mitochondrial variant burden and development of PD in carriers of
heterozygous PRKN and PINK1 pathogenic variants110.
Finally, while the field is preoccupied with finding causal and

risk factors of PD, I would like to encourage the study and
identification of protective and compensatory mechanisms,
counteracting the development of PD and, thus, “interfering with”
or even serving as a counterpart of its etiology. Some of the
protective factors proposed include anti-inflammatory agents,
antioxidants, calcium channel agonists, inhibitors of alpha-
synuclein aggregation, neurotrophic factors and protective life-
style factors, such as coffee drinking however this area of research
is not yet well developed and requires further study111. Recently,
“polygenic resilience” has been shown to reduce the penetrance
of PD polygenic risk factors with a higher polygenic resilience
score being associated with a lower risk for PD112. Intriguingly, also
the effects of pathogenic variants causing monogenic PD can be
mitigated by protective factors. For example, tobacco use and
black tea consumption have independent but additive effects on
delaying age of onset in carriers of pathogenic LRRK2 variants113.

A. Jon Stoessl, MD, Canada
More than 30 years ago, my mentor Donald Calne suggested that
PD was a syndrome and not a single disease114. This has become
increasingly obvious if for no other reason than the identification
of several monogenic forms of PD, not all of which are associated
with alpha-synuclein pathology. That said, and despite the recent
failures of monoclonal antibodies targeting misfolded alpha-
synuclein115,116, there can be little doubt that alpha-synuclein
misfolding plays a critical role in a majority of PD, with numerous
mechanisms postulated to lead to impaired clearance of
misfolded protein. However, it may be worth asking whether PD
is a synaptopathy that is associated in most cases with abnormal
alpha-synuclein deposition, in others with impaired mitochondrial
function, and perhaps in others with unknown underlying
pathophysiology.
Some environmental contributors to PD may result in abnormal

aggregation of alpha-synuclein (e.g., air pollution117; viral infec-
tion118). Regardless of which mechanism is proposed, hypotheses
to date, including that of prion-like propagation of Lewy
pathology, have for the most part failed to account for the

(partial) neuronal selectivity of PD. Despite the undeniable
importance of pathology in non-dopaminergic neurons, one
cannot ignore the selective vulnerability of midbrain dopamine
neurons and their consistent pattern of involvement, including
asymmetry, even in genetic cases. High terminal arborization may
contribute119, but any theory on cause must take into considera-
tion the evidence that degeneration of dopaminergic neurons
likely begins in nerve terminals, not in neuronal cell bodies35,120.
Therefore, a focus in the future should be on changes that occur at
the nigrostriatal terminal and those factors that may contribute
not only to the vulnerability of dopamine neurons, but also on the
somatotopic selectivity within that population. From that per-
spective, the role of corticostriatal activity has curiously received
inadequate attention and deserves more121.
Three other areas deserve further attention in determining why

people get PD. One is the role of infection and neuroinflammation.
Alpha-Synuclein production and misfolding are triggered by
infection118 and alpha-synuclein expression is required for Type
1 interferon responses122. It is thus of interest that exposure of
mice to low levels of SARS-CoV-2 virus renders them susceptible to
subtoxic doses of MPTP123. Mitochondria, whose dysfunction is
the other key proposed culprit, particularly in recessively inherited
forms of PD, are required for antigen presentation and that
function is repressed by PINK1 and Parkin124. A second area that
has been largely ignored is the contribution of developmental
changes (see ref. 125 for a recent review) and stressors that
occurred earlier in life (e.g. ref. 126) to the later appearance of
selective neurodegeneration. In this respect, it is of great interest
that in Huntington’s disease, while clinical manifestations do not
occur until much later, there is evidence of extensive marked
developmental pathology127. Finally, theories on PD have been
excessively neuron-centric. It would be of great value to explore
the contributions of other cells, particularly astrocytes128. Astro-
cytes play a major role in brain metabolism and synaptic
function129 and are subject to mitochondrial oxidative phosphor-
ylation defects in PD130. In addition to alterations in neurotrans-
mitter reuptake and participating in the synaptopathy that may
underlie PD, astrocytic dysfunction may contribute to impairment
of glymphatic function and additional defects in clearance of
misfolded protein. Astrocytes derived from induced pluripotent
stem cells in patients with LRRK2 PD express increased alpha-
synuclein, resulting in altered calcium homeostasis and increased
cytokine release upon inflammatory stimulation131 and display
altered morphology of extracellular vesicles and altered morphol-
ogy and distribution of multi-vesicular bodies, with overaccumula-
tion of phosphorylated alpha-synuclein and reduced trophic
support and viability of dopamine neurons132. Astrocytes from
LRRK2 knock-in mice have abnormal trafficking of glutamate
transport133 and are impaired in their ability to internalize and
degrade fibrillar alpha-synuclein134. Prevention of microglial-
mediated conversion of astrocytes to the pro-inflammatory state
by a GLP1R agonist is protective in both preformed fibril and
human alpha-synuclein transgenic mouse models of PD135.

THE MICROBIOME–GUT–BRAIN AXIS AND POSSIBLE ORIGIN
POINTS
Ai Huey Tan, MD, PhD and Shen-Yang Lim, MD, Malaysia
The heterogeneity of PD continues to be a major conundrum in
our field. Differences in the phenotypes at presentation (e.g., the
presence/absence of prodromal features such as REM sleep
behavior disorder [RBD], constipation and/or hyposmia, and the
variability in age of onset and family history) and during the
disease course (e.g., rapid vs. slow progression, differential
response to dopaminergic medication, presence/absence of
non-motor symptoms such as cognitive impairment and auto-
nomic dysfunction which substantially impact clinical outcome) all
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suggest that there might be differences between individuals with
PD, in the “starting point” (i.e., the anatomical location and
triggers/causative factors), and in the pattern, speed and extent of
spread of PD pathology.
With regards to differences in the starting anatomical location,

there has been a growing body of literature on a central (i.e.,
“brain-first”) vs. peripheral (i.e., “body-first”) origin of PD pathology.
The discovery, in the 1980s, of alpha-synuclein deposits in the
enteric nervous system (ENS) of PD patients136, and subsequent
observations that constipation and alpha-synuclein deposits in
gastrointestinal biopsies can predate the diagnosis of PD by
decades, as well as the marked peripheral autonomic nervous
system imaging abnormalities with relative sparing of the
nigrostriatal dopaminergic system in patients with prodromal PD
(isolated RBD)137–140 have implicated the gut as a possible site of
origin in PD. It has been postulated that insults acting on the gut
could trigger the misfolding and aggregation of alpha-synuclein in
the ENS, subsequently propagating into the brain via prion-like
cell-to-cell transfer, with the vagus nerve serving as a conduit141.
Imaging, neuropathological and animal/experimental studies have
provided evidence both for and against this hypothesis, while the
epidemiological association between full truncal vagotomy and
PD risk remains inconclusive142. We can perhaps speculate that
these mixed findings suggest that a single theory for PD origin is
less likely, and central or peripheral degenerative processes may
occur at varying timepoints and degrees in different patients.
Although earlier autopsy studies by Braak et al. suggested a dual-
hit hypothesis (i.e., simultaneous peripheral and central origin with
entry points through the dorsal motor nucleus of the vagus
[DMNV] and the olfactory bulb [OB], respectively)143, a recent re-
analysis of post-mortem datasets revealed the lack of concomitant
DMNV and OB pathology, suggesting that the pathologic process
starts in either location, but rarely simultaneously144. Recent
studies also indicate that, once begun, dysfunction and pathology
can spread bidirectionally, from gut-to-brain, as well as from brain-
to-gut145,146.
Besides anatomical heterogeneity, inter-individual differences in

triggers/causative factors and pathogenic processes are likely to
be at play. For example, there is convincing evidence that
gastrointestinal inflammation occurs in PD147–149, at least in a
subset of patients, which can be due to alterations in the
composition and/or activities of the gut microbiome, as well as
genetic variation (e.g., in LRRK2)142,150,151. In turn, an inflammatory
gut environment is postulated to promote aggregation of alpha-
synuclein in the ENS, as well as inducing gut hyperpermeability to
toxins and other factors, with far-reaching effects on the brain
(e.g., disrupting the blood-brain barrier and triggering a cascade of
events culminating in neuroinflammation and neurodegenera-
tion)142. Over the past decade, a swathe of studies in PD patients
have been published reporting alterations in gut microbiome
composition and function152–154 with, for example, enrichment of
Enterobacteriaceae that express highly immune-stimulatory lipo-
polysaccharide (that activate Toll-like receptors) or produce curli
(an amyloidogenic protein that can template α- synuclein
aggregation in the gut)154,155; and depletion of bacteria producing
beneficial/neuroprotective molecules such as short-chain fatty
acids (deficits in which are linked to constipation, gut barrier
dysfunction and inflammation)152–154. Corroborating these (largely
correlative) human observations, animal models suggest that gut
microbial-related factors can contribute crucially to PD-like
pathogenesis142,155. However, definitive proof that they are
causative in human PD will likely require large-scale community-
based epidemiological studies with multiple sampling over many
years to unravel the evolution of gut-related changes in PD.
Whether and how lifestyle factors (caffeine intake, cigarette
smoking, environmental toxin exposure) that modulate PD risk
impact the gut microbiome is also ripe for study156.

Importantly, although gut inflammation and alpha-synuclein
aggregation might be common events, we believe that PD ensues
only when additional contributing factors, such as host genetic
vulnerability or ageing, are present155,157,158, with ethno-
geographic factors also playing a role153,159. Ultimately, a deeper
understanding of potentially modifiable factors and events
operating along the microbiome-gut-brain axis will open up
new ways to prevent or change the course of this disabling
disease142,160.

A COMBINATION OF SOCIAL, BIOLOGICAL AND
ENVIRONMENTAL FACTORS
René L. Vidal, PhD, Chile
Movement disorders (MDs) encompass heterogeneous nervous
system conditions that cause either an excess of movement or a
paucity of voluntary and involuntary movements161. The most
prevalent MD, PD, affected over 6.1 million people in 2016, and
the number of affected individuals have increased 2.4-fold from
1990 to 2016 and continues to grow162. In 2017, the economic
burden of PD only in the USA was U$51.9 billion163. Most MDs
feature a long prodromal phase, providing unique opportunities
to identify significant risk factors for early detection and
intervention, to ultimately improve patient care.
For unknown reasons, Chile, with its partially isolated environ-

ments combined with socioeconomic inequalities in rural and
urban sectors, has the highest prevalence of PD in Latin
America164. Ethnically, the Chilean population has an admixed
genetic composition of European and South Amerindian ances-
tries, e.g., Aymaras and Mapuche. These unique ancestral
combinations may be involved in the prevalence of MDs. For
these reasons it is very relevant to dissect the social, environ-
mental, and genetic factors associated with MDs such as PD in
Chile or other South Amerindian populations.
During the past decade, epidemiological and demographic data

from Chile, has been used to generate a unique and publicly
accessible resource: a nationwide de-identified individual-level
electronic health record database. In addition, we have access to
clinical statistics (i.e., inpatient services) from the Ministry of Health
through the Department of Health Statistics and Information
(DHSI) and to environmental factor exposure data (i.e., registry of
contaminants by geographic districts) through the Ministry of
Environment and others. We have identified a population of more
than 37,000 PD cases over the last 20 years who are mainly
concentrated in overpopulated or industrialized regions, which
once again demonstrates the impact of environmental factors on
the development of this type of pathology. Other important
epidemiological estimates such as regional disease prevalence,
progressions (retrospectively), comorbidities, mortality, social
determinants, and disease economic burden also arise as relevant
factors involved in PD progression.
Moreover, it is important to consider how biological factors

such as genomic variants, gene expression profiles, protein
networks, among others associate with the phenotypes observed
in individuals with PD. In this line, we recently investigated
potential biomolecules in blood samples such as Insulin-like
growth factor 2 (IGF2) and autophagic pathways which could play
central roles in disease pathogenesis. Our preliminary work has
shown a significant decrease in autophagy activity together with a
drastic downregulation of IGF2 in peripheral blood mononuclear
cell from Chilean persons with PD165.
Finally, in PD there are several subcategories related to

severities and progressions, and its biological basis is largely
unknown. For this reason, it is very important to validate the
biological factors in human PD samples and in short-lived disease
models at different times of disease progression, which may
contribute to understanding the molecular basis associated with
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differing severity and progression of this disease. I believe that the
combinations of biological factors such as genetic variations,
protein modifications, autophagic dysfunction, alpha-synuclein
accumulation and growth factor levels among others in blood
samples, together with environmental and social factors could
explain the heterogeneity of motor and nonmotor symptoms
observed in PD patients.

CONCLUDING REMARKS
It is clear from the personal viewpoints above that there are a
myriad of differing opinions on the biological basis of PD, as
illustrated in Fig. 1. This shows that the PD experts are not in
agreement with what exactly goes wrong for someone to
develop the disorder. While some views overlap in terms of
considering genetic factors, alpha-synuclein accumulation,
exposure to mitochondrial toxins and neuroinflammation as
key etiological drivers, we still do not know what exactly the
cause of PD is. It should be noted that most of the views were
from researchers with MD, PhD backgrounds which may have
introduced a bias in the responses.
We can consider that the etiology of the disorder is multi-

factorial and due to variances in individual genetic make-up,
environment and lifestyle, is different in each person with PD.
With the more or less highly penetrant monogenic or strong
environmental causes, our etiologic understanding currently
represents only the tip of the iceberg. Paradoxically, it will require
both a lumper’s as well as a splitter’s approach to fully embrace
the etiology of PD. Additional layers of omics studies, including
exposomics, are warranted to further explore and potentially

disentangle different etiologic contributions and their (epigenetic)
changes over an individual’s lifetime. Consequently, this means
that each person may have their own unique form of the disease.
From a translational perspective, with a view to more effective

treatment or even cure, one may envision the development of a
“cocktail” of drugs targeting alpha-synuclein accumulation,
restoring GBA levels and mitochondrial function, and mitigating
the effects of environmental exposures, with its “ingredients”
possibly adjusted according to each individual’s etiological
contributions in a personalized fashion.
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