- 4

Complexity Analysis of ReactiVéAGvraphvr
Grammars

0

Aline Brum Loreto *)”

)

Laira Vieira Toscani *

Leila Ribeiro *

Abstract

The aim of this paper is to present a way to calculate a complexity measurement of
graph grammar specifications of reactive systems. The basic operation that describe
the behavior of a graph grammar is a rule application. Therefore, this operation will
be used to characterize the tasks to be performed within a system. The complexity
measurement defined here will give us the minimum number of steps that must be
present in a computation that performs a desired task.

Keywords: graph grammars, complexity.

“Instituto de Informatica/CPGCC
Universidade Federal do Rio Grande do Sul
e-mail: {loreto,laira.leila}@inf.ufrgs.br
This work has been partially supported by projects QaP-For(Fapergs). Platus (CNPq) and Graphit
(CNPq/DLR).

Complexity Analysis of Reactive Graph Grammars

1. Introduction

Reactive systems [MP92] are a special kind of system in which everything that
occurs is a reaction to some kind of stimulus. The idea is that the system is composed
by a number of communicating entities that send stimulus to each other and cooperate
in order to perform some application. Here we will call the entities by objects and
the stimulus by messages. Reactive systems are usually concurrent because each of
its components acts independently. Many of the most used concurrent applications
of computers nowadays can be suitably modeled as reactive systems, for example,
control systems and client /server applications. Due to the concurrency, distributed,
non-deterministic and dynamic aspects of these applications, they are very difficult
to analyze. This is specially true in case one wants to answer questions about the
computational efforts involved in the execution of a reactive system.

To be able to investigate a system, we must first describe it using a formal descrip-
tion technique. Here we will use graph grammars [Ehr79, EHK'97] for this purpose.
A graph grammar specification of a system consists of an initial graph and a set of
rules. The initial graph represents the initial state of the system, that is, the objects
and messages (triggers) that are present when the system is initialized. The rules
describe the behavior of the system. Graph grammars rely on simple but powerful
concepts: graphs represent in a natural way the distribution of the objects in a sys-
tem; each rule describes a local change, and may be applied in parallel with others
if they are not in conflict (do not try to delete the same items); in case there are
conflicting rules enabled, the choice of the one to be applied is non-deterministic.

The complexity of a specification/program is always related to the computational
work. Usually, this work is measured in terms of time ou memory needed to perform
some task. But in special kinds of systems, other units are also interesting to con-
sider. For example, in distributed applications, the number of messages exchanged
to perform some task is of great interest because in such systems the time needed
to execute is rather consumed by communication than by CPU [Lyn96]. In general
many complexity measurements are interesting for a particular application domain,
but many of them are very difficult (if not impossible) to be computed. The challenge
is always to find out a useful measurement that is possible to be computed. The
specification of a system is an abstract description of its intended implementation:
it describes the properties the implementation has to satisfv. Complexity is one of
these properties. If it is possible to state something about the complexity of the
system already in the specification phase, the cost of the development will decrease
and the generated system will be more efficient. As usual, once an implementation is
proposed, we have to assure that this implementation satisfies all the necessary prop-
erties of the specification, including the complexity. For specification methods that
follow the operational approach, like graph grammars, investigation about complexity
measures can be very interesting for some application domains, like distributed and

110 RITA e Volume VII e Numero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

concurrent systems.

The investigation of complexity of parallel systems in general is usually related
to an execution on a concrete architecture [Jaj97, AkI89]. What is measured is the
complexity of performing one or more tasks, typically the amount of time needed to
complete the execution of all these tasks. In reactive systems like the ones studied
in this paper, there is a great amount of parallelism involved: each entity may act
in parallel with others, and the entity itself may perform many actions in parallel.
Moreover, many of these systems are not meant to terminate, they rather receive
messages, change their internal state, send some messages in reaction and remain
ready to receive other messages (note that, maybe the task started by the original
message did not end with this reaction, but will continue to be performed by the
other entities that received the new messages). Thus, the notion of completion of a
task is not straightforward. There are some questions, like Will a reaction ever be
triggered?. that have no answer because we consider non-deterministic systems and
do not assume fairness (and therefore in the general case a message that triggers some
reaction may be indefinitely postponed). But there are some questions that are of
interest in this kind of context and may be answered:[s it possible that the system
comes to a state in which a particular reaction is triggered?, How many steps must
the system perform before such a state is reached?, Is it possible that this reaction is
triggered a number of times?. In this paper, we will provide a way to give answers to
these questions. Such answers will be a great help for the construction of distributed
systems. because many of them have a reactive nature and programmers can not rely
only on tests (the same test executed twice may yield completely different results).

The paper is structured as follows: Sect. 2. we give an introduction to graph
grammars and in Sect. 3. we show how they can be used to model reactive systems;
in Sect. 4. we present a way to calculate a kind of complexity measurement for reactive
systems based on the a graph grammar specification: in Sect. 5. we summarize our
results and discuss the possible improvements to our approach.

2. Graph Grammars

We will follow the algebraic Single-Pushout Approach to graph grammars|Low90.
Low93]. The technical definitions within this approach are described using category
theory, and specially the approach we follow is called Single-Pushout because the
application of a rule to a match is defined as a pushout in a category of graphs and
partial graph morphisms.

Classically, a graph grammar consists of an initial graph, representing the initial
state of a system, and a set of rules that can be used to transform the states of
the described system. States are described by graphs. To allow more comprehensive
representations of a state using a graph, typing mechanisms describing different kinds
of vertices and edges may be used. There are many ways to define typing mechanisms

RITA e Volume VII e Namero 1 e Setembro 2000 i

Complexity Analysis of Reactive Graph Grammars

for graphs, here we will use the concept of a typed graph\cite{typed}. The idea of
a typed graph is to use a graph, called type graph, to define the possible kinds of
vertices and edges of a system, and an actual graph is then a graph consisting of
instances of elements of the type graph. A typed graph can thus be described by a
graph morphism relating each instance with its type. Figure 4 shows a (typed) graph
grammar GG with type graph AG depicted in Figure 3, that is, and each of the other
graphs in Figure 4 are graphs typed over AG (the mapping is implicitly defined by
the same symbols of vertices and edges). The rules specify the behavior of the system
in terms of local state changes. The left-hand side of the rule specifies a pattern that
must be present in some state for the rule to be applied; the right-hand side shows
the effect of the application of the rule; and the mapping from left- to right-hand side
describes deletion (items that are not mapped), creation (items that are not in the
range of the mapping) and preservation (items that are mapped). In the grammar
G@, the mapping from left- to right-hand sides of the rules is indicated by using the
same item on the both sides to specify that the item is preserved, different indices
indicate that an item was deleted and another one of the same type was created.
Graph grammar: is a tuple GG = (T, 17.N) where T is a graph. called the type
graph. IT is a graph typed over T. called the initial graph. N is a set of rules typed
over T .

3. Reactive Graph Grammars

A reactive system as a system consisting of autonomous entities that we will call
objects that communicate and cooperate with each other through messages. Objects
may have an internal state and relate to other objects within the system. The behavior
of an object is described through its reactions to the receipt of messages (triggers).
An object may perform many (re)actions in parallel.

Here we will describe a reactive system using a graph grammar. Therefore, we have
to identify within a graph grammar what are the objects, messages and attributes,
and then show how to specify reactions within this formalism. The structural part
will be modeled by distinguishing different kinds of vertices and edges within the
graphs that model states of the system (see Figure 1). Objects and messages will
be modeled as vertices. A message must have as destiny an object and may have as
arguments other objects and/or attributes of data types. An object may know other
objects and may have attributes of data types modeling its internal state. This graph
(Figure 1) can be considered as a type graph for a reactive system, and therefore we
will call it reactive model graph. Note that a type graph models kinds of objects and
links that may be present in an actual state of the system, but say nothing about the
number of elements of each kind that must be present at a particular state. Although
this is the desired (model) type-graph for reactive applications, here we will take into
consideration only the items in boldface in this graph. The impacts of considering

112 RITA e Volume VII e Numero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

attributes will be discussed in Sect. 5..

B

Figure 1: Reactive Model Graph RG

For each specific reactive system we may have various types of objects and mes-
sages that are relevant for that application. Thus, to build a specification for a reactive
svstem using graph grammars one must first define what we call the application type-
graph. This graph must be typed over the reactive model type-graph. The resulting
structure of a reactive graph grammar is illustrated in Figure 2. Formally, this struc-
ture can be defined as a doubly-typed graph grammar (see [Rib96b]|, [DR0O0] for the
formal definitions). One of the advantages of defining explicitly the model type-graph
within the specification is to ease the comparison among specifications with respect
to different model graphs (once we relate the model graphs. the relationships among
the specifications can be obtained automatically).

Ini LI-MRi LI-Ri .- LIl Rj]
R W e
i
AG
1
RG

Figure 2: Structure of a Reactive Graph Grammar

Example 3.1

To model a producer/consumer application, we may define a type producer (P) and
a type consumer (C'). Producers may receive messages of type produce and tmp, and
consumers may only receive messages of type consume. Furthermore, this graph speci-
fies that producers may know consumers but not vice versa and that messages have no
arguments. The behavior of producer/consumer application having these kinds of entities
will be described using a graph grammar in Example 3.2.

RITA e Volume VII e Numero 1 e Setembro 2000 113

Complexity Analysis of Reactive Graph Grammars

=71

Figure 3: Application Type Graph AG

For a reactive graph grammar we will only allow rules that consume an element
of type message, i.e., each rule represents a reaction to the kind of message that was
consumed. Moreover, only one message may be consumed at a time be each rule.
Note that the system may have many rules that specify reactions to the same kind of
message (non-determinism), and that many rules may be applied in parallel if their
triggers (messages) are present at an actual state (graph). Many messages may be
generated in reaction to one message. Here we will restrict the number of generated
messages of the same kind to one (to allow a simpler analysis of causality among
rules). To make sure that a rule may be applied whenever its trigger is found in the
actual state graph we will require that whenever a message appears in a graph, it has
exactly all specified arguments and one destination.

The following definition is given in a semi-formal way because the corresponding
formal definitions, although straightforward, require a number of concepts that are
not needed elsewhere in this paper and were therefore not introduced.

Definition 1 Reactive Rule. Let RG be the reactive model graph and AG be a
finite graph typed over RG. Then a morphism r : L4 — R4Y is a (reactive) rule
iff L and R are finite 7 is injective and the following conditions are satisfied:

i) There is exactly one message vertex m on the left-hand side of a rule. In this
case, m is called trigger of r, denoted by Trig(r).

ii) The message on the left-hand side of a rule is consumed by the application of
the rule (Trig(r) € dom(r)).

iii) Messages have exactly one destination. Moreover all items in L and R must
be connected. This latter condition is to avoid that a rule has non-local side effects.

iv) Objects may not be deleted.

v) A rule may not create two items (messages or objects) with the same type.

Now we can define a reactive graph grammar.

Definition 2 Reactive Graph Grammar. A reactive graph grammar is a
tuple GG = (AG. I, Rules) where AG, called the type of the grammar, is a finite
graph typed over the reactive model graph RG, I is a finite graph typed over AG,
called the initial graph of the grammar, and Rules is a finite set of reactive rules
typed over AG.

114 RITA e Volume VII e Nuunero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

Example 3.2

Figure 4 shows a graph grammar specifying the behavior of a producer/consumer
system. In the initial state, rules pl and p2 are enabled (message produce triggers these
rules). The indices 1 and 2 are used to distinguish items that are not the same, although
having the same type. Everything that is on the left- and right-hand side of the rule will
be preserved when the rule is applied. Items that are on the left- but not on the right-hand
side are deleted (consumed), and items that are on the right- but not on the left-hand
side are created.

(= |~ == ! = !
Ini | |produce, produce |consume Lmp | 1 | Lproduce | consume |
‘ — | —mk |__p3 ‘
| === |25] AN AN AN W 5
Lo IORCIENIC=CINIORCIENIORC)
| | = : =g 1 A ‘ i
. || |produce| | | L tmp_| I ‘ Lrgxume l i
L p) £ | | p2_| | | c | |
| VP p—=—=€ 3 | i | | | |
L B Py Ik g | e
(P) P (e} ‘ LE

Figure 4: Graph Grammar GG

The behavior of a graph grammar is given by the applications of rules to graphs
representing the actual states of the system, starting from the initial graph. The
applications of rules may occur in parallel if the rules do not try to delete the same
items. Note that, if a rule preserve an item that is deleted by another rule, these two
may occur in parallel. This situation corresponds to one write and one read access
occurring at the same time.

To be able to apply a rule r : LYY — RAY to a graph G representing the actual
state of a system one must first find out whether the rule can be applied. This is
done by finding a match of the left-hand side of the rule in this actual graph. An
application of a rule in a graph, called derivation step, deletes from the actual graph
everything that is to be deleted by the rule and adds the items that shall be created
by the rule. Formally, a match is described by a total (typed) graph morphism and a
derivation step is a pushout in the category of (doubly-typed) graphs.

LAG — pAG

'711 PO l/ m’

G:\G R HAG
o

A true concurrency semantics for graph grammars can be described by an unfold-
ing construction that gives us a partial order of derivation steps [Rib96a]. The un-
folding construction encompasses informations about all possible computations that

RITA e Volume VII e Nuumero 1 e Setembro 2000 15

Complexity Analysis of Reactive Graph Grammars

are described by the given graph grammar. Therefore, we could use it to answer
questions about the minimum length of a computation to reach some state, or the
minimum length of computations involving a number of applications of the same rule,
etc. However, the unfolding is usually infinite because many of the applications of
reactive systems are not meant to terminate. Moreover, the construction is quite
complex. In this paper we will provide means to answer some questions about a
grammar without having to build all possible computations. This will be done based
on (potential) causality and conflict relationships among rules. These relationships
have been defined in [Kor95, Rib96a, Rib98] to define axiomatizations of computa-
tions of a graph grammar. Here we will give a different interpretation to them to
describe possible computations.

3.1 Relations Among Rules

To characterize the class of all possible computations of a graph grammar three
relationships are needed: causal dependency. conflict and weak conflict (see [Kor95,
Rib96a, Rib98]). The third relationship (weak conflict) is needed due to the possibil-
ity of preservation of items when a rule is applied (this relationship expresses conflicts
between preservation and deletion of items). However, the restrictions made on graph
grammars to define reactive graph grammars ruled out the occurrence of weak con-
flicts, and therefore they will not be introduced here. But. as soon as we considered
attributes of objects, this kind of conflict will naturally arise (see discussion in the
conclusion). Now we will (informally) introduce the causal and conflict relationships.

"

(Potential Causal) Dependency Relation (<): The intuitive idea of this rela-
tion is that a rule a is a (direct) potential cause of a rule b if a creates some
item of a type that is needed (preserved/deleted) by b. Note that this does not
imply that b can only be applied after a has been applied. This is because the
trigger of b may be present already on the initial state. or the trigger of b may
be generated by another rule ¢. Therefore, we can say that if a is a potential
cause of b then there may be a sequence of rule applications in which a creates
the trigger of b. The transitive closure of < will be denoted by <.

Example 3.3

In the grammar of Figure 4, we have the following direct relationships: pl < pl, pl <
p2,pl < ¢,p2 < p3,p3 < pl,p3 < p2,p3 < ¢. They can be better visualized by the
graph below, where pl1 — p2 indicates that pl < p2. If there is a way from p; to p;; then
pi <* pii.

116 RITA e Volume VII e Numero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

Q@
pl

A

P p3 @

(Potential) Conflict Relation: The potential conflict relationship relates two rules
rl and r2 that need the same type of trigger. This means that in any compu-
tation in which one of these two rules appears, there must have been a choice
between them. But not every application of 1 is in conflict with an application
of 72 because they may try to use different copies of the trigger existing in an
actual graph.

Example 3.4

In the grammar of Figure 4 we have the potential conflict relation: pl1#p2 because
both pl and p2 have the same trigger (produce).

3.2 Semantics of Graph Grammars

The semantics of a graph grammar can be defined as the class of all computations
that can be performed using the rules of the grammar starting with the initial state.
These computations may be sequential or concurrent, giving raise to sequential and
concurrent semantic models. Figure 5(a) Ilustrates a sequential derivation for a
grammar with, starting graph /. In this derivation we have a total order (<) of
derivation steps (s1 < s2 < s3) that denotes the sequence in which they have occurred
in this computation. If we make a suitable gluing® of all intermediate graphs of this
derivation, we obtain a structure called concurrent derivation (Figure 5(b)). Now,
the total order that existed in the sequential derivation is lost, but we may define a
partial order (<) between the steps that describes the causality relation: if s1 < s2
then s1 must occur to allow the occurrence of s2. A concurrent derivation can be seen
as an equivalence class of sequential derivations (all possible sequential derivations
corresponding to the totalizations of < are in this class). Note that a concurrent
derivation seems very much like a graph grammar if we consider the graph C. called
core graph, as being the type of the grammar. This means that we can describe
all computations of a graph grammar using graph grammars. Of course, the graph
grammar used to describe the semantics are a special kind of grammars (for example,
the causality relationship must be a partial order — see [Kor95, Rib98]| for the axioms
defining this class of grammars). in which each rule corresponds to a derivation step
of the original grammar.

TThis gluing is actually a colimit of a diagram in the category of doubly-typed graphs [Kor96.
Rib96a].

RITA e Volume VII ¢ Numero 1 e Setembro 2000 117

Complexity Analysis of Reactive Graph Grammars

r3 rl r2 r3

R2 3 L1 RI L2 R2 L3 R3
s 2 / 53
sl \
I our! OUT3 I c
(b)

Figure 5: (a) Sequential derivation (b) Concurrent Derivation

By a computation we mean a concurrent derivation. The length of a compu-
tation r, denoted by |k|, is the number of steps involved in this computation. As a
concurrent derivation is a graph grammar, the causality relationship within a com-
putation have already been defined. Note that the interpretation of the causality
relationship in a computation is different than in a graph grammar: in a graph gram-
mar 1 < r2 means that there may be a computation in which rule r2 depends on
elements delivered by the application of rule r1, while in a computation s1 < s2 means
that the derivation step s2 created the necessary items for the occurrence of derivation
step s2. Given a computation k, ks is a subcomputation of k if all steps in x4 are
also in & and the causality relationship is preserved, i.e., , s1 <, 52 = s1 <, s2%.

4. Complexity of Reactive Graph Grammars

When considering the parallel execution of tasks, we may have two different mea-
surements: one of them is the time cost (taking into account that some tasks may run
in parallel), and the other s the computational effort needed to complete the task
(that is independent of the fact that some operations may execute in parallel).

To execute a graph grammars means to apply rules. Therefore it is reasonable to
say that the complexity can be measured in terms of the number of rule applications
needed to perform some task, that is, a rule application is considered as a fundamental
operation. We assume that all rule applications need similar computational efforts
to be performed. An implementation that preserves rule applications will preserve
the complexity of the system, that is, a corresponding notion of satisfaction of a
specification must take rule applications into acount. This is the approach followed
here. Here we have restricted the kind of graph grammar by using the notion of
messages and objects: in all graphs involved in a grammar each time a message
appears, all (and exactly) its arguments must also be present, and each rule deletes
exactly one message. Thus. to find out is a rule can be applied we must just find the
trigger message of this rule in the set of vertices of type message in the state graph.
For practical applications, these restrictions are not a problem (see, for example, the

$This subcomputation relation corresponds to a concurrent prefix relationship between computa-
tions. To model sequential prefixes we would have to require that the causality relationship is also
reflected (see [Kor96]).

118 RITA e Volume VII e Numero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

specification of a telephone system presented in [Rib96b, KR97]). Note that, in our
approach, each application of a rule correponds exactly to a message exchange in the
system. Therefore, the complexity measure that we give is given in terms of number
of exchanged messages to perform some task, that is a reasonable unit of measure for
distributed/concurrent systems.

As a graph grammar is inherently non-deterministic and we do not assume fair-
ness, questions like Will a rule r ever be applied?, What is the length of the biggest
computation in which a rule r appears? make no sense. What we could ask is Is
there a computation in which the rule r is applied?, What is the length of the small-
est computation in which r appears?. Moreover, as the systems we are considering
are reactive systems, questions like How many steps are necessary for the system to
complete? have usually no answer because these systems typically are not meant to
terminate. Therefore, we may associate completion of some task with the application
of some specific rule (in the producer/consumer example, we may say that each time
rule ¢ is applied one cycle produce/consume is finished). In this context, it is rather
reasonable to ask questions like How many steps are necessary for a rule to execute
a number n of times?. The necessary number of steps characterizes the minimum
length of computation that performs the required number of rule applications. A way
to calculate this will be provided in this section.

4.1 Definitions

Definition 3 Let GG = (I, T, Rules) be a graph grammar and r,r; € Rules, i € N.
(Direct) Causes: Cause, = {r;|r; < r}
Cause indeperident rules:ry < r and ro < r are cause-independent rules if (Aro.
ro <t 71 and ro <t ro).

Path:p = (ry,79,. .., Ty is a path tor ifry <rg <--- <7

Rule in path:r is in p = (7'1. rn) if 3i € [l.n]ar; =7

Length:|p| =n. if p= (1 7,,)

Paths:paths(r) ={plp is a path tor}

Cycles:eycles(r) = {p = (r, - 7,,) g p(lfh‘:()ir,, =rand Vi € [2,n — 1]. r, =7}
Feasible path: feaszblePath ={p=(r1,---.7) € paths(r)|Ve € cycles(r).|p| < |c|}
Feasible rule: feasible Rule(r) = {rl|rl is in p and p € feasiblePath(r)}

Let ¢(n,r) denote the cost of n occurrences of rule r. In the following we will build
stepwise an expression that gives a minimum cost for such a computation. Consider
Cause, the set of the direct causes of r (i.e.. r; < r). Each occurrence of r must
depend either on one of these causes or on messages that trigger r that are present
already on the initial state of the graph grammar (7). We are interested in defining ,
the smallest computation that contains n occurrences of rule r. If the trigger for
this rule is already on the initial graph, to apply this rule one time, there can be no
smallest path than using this trigger. Therefore, we will always use first all triggers

RITA e Volume VII e Numero 1 e Setembro 2000 119

Complexity Analysis of Reactive Graph Grammars

that are present in the initial graph, and then check in which other ways we may get
the necessary trigger for 7. Let n; (n; > 0) denote the number of occurrences of r
that are dependent on a rule i € Cause,., and trig(r) be the number of messages that
trigger r present on the initial graph.Thus, to be able to apply r n times we need to
have n; occurrences of r; satisfying:

(4.1), n—trig(r) = Z Mgy Topy >0

ieCause,

Example 4.1

Consider the graph grammar in Figure 4. Suppose we want to calculate the minimum
number of rule applications necessary to apply rule ¢ twice, that is, we want to calculate
(2, ¢). If there would be enough occurrences of the trigger of ¢ (message consume) in the
initial graph (Ini), then the minimum number of steps would be exactly 2, corresponding
to the two applications of rule ¢. But in this example we have no occurrences of message
consume in the initial graph, that is, trig(c) = 0. Therefore, the only way to apply
rule ¢ is to apply first a rule that generate a message consume. The rules that do
this are in Cause, = {pl,p3}. Thus, to generate the two necessary triggers for ¢ we
have the following possibilities: apply pl twice (ny,1 = 2.n,3 = 0), apply p3 twice
(np1 = 0,np3 = 2), or apply pl and p3 once (n,; = 1.n,3 = 1). Note that, according
to equation 4.1, in each case the sum of n,; and n,smust be 2 (because n = 2 and
trig(c) = 0).

In equation 4.1 we have defined the restrictions for n;. In the simpler case, when
we have all necessary triggers in the initial graph, we have:

(4.2) n <trig(r) and ¢(n,r) =n

But, if there are not enough triggers for r in the initial state (n < trig(r)).
considering the cost of n,, occurrences of r; (to generate the missing triggers), plus
the n occurrences of r (the cost of applying this rule the required number of times),
we arrive at the following expression to describe the cost of applying n times rule r:

(4.3) n+ Z (1)

rie€Causer

If the rule r is not a direct or indirect cause of any of the r;s (r A1 r;), expression
4.3 gives us already the cost of this combination of n,. occurrences of r;.

Now suppose that » <™ r;, that is, there is a chain of causally related rules from
r to r;. If we look at expression 4.3, we may notice that the occurrences of r that
preceded r; were counted twice: one in the term n and one in ¢(n,.,,r;). Therefore we

120 RITA e Volume VII ¢ Numero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

must diminish these occurrences from the total amount of necessary rule applications.
Actually, we need to subtract at most one occurrence of r prior to r; because if
there are more than one, the others must have already been subtracted when the
corresponding ¢(n,,,r;) was calculated.

We need to determine, for each i, if r; have occurred using triggers that have
been created by some occurrence of r or not. In the first case, we must subtract the
occurrence of r needed to apply 7;, and in the latter case not. This will be done via
the function rep(r,n,,,r;). For each i, n,, minus the number of executions of r; that
may occur not dependent on r gives us the number of times we shall consider.

As we are only interested in the smallest path, we will only consider paths that lead
to occurrences of r; that are smaller than the smallest cycle containing r. These paths
are exactly the ones belonging to feasible Path(r;). The definition feasible Rule will
be used when we have a situation in which r; < » < r; . In this case there is a
cycle to r; (if we require that all causes of each rule are cause-independent, then this
cycle must be unique). Moreover, any path to r; that contains r; must be longer than
the smallest cycle (or equal, if the path is the smallest cycle itself). The fact that
r; € feasible Rule(r) means that there is a path from r to r; that is shorter than the
smallest cycle on r; (and therefore can not contain r;). Furthermore, we need to find
out whether such a path could ever be initiated in the considered grammar. This is
described by the existence of the necessary triggers in the initial graph:

Ny, — Z trig(fr)

frefeasible Rule(r;)—{r}

However, we should not subtract a negative number of times. In the case we
have n,, < Z,frefeasibleRulf’(r,-)—{r} trig(fr) then the smallest way to. reach all n,,
occurrences of r; does not include occurrences of , and therefore nothing should be
subtracted from the result of 4.3. Thus, we obtain

0, if r A7 r;
rep(r,n,. ,r;) = ») .
o moz {0- Ry = 3 pveteanibictiuleln)~ t’“'lg(f"“)} ; ATy

(4.4)

Remark 1 Ifr A7 r;. all n,., occurrences of r; did not include r, that is, the number
of occurrences (between the n;’s) of r; including r is zero. Conversely, if r <% r;
for each i, the number of occurrences of r; (between the n,.’s) that include r is n,,
minus the ones that came from paths that are smaller than any containing r. Thus,
rep(r,n,,.r;) represents the number of occurrences of r; dependent on r.

RITA e Volume VII e Numero 1 e Setembro 2000 121

Complexity Analysis of Reactive Graph Grammars

Example 4.2

In our example, to calculate ¢(2,¢) we found out that we need to use triggers gen-
erated by pl and/or p3 (see example 4.1). Thus we will have to find out whether
during the generation of these triggers the rule ¢ was applied. This can be done us-
ing equation 4.4: rep(c,n,pl) = 0 and rep(c,n,p3) = 0, for any number n (because
¢ A7 pl and ¢ £ p3). To calculate the cost of applying 2 times rule p3, we would
have’to calculate rep(p3,2,p2) because p2 < p3 and trig(p3) = 0. In this case, we
have p3 <T p2 and therefore we have to calculate the feasible rules of p2 (see figure
of Example 3.3): cycles(p2) = {(p2,p3.p2), (p2,p3,pl,p2), (p2,p3,pl,pl,p2),...},
feasiblePath(p2) = {(p2), (p3,p2) ., (pl,p2)} (only paths shorter than | (p2,p3,p2)| =
3), feasibleRules(p2) = {p2,p3, pl}. Therefore, rep(p3.2,p2) = max{0,2—(trig(pl)+
trig(p3))} = max{0,2 — (1 +0)} = 1. This means that, if we apply rule p3 two times
depending on rule p2, one of the occurrences of rule p2 must have been dependent on an
application of p3.

Then, expression 4.3 modifies to:

(4.5) Z c(ny,,ri) + <n - Z rep(r, n,,,r,))
ri€Cause, r;€Causen

If, for some i, ¢(n,,,r;) = oo, then this combination of n;’s and r;’s can never
occur, what implies that, if » can occur n times, it is not using this combination of
causes. In this case, expression 4.5 assumes value oco. It is also possible that we have,
for all i, ¢(n,,,r;) # oo, meaning that, isolated, we may have n,, occurrences of r;.but
we may have the case that it is impossible to perform them together (because, for
example, they use the same trigger). This situation will not be considered now and
will be discussed later.

In case we have a cycle involving r and r;. if r; occurs at least once. r will be
enabled any number of times. The next function is used to find out whether it is
possible that r; occur at least once.

Flirs) = { 00, if Doy, trigler) =0

0, otherwise

Thus, we can replace expression 4.5 by

o0 5 BB Zr',E.("uzst,. f(ll) =
Zr’;G('u usen (‘(n"i ’ TI.) + ('II - ZME('{: use, "‘«’p(ll My, 77)) . otherwise
(4.6)

122 RITA e Volume VII ¢ Namero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

This way we have characterized each combination of n,, occurrence of rule r;. As
we want to calculate the minimum cost for this computation, we now have to minimize
expression 4.6, subject to the restrictions defined in 4.1. Then we finally reach the
expression defining the minimum number of rule applications that are necessary in a
computation to have n occurrences of a rule r:

n Lif trig(r) > n
das)= MIN Restr { { e A Y ecause, (i) = 00 } , if trig(r) <n

CostComp =, otherwise

with Restr = 3 ccquse, i = 1 — trig(n);n,, >0
and CostComp =3 coquse, Mrss 1) + (0 — 32, coause, TED(Ts Mry,T3))

Example 4.3

Now we can calculate the minimum cost of applying rule ¢ two times. According to
the discussion in Example 4.1, we have 3 cases to calculate the costs cA, ¢B and cC.
The minimum of these is the lenght of the smallest computation we are looking for:
¢(2,¢) = min{cA, ¢B,cC} where

cA =c(2,pl) + ¢(0,p3) + (2 —0) = ¢(2,pl) + 2
cB =c(0,pl) +¢(2,p3) + (2—=0) = ¢(2,p3) + 2
cC=c(l,pl)+ce(L,p3)+(2—=0)=c(1,pl) +¢(1,p3) + 2
Now we have to calculate the component expressions:
c(2,pl) =min{c(l,pl)+ (2 —rep(pl,1,pl)),c(1,p3) + (2 — rep(pl,1,p3))}
=min{l+(2-1),24+(2-0)}
rep(pl, 1.pl) = maxr{0,1 -0} =1,
feasibleRule(pl) — {p1} =0
rep(pl, 1, p3) = max{0,1 — (trig(p2) + trig(p3))} = maz{0,1 — (1+0)} =0
feasibleRule(p3) — {pl} = {p2, p3}
c(2,p3) = min{c(2,p2) + (2 — rep(p3,p2,p2))} = min{3+(2-1)} =4
c(1,pl) =e¢(1,p2) =1 because trig(pl) = 1 = trig(p2)
c(1,p3) =min{c(1,p2)+ (1 —rep(p3,1,p2))} =min{l+ (1 -0)} =2
rep(p3,1,p2) = max{0,1 — trig(p2)} = max{0,0} = 0,
feasibleRule(p2) — {p3} = {p2}
Thus, we have that ¢(2,¢) = min{2+2,44+2,1+2+2} =4

Example 4.4

Now consider the same rules, but with an empty initial graph. Then we have:
c(1,pl) = min{oc,o0} = oo because we have now trig(r;) = 0 for all rules r; €
{pl,p3.p2} and therefore f(pl) = f(p3) =

RITA e Volume VII e Ntuimero 1 e Setembro 2000 123

Complexity Analysis of Reactive Graph Grammars

In the cost expression given above, we have not considered the fact that the same
two rules may need the same trigger (and are, therefore, not only in potential but
in real in conflict). As the computation of the cost of each cause of a rule is done
separately, we may reach a conclusion that the minimum number of steps needed is
actually smaller that the real one because of the sharing of triggers (in some cases,
there may be no computation performing the required number of steps — that is, the
cost in infinite — and our result could be a natural number). However, there may be
cases in which there are no potential conflicts and this situation occurs. An example
would be a rule that generates the triggers for two others that both generate the
trigger for another rule. This situation is called cause-dependency (two causes of
the same rule depend on a common rule). The cases for which the expression given
here gives an exact result (that is, for which there is actually a computation of that
minimum length) are as follows: there are no potential conflicts between the rules of
the grammar and all causes of each rule are cause-independent.

The following theorem states that if the cost expression we have defined gives
a value z for applying n times a rule r then there can be no computation of the
corresponding grammar that has n applications of rule r that has length smaller than
x. This theorem proves that, if we consider a graph grammar with cause-independent
rules, we have really defined a lower bound for the computation length necessary
to have the required number of rule applications. Note that the theorem is valid
also for grammar that have conflicts, just that in this case it can be that there is
no computation having n occurrences of r that has exactly the length computed by
c(n,r).

Theorem 4..1 Let GG = (I, T, Rules) be a graph grammar in which all causes of
each rule are cause-independent and k be a computation of GG with |k| = m,m > 1. If
k contains n occurrences of derivation steps using rule r, then, for all subcomputations

k' of k that also has n occurrences of v, we have c(n,r) < |&'|.

Proof. In case n = 0, then for any r € Rules, n < trig(r) and therefore ¢(n,r) = 0,
what implies that ¢(n,r) < |£'|, for all subcomputation & of £'. The proof for n > 1
will be by induction on m = |x|. Let Cause, = {cr|er < r}.

IB: Let s be a computation of GG with |k| = 1. If k contains n occurrences of
derivation steps using rule r, then n < 1 because || = 1. In this case n. =1
because by assumption n > 1, and therefore the computation x must consist
of one derivation step using rule r because it has only one derivation step.
Moreover, if this derivation step was possible, then trig(r) > 1. Then we have
n < trig(r), what implies that ¢(n,r) = n = 1 and therefore ¢(n.r) = |&|.

IH: For any computation x of GG with |k| < m. If k contains n occurrences of
derivation steps using rule r, then, for all subcomputations ' of x that also
have n occurrences of r, we have c(n,r) < |x'|.

124 RITA e Volume VII e Numero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

IS: Let & be a computation with || = m + 1. Let &’ be a subcomputation of x that
has n occurrences of rule r.

Case 1 Suppose trig(r) > n. In this case c(n,r) = n. Any computation k' that
has n occurrences of rule r must consist of at least n derivation steps, that is
&' = n =eln,r).

Case 2 Suppose trig(r) > n andr A r. Let ri,rs,... r; € Cause,. The com-
putation k contains n occurrences of rule r, each one preceded by r;, i = 1..7. Let
Ny, (ny, > 0) be the number of times that r occurs in k depending on a rule ;.
Then Zr,-e('auser n,, +trig(r) =n. Astrig(r) <n andn > 0, k has at least one
occurrence of r whose trigger was not in the initial graph. Thus, there must be an
r A% 1 such that trig(r) # 0, and we must have Y rieCause, I (Ti) # 00. Besides,
as 1 AT 1 by assumption, c(n,r) =min {(n — X, ccause, TEP(N i) | Sub-
ject ton,, >0 and Zrie(,“user n,., =n—trig(r). For each r;, with n,, # 0, con-
sider the smaller subcomputation k; of k that contains the n,, occurrences of r;.
Using the induction hypothesis for k;(|k:| < |k'| < |k| because k; does not con-
tains the occurrences of rule r), we obtain ¢(n,.,,r;) < |r;|,i = 1..j. Therefore we
can conclude that Y, ccouse. CMrisTi) < D0 coause, [Kil- As, by assumption,
the causes of each rule of the grammar are cause-independent. all subcomputa-
tions ki do not share common resources, and thus Zrie('ausf,, |ki| < |&'| = m,
and this implies that n + 3 ccouse, €(rs i) < |K'|. As we are considering
the minimum of all combinations in the definition of ¢(n,r), we must have that
e(n,) < |-

Case 3 Suppose trig(r) > n and r AT r. Following the same reasoning as
the latter case, we may identify the r; and n,, of a computation k. and con-
clude that 3, ccquse, f(1i) # 00. In this case, this means that c(n,r) =
MAN Restr {Zr,»e('ause,. c(np, i)+ (n— Zrief'ause,\ rep(r,ny,,7i)) }, where Restr
= D rcCause, Wi = n —trig(n)in,, > 0. The induction hypothesis gives us
c(nr;,1i) < |Kil,i =1,..5 and thus 3, coause, €(MrisTi) < D0 ccause, |Kil- The
subcomputations k; are independent by assumption, but there may be occur-
rences of r in one of these subcomputations (in at most one because if more
than one have occurrences of r than the grammar is not cause-independent).
These occurrences have already been considered in the corresponding c(n,..r;)
and must therefore be subtracted. By remark 1, rep(r,n,.,r;) represents the
number of occurrences (between the n,,’s) of r; dependent on r. So we get
Z'rie('nuse,. C(n’i"z‘?ri) < Zr‘,-e('ausep |H’f| E |H'l| . (71 - Zr;GC'ause,, 7“(%[)(7’, TL,‘,.,T'I')) .
This implies 3. cciguse, SMris i) + (0 — X0 conuse, TEPTn, 1)) < ||, As
we are considering the minimum of all combinations in the definition of ¢(n,r),
we must have that c(n,r) < |x'|.

RITA e Volume VII e Namero 1 e Setembro 2000 125

Complexity Analysis of Reactive Graph Grammars

5. Conclusion

In this paper we have defined a special kind of graph grammar that is suitable
for the specification of reactive systems and have presented a way to calculate the
complexity of these grammars. This complexity is measured in terms of number of
rule applications.

Graph grammars have been used to specify a variety of systems [EHKT97], but
nevertheless almost no research have been made to investigate the complexity of
the specified systems (usually complexity issues were only regarded to build tools
for graph grammars that had to cope with the graph isomorphism problem to find
matches for rules). Although we have considered only a restricted class of graph
grammars, this work can be a starting point in a theory of complexity of graph
grammar specifications. Graph grammars can be considered as a generalization of
Petri nets [KR96]. Therefore, it would be interesting to investigate to what extent
the theory of Petri nets concerning complexity and related issues could be compared
to our approach, and also which results for Petri nets (as a special case of graph
grammars) can be achieved.

A relevant improvement of our approach (important for practical applications)
would be to consider graph grammars with attributes (data types) and also read
only/write access to attributes as a condition for the application of rules. This would
have the impact that the causality and conflict relationships are no longer enough to
characterize the computations of a graph grammar, we need a further relationship
called weak conflict (see [Kor96, Rib98, KR98]). Moreover. in this case, a rule may
depend not only on its trigger but also on a particular value of an attribute, thus,
it is potentially dependent on all other rules that create that trigger and on all that
may change the value of that attribute. The reasoning about the minimum length of
possible computations in this case becomes much more involved.

Another issue for further research is to investigate the minimum time cost in such
systems. One can use the causality and conflict (and possibly also weak conflict)
relationships to reason about which rules may be applied in parallel and thus get a
minimum time necessary to perform a rule a number of times.

The work developed here is to be implemented within a tool called PLATUS, that
is an environment for specification and simulation of reactive systems based on graph
grammars currently under development |[CR98, CR99, CMR00].

References
[AkI89] S. Akl The design and analysis of parallel algorithms, Prentice Hall, 1989.

[CMRI6] A. Corradini, U. Montanari, and F. Rossi, Graph processes. Fundamenta
Informaticae, vol. 26, no. 3/4, 1996, 241 — 265.

126 RITA e Volume VII e Numero 1 e Setembro 2000

Complexity Analysis of Reactive Graph Grammars

[CMROO]

[CROS]

[CR99]

[DROO]

[EHKT97]

[Ehr79|

[JajoT]

[KR96]

[KR97]

[KROS|

[Kor93)

B. Copstein, M. Méra and L. Ribeiro, An environment for formal modeling
and simulation for graph grammars, 33rd Annual Simulation Symposium,
2000, pp. 74-82.

B. Copstein and L. Ribeiro, Specifying simulation models using graph gram-
mars, 10th ESS European Simulation Symposium And Exhibition, 1998,
pp- 60-64.

L. Ribeiro and B. Copstein, Compositional Construction of Simulation
Models using Graph Grammars, International Workshop and Symposium
AGTIVE - Applications of Graph Transform ation with Industrial Rele-
vance, Lecture Notes in Computer Science, vol. 1779, 2000, pp. 87-94.

F. Dotti and L. Ribeiro, Specification of Mobile Code Systems using Graph
Grammars, Formal Methods for Open Object-based Systems IV (S. Smith
and C. Talcott, eds.), Kluwer Academic, 2000, pp. 45—64.

H. Ehrig, R. Heckel, M. Korff, M. Léwe, L. Ribeiro, A. Wagner. and
A. Corradini, Algebraic approaches to graph transformation II: Single
pushout approach and comparison with double pushout approach, The
Handbook of Graph Grammars, Volume 1: Foundations, World Scientific,
1997, pp. 247-312.

H. Ehrig, Introduction to the algebraic theory of graph grammars, 1st
Graph, Grammar Workshop, Lecture Notes in Computer Science, vol. 73
(V. Claus, H. Ehrig, and G. Rozenberg, eds.), 1979, pp. 1-69.

J. Jaja, An introduction to parallel algorithms, Addison-Wesley, 1997.

M. Korff and L. Ribeiro, Formal relationships between gra ph grammars
and Petri nets, Lecture Notes in Computer Science, vol. 1073, Springer,
1996, pp. 288-303.

M. Korff and L. Ribeiro, Graph grammars for the specification of con-
current systems, IN SBES Brazilian Symposium on Software Engineering,
1997, pp. 199-214.

M. Korff and L. Ribeiro-Korff, True concurrency—interleaving + weak con-
flict, Eletronic Notes in Theoretical Computer Science, vol. 14, 1998.

M. Korff, Single pushout transformations of generalized graph structures,
Tech. Report RP 220, Federal University of Rio Grande do Sul, Porto
Alegre, Brazil, 1993.

RITA e Volume VII ¢ Numero 1 e Setembro 2000 127

Complexity Analysis of Reactive Graph Grammars

[Kor95|

[Kor96]

[Low90]

[Low93]

|[Lyn96|
[MP92]

[Rib96al

[Rib96b]

[Rib98)

128

M. Korft, True concurrency semantics for single pushout graph transforma-
tions with applications to actor systems, Information Systems - Correctness
and Reusability (R. J. Wieringa and R. B. Feenstra, eds.), World Scientific,
1995, pp. 33-50.

M. Korft, Generalized graph structure grammars with applications to con-
current object-oriented systems, Ph.D. thesis, Technical University of
Berlin, 1996.

M. Lowe, Extended algebraic graph transformations, Ph.D. thesis, Techni-
cal University of Berlin, 1990.

M. Lowe, Algebraic approach to single-pushout graph transformation, The-
oretical Computer Science, vol. 109, 1993, 181-224.

N. Lynch, Distributed algorithms, Morgan Kaufmann, 1996.

Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent
Systems, Specification, Springer, 1992.

L. Ribeiro, Parallel composition and unfolding semantics of graph gram-
mars, Ph.D. thesis, Technical University of Berlin, 1996.

L. Ribeiro, A telephone system’s specification using graph grammars, Tech.
Report 96-23, Technical University of Berlin, 1996.

L. Ribeiro-Korff, Occurrence graph grammars, 5th WoLLIC International
Workshop on Logic, Language. Information and Computation, 1998, pp.
92-100.

RITA e Volume VII ¢ Numero 1 e Setembro 2000

