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Abstract

Let S k(n) be the maximum number of orientations of an n-vertex graph G in which no copy of Kk is strongly connected. For all
integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we prove that S k(n) = 2tk−1(n), where tk−1(n) is the number of edges of the n-vertex
(k − 1)-partite Turán graph Tk−1(n). Moreover, we prove that Tk−1(n) is the only graph having 2tk−1(n) orientations with no strongly
connected copies of Kk.
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1. Introduction

Let G be a graph and �F be an oriented graph. An orientation �G of G is �F-free if �G contains no copy of �F. Given a
family �F of oriented graphs, denote by D(G, �F ) the family of orientations of G that are �F-free for every �F ∈ �F and
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write D(G, �F ) = |D(G, �F )|. Finally, let

D(n, �F ) = max{D(G, �F ) : |V(G)| = n}. (1)

An n-vertex graph G that achieves equality in (1) is called �F -extremal or, alternatively, extremal for �F . Note that if G
is a graph without copies of the underlying graphs of the orientated graphs in �F , then D(G, �F ) = 2|E(G)|. Therefore, if
k = min{χ(H) : H ∈ �F }, then D(n, �F ) ≥ 2tk−1 , where tk−1(n) denotes the number of edges of the Turán graph Tk−1(n),
the n-vertex graph without copies of Kk and maximum number of edges possible, which is the balanced complete
(k − 1)-partite graph.

The problem of determining D(n, �F ) has been solved by Alon and Yuster [1] for large n when �F consists of a
single tournament. Recently, Araújo and the first and last authors [2] extended this result to every n in the case where
the forbidden tournament is the strongly connected triangle, here denoted by C�

3 .

Theorem 1.1. [2] For n ≥ 1, we have D(n, {C�
3 }) = max{2t2(n), n!}. Furthermore, among all graphs G with n ≥ 8

vertices, D(G, {C�
3 }) = 2t2(n) if and only if G is the Turán graph T2(n).

Recently, Bucić and Sudakov [4] proved that for sufficiently large n, we have D(n, {C�
2k+1}) = 2t2(n), where C�

2k+1 is
the strongly connected cycle of length 2k + 1,

Note that the result of Alon and Yuster determining D(n, {�Kk}) for any fixed tournament �Kk on k ≥ 3 vertices and
sufficiently large n immediately implies the following: for any nonempty family �F of orientations of Kk, we also have
D(n, �F ) = 2tk−1(n) for large n. More generally, if �F is a family of tournaments (not necessarily with the same size) and
k is the minimum size of a tournament in �F , we must also have D(n, �F ) = 2tk−1(n) for large n. However, the problem of
determining D(n, �F ) for all values of n ≥ 1 is still open for nontrivial families �F of tournaments other than �F = {C�

3 }.
In Section 2 we prove general results for orientations that avoid graphs from a family of tournaments (see Lem-

mas 2.5 and 2.6). These results imply that if G is an �F -extremal graph that is not complete multipartite, then one can
construct �F -extremal complete multipartite graphs G1 and G2 such that |E(G2)| < |E(G)| ≤ |E(G1)|. In Section 3 we
use these tools to extend Theorem 1.1 to the family �Sk of all strongly connected tournaments on k ≥ 4 vertices. More
precisely, we prove in Theorem 3.1 that for all integers n, k ≥ 4 where n ≥ 5 or k ≥ 5, we have S k(n) = 2tk−1(n) and we
show that Tk−1(n) is the only �Sk-extremal graph. For n = k = 4, we have S 4(4) = 40 and K4 is the only �S4-extremal
graph.

We remark that this result implies a similar one for any family �F of orientations of complete graphs with at least k
vertices for which �Sk ⊂ �F . More precisely, one can conclude that for n ≥ 5 or k ≥ 5 we have D(n, �F ) = 2tk−1(n) and
that Tk−1(n) is the only �F -extremal graph. For example, this implies that the number of orientations in which every
tournament with k vertices is transitively oriented is at most 2tk−1(n).

2. Complete multipartite extremal graphs

In this section we obtain some results derived with the approach in [3], which in turn was influenced by the proof
of Turán’s Theorem by Zykov Symmetrization. To highlight the similarities, we use the notation of [3] whenever it is
possible. Fix a family of tournaments (not necessarily with the same number of vertices) on at least three vertices and
fix a positive integer n. We prove that there is a complete multipartite n-vertex graph that is extremal for this family
(see Lemmas 2.5 and 2.6).

Let �x be a vector whose coordinates are indexed by a set T . Given t ∈ T , we denote by x(t) the value of x at
coordinate t. Given p ∈ (0,∞), the �p-norm of �x, denoted by

∥∥∥�x
∥∥∥

p, is given by

‖x‖p =

∑
t∈T
|x(t)|p


1/p

.

Moreover, for a sequence of vectors �x1, . . . , �xs, each indexed by T , their pointwise product �y, i.e., the vector in which
y(t) =

∏s
k=1 xk(t) for t ∈ T , is denoted by

∏s
k=1 �xk.
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Let G be a graph and let �F be a family of oriented graphs. Given a subgraph H of G and an �F -free orientation �H of
H, we denote by c �F (G | �H) the number of ways to orient the edges in E(G) \ E(H) in order to extend �H to an �F -free
orientation of G. For simplicity, given v ∈ V(G) \ V(H), if H is an induced subgraph of G, then we write c �F (v, �H) for
c �F (G[V(H) ∪ {v}], �H). Similarly, given an edge {u, v} with u, v ∈ V(G) \ V(H), we use c �F ({u, v}, �H) for the number of

ways to orient the edge {u, v} and the edges between V(H) and the vertices u and v (again avoiding �F ).
We also define �vH, �F as the vector indexed by the set D(H, �F ) of all �F -free orientations of H, whose coordinate

corresponding to an orientation �H is given by �vH, �F ( �H) = c �F (v, �H). When �F is a family of tournaments, we obtain the
following simple observation.

Fact 2.1. Let �F be a family of tournaments. If H is an induced subgraph of G such that S = V(G) \ V(H) is an
independent set in G, and �H is an �F -free orientation of H, then

c �F (G | �H) =
∏
v∈S

c �F (v, �H).

We shall also use the following consequence of Hölder’s inequality.

Lemma 2.2. Let �x1, . . . , �xs be complex-valued vectors indexed by a set T . Then,
∥∥∥∥∥∥∥

s∏
k=1

�xk

∥∥∥∥∥∥∥
1

≤
s∏

k=1

∥∥∥�xk

∥∥∥
s .

Furthermore, equality holds if and only if at least one of the following two conditions holds: �xi is the zero vector for
some i ∈ [s] or, for every i, j ∈ [s], there exists αi, j with the property that xi(t) = αi, j x j(t) for all t ∈ T.

We say that two non-adjacent vertices of a graph are twins if they have the same neighborhood. For the next lemma
we consider the following operation: given an independent set S of a graph G and a particular vertex v ∈ S , delete all
vertices in S \ {v} and add |S | − 1 new twins of v. We show that there is a vertex v ∈ S for which the graph generated
by this operation contains at least as many �F -free orientations as G.

Lemma 2.3. Let �F be a family of tournaments, and let G be a graph on n vertices. If S ⊂ V(G) is a non-empty
independent set, then the following holds.

(a) if v is a vertex in S that maximizes
∥∥∥∥�vG−S , �F

∥∥∥∥|S | among all vertices of S , then the graph G̃ obtained from G by

replacing the vertices in S \ {v} with |S | − 1 twins of v is such that D(G̃, �F ) ≥ D(G, �F ); and

(b) if G is �F -extremal, then �uG−S , �F = �wG−S , �F for any vertices u,w ∈ S .

Proof. Let �F , G, and S be as in the statement, and put H = G−S and s = |S |. By Fact 2.1, the total number of �F -free
orientations of G is given by

D(G, �F ) =
∑

�H∈D(H, �F )

c �F (G | �H) =
∑

�H∈D(H, �F )

∏
u∈S

c �F (u, �H) =

∥∥∥∥∥∥∥
∏
u∈S
�uH, �F

∥∥∥∥∥∥∥
1

, (2)

where, in the last equality, we used the fact that every coordinate of �uH, �F is non-negative.

Let v be a vertex in S for which
∥∥∥∥�vH, �F

∥∥∥∥
s

is maximum. By Lemma 2.2, we have

∥∥∥∥∥∥∥
∏
u∈S
�uH, �F

∥∥∥∥∥∥∥
1

≤
∏
u∈S

∥∥∥∥�uH, �F

∥∥∥∥
s
≤
∥∥∥∥�vH, �F

∥∥∥∥
s

s
. (3)
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On the other hand, let G̃ be the graph obtained from G by replacing the vertices in S \ {v} by s − 1 twins of v. Then,
we have:

D(G̃, �F ) =
∑

�H∈D(H, �F )

c �F (v, �H)s =
∥∥∥∥�vH, �F

∥∥∥∥
s

s
. (4)

Therefore, combining (2), (3) and (4), we have D(G̃, �F ) ≥ D(G, �F ). This proves (a).
Now, assume G is �F -extremal. Since D(G̃, �F ) ≥ D(G, �F ), we have D(G̃, �F ) = D(G, �F ). This implies that both

inequalities in (3) hold with equality, and hence for every vertex u ∈ S , we must have
∥∥∥∥�uH, �F

∥∥∥∥
s
=
∥∥∥∥�vH, �F

∥∥∥∥
s
. By the

equality conditions of Lemma 2.2, together with the fact that all coordinates are nonnegative, we have �uH, �F = �vH, �F .
This proves (b). �

One can easily obtain the following corollary from Lemma 2.3.

Corollary 2.4. Let �F be a family of tournaments, and let G be an �F -extremal graph. If u, v ∈ V(G) are non-adjacent,
then the graph obtained from G by replacing v with a twin of u is also �F -extremal.

Note that a graph G is a complete multipartite graph if and only if, for any u, v,w ∈ V(G) such that {u, v}, {u,w} �
E(G), we have {v,w} � E(G). In other words, G is a complete multipartite graph if every two non-adjacent vertices
are twins. By repeatedly applying Corollary 2.4, we show that there exists a complete multipartite graph on n vertices
that is �F -extremal.

Lemma 2.5. Let �F be a family of tournaments and let G be an n-vertex �F -extremal graph. Then there exists an
n-vertex complete multipartite graph G∗ that is �F -extremal and satisfies |E(G∗)| ≥ |E(G)|.

Proof. Let G be an n-vertex �F -extremal graph. A vertex u is eccentric if there is a non-neighbor of u that is not its
twin. Put G0 = G and let G0, . . . ,Gt be a maximal sequence of graphs in which, for i = 0, . . . , t − 1, the graph Gi+1
is obtained from Gi by picking an eccentric vertex u of maximum degree in Gi and replacing every non-neighbor of
u with a twin of u. Thus, every vertex of Gi+1 is either a neighbor or a twin of u. Clearly, u is not eccentric in Gi+1.
Moreover, if a vertex v is eccentric in Gi+1, then v is also eccentric in Gi, and hence Gi+1 contains fewer eccentric
vertices than Gi, from which we conclude that the sequence G0, . . . ,Gt is finite. By construction, since we always pick
an eccentric vertex u with maximum degree, |E(Gt)| ≥ |E(G)|. Then, by Corollary 2.4, Gt is �F -extremal. Moreover,
every pair of non-adjacent vertices u and v in Gt are twins. Therefore, Gt is a complete multipartite graph. �

The following result implies that any �F -extremal graph may also be turned into an �F -extremal multipartite graph
by removing edges.

Lemma 2.6. Let �F be a family of tournaments, let G be an �F -extremal graph, and let u, v,w be distinct vertices of
G such that {u, v}, {u,w} � E(G) and {v,w} ∈ E(G). Then, the graph obtained from G by deleting the edge {v,w} is
�F -extremal. Furthermore, for H = G − {u, v,w} we have �uH, �F = �wH, �F = �vH, �F .

Proof. Let �F , G, u, v, and w be as in the statement. Let H = G−{u, v,w}. For x ∈ {u, v,w} we write Hx = G[V(H)∪ x]
and let Gx

twins be the graph obtained from Hx by adding twins x1 and x2 of x. Applying Fact 2.1 to Gu
twins with

S = {u, u1, u2}, we have

D(Gu
twins,

�F ) =
∑

�H∈D(H, �F )

c �F (Gu
twins | �H) =

∑

�H∈D(H, �F )

c �F (u, �H)3 =
∥∥∥∥�uH, �F

∥∥∥∥
3

3
.

By an analogous computation, we have D(Gw
twins,

�F ) =
∥∥∥∥�wH, �F

∥∥∥∥
3

3
.

By Corollary 2.4 applied twice, the graph Gu
twins is also �F -extremal. Therefore,

D(G, �F ) = D(Gu
twins,

�F ). (5)
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However, since w is a neighbor of v, Corollary 2.4 cannot be applied to the graph Gw
twins, so we cannot conclude that

Gw
twins is �F -extremal. But since Gu

twins is �F -extremal, we have
∥∥∥∥�wH, �F

∥∥∥∥
3

3
= D(Gw

twins,
�F ) ≤ D(Gu

twins,
�F ) =

∥∥∥∥�uH, �F

∥∥∥∥
3

3
.

Since there are no edges between u and {v,w}, we can compute D(G, �F ) as follows:

D(G, �F ) =
∑

�H∈D(H, �F )

c �F (u, �H)c �F (G − u | �H) =
∑

�H∈D(H, �F )

c �F (u, �H)
∑
�Hw | �H

c �F (v, �Hw)

 ,

where the inner sum is taken over the �F -free orientations of Hw that extend a given �F -free orientation of H, that is,
over the orientations of the edges between w and H, for which the resulting orientation is �F -free. By Lemma 2.3(b),
since G is �F -extremal and {u, v} � E(G), we have �vHw, �F = �uHw, �F , i.e., c �F (v, �Hw) = c �F (u, �Hw) for every �Hw. Finally,

note that since �F is a family of tournaments and u and w are not adjacent, c �F (u, �Hw) does not depend on the orientation
of the edges between w and H, so c �F (u, �Hw) = c �F (u, �H). Therefore,

D(G, �F ) =
∑

�H∈D(H, �F )

c �F (u, �H)
∑
�Hw | �H

c �F (u, �H)

 =
∑

�H∈D(H, �F )

c �F (u, �H)c �F (u, �H)
∑
�Hw | �H

1



=
∑

�H∈D(H, �F )

c �F (u, �H)2c �F (w, �H)

≤
∥∥∥∥�uH, �F

∥∥∥∥
3

∥∥∥∥�uH, �F

∥∥∥∥
3

∥∥∥∥�wH, �F

∥∥∥∥
3

(6)

≤
∥∥∥∥�uH, �F

∥∥∥∥
3

3
, (7)

where (6) follows from Lemma 2.2, and (7) follows from (6). Note that, by (5) we have D(G, �F ) = D(Gu
twins,

�F ) =∥∥∥∥�uH, �F

∥∥∥∥
3

3
. Therefore, we must have equality in both (6) and (7), which in turn leads to

∥∥∥∥�uH, �F

∥∥∥∥
3
=
∥∥∥∥�wH, �F

∥∥∥∥
3
. The equality

condition in Lemma 2.2 implies that �uH, �F = �wH, �F . Analogously, �uH, �F = �vH, �F .
Finally, let G− be the graph obtained from G by deleting the edge {v,w}. It follows that

D(Gu
twins,

�F ) =
∑
�H

c �F (u, �H)3 =
∑
�H

c �F (u, �H)c �F (v, �H)c �F (w, �H) = D(G−, �F ).

Therefore, G− is �F -extremal. This concludes the proof. �

An interesting consequence of the main results of this section (Lemmas 2.5 and 2.6) is that if G is an �F -extremal
graph that is not complete multipartite, then one can construct �F -extremal complete multipartite graphs G1 and G2

such that |E(G2)| < |E(G)| ≤ |E(G1)|. We conclude this section showing that for some families �F of forbidden
tournaments every �F -extremal graph is a complete multipartite graph.

Lemma 2.7. Let �F be a family of tournaments with no source and let n ≥ 4 be a positive integer. Then, every n-vertex
�F -extremal graph is complete multipartite.

Proof. Let n and �F be as in the statement. Let G be an n-vertex �F -extremal graph and assume for a contradiction that
G is not complete multipartite. Fix vertices u, v,w such that {u, v}, {u,w} � E(G) and {v,w} ∈ E(G).

Let H = G − {u, v,w}, and Hx = G[V(H) ∪ x] for x ∈ {u, v,w}. From Lemma 2.6, we have �uH, �F = �wH, �F = �vH, �F , so

for every orientation �H of H we have c �F (u, �H) = c �F (w, �H) = c �F (v, �H). Note that since �F is a family of tournaments
and u and w are not adjacent, for every extension of �H to an orientation �Hw, we must have c �F (u, �Hw) = c �F (u, �H).
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Finally, since u and v are not adjacent, by Lemma 2.3 (b), we have �uHw, �F = �vHw, �F , that is, c �F (u, �Hw) = c �F (v, �Hw) for

every orientation �Hw of Hw. It follows that, for every �F -free extension �Hw of �H, we must have

c �F (v, �Hw) = c �F (v, �H). (8)

We get a contradiction from this fact and hence such a graph cannot exist. For that, we find an orientation of �H and
an extension of it to Hw that is �F -free and such that (8) does not hold. By the definition of �F , we may start with a
transitive orientation �H of H, which can be extended to an �F -free orientation �Hw of Hw by orienting all edges {x,w}
between w and x ∈ V(H) as �wx. LetH(v) andHw(v) be the classes of all �F -free orientations that extend �H to Hv and
�Hw to G − u, respectively. We show that there is an injective mapping φ : H(v)→ Hw(v) that is not surjective.

Given an orientation �Hv ∈ H(v), let φ( �Hv) be the orientation of G − u that extends �Hw by orienting any edge
e = {v, x} between v and x ∈ V(H) with the same orientation as e in �Hv and by assigning the orientation �wv to
{v,w}. The function φ is clearly injective. We claim that φ(H(v)) ∈ Hw(v). Indeed, suppose that φ(H(v)) contains
a tournament �T with no source. Clearly, this copy involves both v and w, otherwise it would also occur in �Hv, a
contradiction. However, w is a source in φ(H(v)), so it cannot lie in �T .

On the other hand, any transitive orientation of G− u where {v,w} is oriented �vw and all edges {x, v} and {y,w} with
x, y ∈ V(H) are oriented �vx and �wy, respectively, must lie in Hw(v). However, it does not lie in φ(H(v)), as φ always
orients {v,w} as �wv. So φ is not surjective, as desired. �

3. Avoiding strongly connected tournaments

Recall that �Sk is the family of all strongly connected tournaments with k vertices. Given a graph G, we denote by
�Sk(G) the family of �Sk-free orientations of G. We write S k(G) = | �Sk(G)| and define

S k(n) = max{S k(G) : G is an n-vertex graph}.

In this section we prove the following theorem, which is the main result of this paper.

Theorem 3.1. Let n ≥ k ≥ 4 Then, S k(n) = 40 if n = k = 4, and S k(n) = 2tk−1(n) if n ≥ 5 or k ≥ 5. Furthermore, if
n ≥ 5 or k ≥ 5, then the Turán graph Tk−1(n) is the only �Sk-extremal graph.

We refer to a directed Hamilton cycle (resp. directed Hamilton path) in an oriented graph simply as Hamilton cycle
(resp. Hamilton path). We need the following basic result about Hamilton paths and cycles in graphs.

Fact 3.2. Every tournament contains a Hamilton path and every strongly connected tournament contains a Hamilton
cycle.

By using Fact 3.2 in an induction argument, we can guarantee the existence of strongly connected subtournaments
of any length in strongly connected tournaments.

Lemma 3.3. Every strongly connected tournament �K contains a strongly connected tournament of order � for every
3 ≤ � ≤ |V(�K)|.

In the next two lemmas we estimate in how many ways one can extend orientations of complete graphs on r
vertices, with r ∈ {k − 1, k, k + 1}, to larger complete graphs avoiding a strongly connected copy of Kk.

Lemma 3.4. Let K be a complete subgraph of a graph G with r ∈ {k − 1, k, k + 1} vertices and let u be a vertex in
V(G)\V(K) that is adjacent to all vertices of K. Then, for any orientation �K of K, we have c �Sk

(u, �K) ≤ (r−k+4) ·2k−3.

Proof. We assume r = k + 1 as the proof for the other values of r is analogous. Let K, G and u be as in the statement.
Let �K be an orientation of K and note that by Fact 3.2 there is a Hamilton path (v1, . . . , vk+1) in �K. By Lemma 3.3,
any orientation of the edges between u and �K that extends �K to an �Sk-free orientation cannot form a directed cycle of
length at least k. If {u, v1} is oriented towards v1, then the edges between any w in {vk−1, vk, vk+1} and u must be oriented
towards w. Since the edges {u, v j} with j ∈ {2, . . . , k − 2} can be oriented in two ways, there are at most 2k−3 possible
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orientations. If {u, v1} is oriented towards u and {u, v2} is oriented towards v2, then the edges between any w in {vk, vk+1}
and u are oriented towards w. Again, since the edges {u, v j} with j ∈ {3, . . . , k − 1} can be oriented in two ways, there
are at most 2k−3 possible orientations. Analogously, if {u, v1} and {u, v2} are oriented towards u and {u, v3} is oriented
towards v3, then there are at most 2k−3 possible orientations. Finally, there are at most 2k−2 possible orientations for
which {u, v1}, {u, v2} and {u, v3} are oriented towards u. Therefore, c �Sk

(u, �Kr) ≤ 2k−3 + 2k−3 + 2k−3 + 2k−2 = 5 · 2k−3, as
desired. �

Lemma 3.5. Let K be a complete subgraph of a graph G with k − 1 vertices and let u, v be adjacent vertices in
V(G) \ V(K) that are adjacent to all vertices of K. Then, c �Sk

({u, v}, �K) < 2 · 3 · 22k−5.

Proof. Let K, G and u be as in the statement. Let �K be an orientation of K and note that by Fact 3.2 there is a Hamilton
path (v1, . . . , vk−1) in �K. There are two possible orientations for the edge {u, v}. Let us estimate in how many ways one
can orient the edges between �K and {u, v}without creating a strongly connected Kk. Suppose without loss of generality
that {u, v} is oriented towards u.

Note that, by Lemma 3.3, any orientation of the edges between u and �K that extends �K to an �Sk-free orientation
cannot form a directed cycle of length at least k. Analogously to the proof of Lemma 3.4, if {u, v1} is oriented towards
v1, then the edge between any vk−1 and u must be oriented towards vk−1, and the edges between any w in {vk−2, vk−1}
and v must be oriented towards w. Since the remaining edges from u or v to K can be oriented in two ways, there are
at most 22k−6 possible orientations. Similarly, there are at most 22k−5 possible orientations in which {u, v1} is oriented
towards u and {u, v2} is oriented towards v2, and there are at most 22k−6 possible orientations in which {u, v1} and {u, v2}
are oriented towards u, and {v, v1} is oriented towards v1. Finally, there are at most 22k−5 possible orientations in which
{u, v1} and {u, v2} are oriented towards u, and {v, v1} is oriented towards v. Therefore, c �Sk

(uv, �Kx) ≤ 2 · (22k−6 + 22k−5 +

22k−6 + 22k−5) = 2 · 3 · 22k−5. �

The next result states that for k ≥ 5, at least half of the orientations of Kk are strongly connected. Let SC(G) denote
the number of strongly connected orientations of G.

Lemma 3.6. Let k ≥ 5 be a positive integer. Then SC(Kk) > 2(k
2)−1.

Proof. The proof is by induction on k. Let {u1, . . . , uk} be the vertex set of G = Kk and consider the complete graph
G′ = G − uk on k − 1 vertices. First suppose k = 5. We show that SC(K5) ≥ 512. It is easy to see that out of
the 40 orientations of G′ that are not strongly connected, there are 24 transitive orientations and 16 non-transitive
orientations. Note that since each of these non-transitive orientations contains a copy of C�

3 and a sink or source,
there are 7 ways to extend such orientation to obtain a strongly connected orientation of G. Transitive and strongly
connected orientations of G′ may be extended in 4 and 24 − 2 ways, respectively. Noting that there are 24 strongly
connected orientations of G′, we have SC(K5) = 24 · 4 + 24 · (24 − 2) + 16 · 7 = 544 > 2(5

2)−1.
Thus, we may assume k ≥ 6 and we suppose that SC(Kk−1) > 2(k−1

2 )−1. Let �G′ be an orientation of G′ and suppose
that �G′ is strongly connected. If uk has indegree and outdegree at least 1, then this gives a strongly connected orienta-
tion of G. Therefore, �G′ can be extended in precisely 2k−1−2 ways. Now, suppose that �G′ is not strongly connected. By
Fact 3.2, G′ contains a Hamilton path P. We may assume, without loss of generality, that P = u1, . . . , uk−1. By orient-
ing {u1, uk} towards u1 and {uk−1, uk} towards uk, and orienting the edges {ui, uk} in any direction, for i = 1, . . . , k − 2,
we obtain a strongly connected orientation of G. Thus, there are at least 2k−3 strongly connected orientations of G
from �G′. Therefore, we have

SC(Kk) ≥ (2k−1 − 2) · SC(Kk−1) + 2k−3 · (2(k−1
2 ) − SC(Kk−1)) > 2(k

2)−1.

�

Combining some of the previous results, we prove that cliques of size k and k + 1 are not �Sk-extremal.

Corollary 3.7. For k ≥ 5 we have �Sk(Kk) < 2tk−1(k) and for k ≥ 4 we have �Sk(Kk+1) < 2tk−1(k+1).

Proof. We start by showing that �S4(K5) < 2t3(5) = 28. Every non-transitive orientation of K5 contains a C�
3 . We claim

that there are precisely
(

5
2

)
· 2 · 6 such orientations without a strongly connected K4. In fact, there are

(
5
3

)
=
(

5
2

)
triangles
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in a K5 and two strongly connected orientations of each triangle. It is not hard to see that there are at most six ways to
orient the edges outside the triangle to obtain an orientation of K5 with no strongly connected K4. Since there are 120
transitive orientations of K5, we obtain �S4(K5) ≤ 120 +

(
5
2

)
· 2 · 6 = 240 < 28.

Assume k ≥ 5. Note that a strongly connected orientation of Kk−1 can be extended in only two (resp. six) ways to a
orientation of Kk (resp. Kk+1) that does not contain a strongly connected Kk. By Lemma 3.4, every orientation of Kk−1

can be extended in at most 3 · 2k−3 ways to an �Sk-free orientation of Kk, which gives

�Sk(Kk) ≤ 2 · SC(Kk−1) + 3 · 2k−3(2(k−1
2 ) − SC(Kk−1)

)
. (9)

To obtain an estimate for �Sk(Kk+1) we use Lemma 3.5, which implies that every orientation of Kk−1 can be extended
in at most 2 · 3 · 22k−5 ways to an �Sk-free orientation of Kk+1. Then,

�Sk(Kk+1) ≤ 6 · SC(Kk−1) + 2 · 3 · 22k−5(2(k−1
2 ) − SC(Kk−1)

)
. (10)

If k = 5, then by using Lemma 3.6, we have S 5(K5) = 2(5
2) − SC(K5) < 29 = 2t4(5). From (10), since SC(K4) = 24,

we obtain �Sk(Kk+1) ≤ 6 · 24 + 2 · 3 · 25(26 − 24) = 7824 < 213 = 2t4(6).
Now we assume that k ≥ 6. From (9), since tk−1(k) = tk−1(k − 1) + k − 2 =

(
k−1

2

)
+ k − 2 we have

�Sk(Kk) ≤ 2 · SC(Kk−1) + 3 · 2k−3(2(k−1
2 ) − SC(Kk−1)

)

≤ 2 · 2(k−1
2 ) + 3 · 2k−42(k−1

2 ) ≤ 2k−22(k−1
2 ) = 2tr−1(k).

Analogously, from (10), since tk−1(k + 1) = tk−1(k − 1) + 2k − 3 =
(

k−1
2

)
+ 2k − 3 we have

�Sk(Kk+1) ≤ 6 · SC(Kk−1) + 2 · 3 · 22k−5(2(k−1
2 ) − SC(Kk−1)

)

≤ 6 · 2(k−1
2 ) + 3 · 22k−52(k−1

2 ) ≤ 22k−32(k−1
2 ) = 2tr−1(k+1),

which concludes the proof. �

Since Lemma 2.7 implies that every �F -extremal graph is complete and multipartite for the family �F of k-vertex
tournaments with no source, to prove Theorem 3.1 it is enough to show that every �F -extremal graph is (k− 1)-partite.
In what follows we prove the main result of this paper.

Proof of Theorem 3.1. Let G be an �Sk-extremal r-partite graph with r ≥ k. The proof is by induction on n. For k ≥ 5
and n < k the result is trivial. For k = 4 and 5 ≤ n ≤ 8, we verified the result by exhaustion using the computer
programs NAUTY [5] and SageMath [6]. We now proceed with the induction step.

Let G be an n-vertex graph and assume that the statement holds for graphs with fewer vertices. First, suppose that
G contains a clique K of size k + 1. From Corollary 3.7, we have for k ≥ 4 that �Sk(K) < 2tk−1(k+1). Note that since G is
a complete multipartite graph, if u � V(K), then u is adjacent to either k or k + 1 vertices of K. Thus, by Lemma 3.4,
we have c �Sk

(u, �K) ≤ 5 · 2k−3. Therefore, we have

�Sk(G) ≤ �Sk(K)(5 · 2k−3)n−k−1 �Sk(G \ K) < 2tk−1(k+1)+(log 5+k−3)(n−k−1) �Sk(G \ K). (11)

If k = 4 and n − k − 1 > 4, or k ≥ 5 then, by the induction hypothesis, we have �Sk(G \ K) ≤ 2tk−1(n−k−1). Therefore,
from (11) and some calculations one can conclude that

�Sk(G) < 2tk−1(k+1)+(log 5+k−3)(n−k−1) · �Sk(G \ K) < 2tk−1(n).

Now, suppose k = 4 and n − k − 1 = 4. In this case, �Sk(G \ K) ≤ 40, and hence, from (11) we have �S4(G) <
2t3(5)+4(log 5+1) · �Sk(G \ K), which implies �S4(G) < 28+4(log 5+1)+log 40 < 227 = 2t3(9). Therefore we can assume that G
does not contain a clique of size k + 1, and hence G is k-partite. We first deal with the case k ≥ 5. If n = k, then
G � Kk, and hence, by Corollary 3.7, we have �Sk(G) < 2tk−1(k). Thus, we may assume that n ≥ k + 1. Let K be a clique
of size k in G. Since G is a complete k-partite graph, if u � V(K), then u is adjacent to precisely k − 1 vertices of K.
Thus, by Lemma 3.4, we have c �Sk

(u, �K) ≤ 3 · 2k−3. Therefore, we have

�Sk(G) ≤ �Sk(K)(3 · 2k−3)n−k · �Sk(G \ K)
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Clearly, if G \ K is (k − 1)-partite, then �Sk(G \ K) ≤ 2tk−1(n−k); and if G \ K is not (k − 1)-partite, then, by the induction
hypothesis, we have �Sk(G \ K) ≤ 2tk−1(n−k). Moreover, from Corollary 3.7, we have �Sk(K) < 2tk−1(k). Therefore, with a
few calculations, from (11) one can conclude that

�Sk(G) < 2tk−1(k)+(log 3+k−3)(n−k) · �Sk(G \ K) ≤ 2tk−1(k)+(log 3+k−3)(n−k)+tk−1(n−k) < 2tk−1(n)

If n ≥ 9, then removing a copy of K4 from G results in a graph which is not a copy of K4. Then, by arguments
analogous to the ones above (for k ≥ 5), we get �S4(G) < 2t3(n). �
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