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Artificial neural networks for estimating the soil water retention curve have been developed considering measured data and require
a large quantity of soil samples because only retention curve data obtained for the same set of matric potentials can be used. In order
to preclude this drawback, we present two ANN models which tested the performance of ANNG trained with fitted water contents
data. These models were compared to a recent new ANN approach for predicting water retention curve, the pseudocontinuous
pedotransfer functions (PTFs), which is also an attempt to deal with limited data. Additionally, a sensitivity analysis was carried out
to verify the influence of each input parameter on each output. Results showed that fitted ANNs provided similar statistical indexes
in predicting water contents to those obtained by the pseudocontinuous method. Sensitivity analysis revealed that bulk density and
porosity are the most important parameters for predicting water contents in wet regime, whereas sand and clay contents are more
significant in drier conditions. The sensitivity analysis for the pseudocontinuous method demonstrated that the natural logarithm
of the matric potential became the most important parameter, and the influences of all other inputs were reduced to be not relevant,

except the bulk density.

1. Introduction

Modelling water flow and solute transport in vadose zone
is generally done by means of Richard’s equation and
convection-dispersion equation (CDE), respectively, which
in turn require some crucial soil information, such as unsatu-
rated soil hydraulic properties or functions and the soil water
retention curve. In agriculture applications, knowledge of
these properties is needed, for instance, when dealing with
irrigation and drainage management, analysis of biological
reactions, plant activity, and stream water chemistry [1]. Thus,
the prediction accuracy of these models hinges upon the
quality of the model parameters.

Nevertheless, direct measurements of these properties
at any grid scale are labour intensive, expensive, and time-
consuming. The more reliable the analysis of the variability of
these spatially distributed parameters, the larger the number
of samples to be collected [2]. In addition, the relations
between soil properties and soil-water processes are believed

to be highly nonlinear, and in most of the cases they cannot
be easily modelled by simple mathematical formulations or
even by complex models, which need a high number of input
parameters.

Since all these factors make direct measurements of
hydraulic properties or the use of some models impractical,
pedotransfer functions (PTFs) have been widely developed
for the last decades in order to estimate the hydraulic conduc-
tivity function and the soil water retention curve from other
more easily measurable soil properties, such as texture, bulk
density, organic matter, porosity, and particle-size distribu-
tion [3-13]. In some cases, when changing from a field scale-
up to the scale of the catchment, the use of pedotransfer func-
tions could be the only way to apply hydrological models [7].

In the context of soil water processes, PTFs can be cate-
gorized into three main groups: class, point, and parametric
PTFs. The first type calculates hydraulic properties for a tex-
ture class by assuming that similar soils have similar hydraulic
properties [14]. Point PTFs predict soil water contents at



specific matric potentials whereas parametric PTFs estimate
the parameters of a soil hydraulic model a priori defined,
such as the Brooks and Corey [15] or the van Genuchten
[16] equations. Among several well-known PTFs, irrespective
of their abovementioned classification, artificial neural net-
works (ANNs) have become the most frequently used [4].

ANN is an attempt to develop a model which works
similarly to the human brain and is analogous to the bio-
logical function of learning and memorizing, comprising a
densely network of connections between input data, neurons
disposed in different hidden layers with parameters to be
fitted, and output data. Its main advantage is that it does not
need a previous knowledge of the relations between input
and output data; that is, in our case, no consideration of the
internal geologic or hydraulic parameters is required [1]. On
the other hand, the main drawback is that ANNs are data
hungry, so that their development is highly associated with
the existence of large soil hydraulic properties databases [17].
An additional disadvantage is the “black-box” nature of ANN,
which makes it difficult to go beyond a strictly empirical
model.

More recently, Haghverdi et al. [4] have developed a new
ANN approach called pseudocontinuous model, which is
capable of predicting water content at any desirable matric
potential without the need of any specific equation, by simply
adding the matric potential as input parameter (sand, silt,
clay, bulk density, and organic matter being the other input
parameters) and water content being the only output neuron.
The major contribution of this new ANN is that it can be
used when a limited number of soil samples are available,
resulting in the fact that datasets more heterogeneous could
be employed.

Additionally, it is extremely useful if soil water retention
curves measured for distinct matric potentials are added in
the process of training a neural network and not only those
curves with the same matric potentials. This fact increases the
number of examples and allows for the development of new
PTFs based on limited data.

Another way to solve the problem of having only few soil
samples is previously fitting the retention curve for a wider
range of matric potentials and then training the ANN with
more information about the soils. In comparison with the
work of Haghverdi et al. [4], this approach has the advantage
of permitting domain extrapolations, since the ANN model
will be able to estimate water contents for matric potentials
other than those which were sampled.

The proposed methodology could be easily validated by
modelling and analysing the quality of the results. An option
of relative assessment of the ANN models’ quality is the
comparison of some statistics with those obtained with other
approaches, such as the model of Haghverdi et al. [4].

Therefore, considering the advantages of this new
approach and the aforesaid considerations, the present paper
focuses on (1) deriving one ANN, a pseudocontinuous ref-
erence model, for predicting soil water retention curve based
on measured water contents; (2) deriving two ANNs based on
fitted water contents to be validated in comparison with the
pseudocontinuous one; (3) carrying out a sensitivity analysis
of the importance of the input parameters upon the outputs.
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TaBLE 1: Descriptive statistics of soil properties assumed as input and
output parameters in the developed ANNG (all 228 soil samples).

Input parameters

Soil property Min Max Mean SD

Bd (gem™) 0.46 1.95 1.41 0.26
Pd (gem™) 1.98 2.93 2.63 0.09
P (cm’cm™) 0.26 0.92 0.47 0.10
Sand (%) 0.00 98.90 26.30 25.58
Silt (%) 110 95.60 40.84 18.79
Clay (%) 0.00 87.60 32.82 21.49
In(h) (cm) 0.00 15.62 5.20 2.50

Matric potentials (cm) Output parameters

Min Max Mean SD
Measured 0.008 0.838 0.314 0.140
0 0.139 0.837 0.449 0.117
-10 0.139 0.826 0.427 0.108
-20 0.139 0.789 0.408 0.106
=30 0.108 0.749 0.391 0.108
-50 0.066 0.707 0.364 0.113
-100 0.043 0.631 0.329 0.118
-200 0.037 0.597 0.299 0.118
-500 0.010 0.576 0.265 0.112
-1000 0.003 0.568 0.241 0.108

The reference model comprises the pseudocontinuous
approach of Haghverdi et al. [4] but considers input param-
eters different from those employed by these authors. The
first model tested consists of a multilayered point ANN with
several output neurons, each one corresponding to a distinct
matric potential, and the second considers different ANNs of
only one output neuron, being one ANN for each specific
matric potential. Thus, firstly it is of interest to validate
the two models when compared to the pseudocontinuous
method and then choose which ANN structures provided
better performances.

2. Materials and Methods

2.1. Soil Samples. A total of 228 soil samples were selected
from the international UNSODA database (version 2.0),
which contains soil data collected from different parts of the
world, covering a wide range of soil types and characteristics.
A detailed description of this database can be found in Leij et
al. [18] and Nemes et al. [19].

Corresponding data on bulk density (Bd), total porosity
(P), particle density (Pd), sand, silt, and clay percentages,
and the soil water retention curve measured points were
selected and, thus, the first six properties were assigned as
input parameters and the soil moisture of the retention curve
was assigned as the output parameter for the three developed
ANNSs. Table1 briefly presents the descriptive statistics of
selected input and output parameters (all 228 soil samples).
For some soil samples, missing total porosity was calculated
according to P =1— Bd/Pd. The full database was divided into
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FIGURE 1: Soil texture of all selected soils (a) and verification dataset (b). Clay (<0.002 mm) and silt (0.002-0.05 mm).

three subsets to run the ANNS, being 137 for training, 40 for
validation, and 51 for verification data (see Section 2.3).

We firstly tested the influence of how data is selected for
each subset. This process was taken into consideration by
randomly dividing the full dataset in three subsets and then
analyzing the error estimation of the water content (outputs).
We forced that the verification dataset had at least 60% of the
tull dataset, in order to guarantee greater chance to include
in this dataset the maximum and minimum values of each
input parameter. The final configuration was selected after
comparing the errors of each test. Figures 1 and 2 show the
textural distribution for all 228 soils and for the verification
dataset (Figure 1(b)), from which it is possible to notice that a
wide range of soil textures is represented by the whole dataset.

The performances of the proposed ANNs were tested
confronting the use of measured water contents as out-
put parameter by the pseudocontinuous ANN against the
assumption of fitted water content data given by the van
Genuchten [16] model in the other two ANNS, given as

0, -0,
0(h) =6
0=t s ™ ®

where 8(h) is the water content (cm® cm ™) at matric potential
h (cm); 0, and 0, are the saturated and residual water contents
(em® em™), respectively; n(-) is the curve shape factor which
controls the steepness of the S-shaped retention curve; m is
also an empirical shape factor (—) related ton by m = 1-(1/n);
and « is assumed to be related to the inverse of air entry
suction (cm™"), indicating typical conditions of sands for
large values while very small negative matric potentials empty
pores creating a relatively large change in water content [14].

Therefore, for noncontinuous models, nine matric poten-
tials were fixed at 0, -10, —20, 30, -50, —100, —200, =500, and
—-1000 cm. Water contents at these suctions were estimated by

fitting the van Genuchten model parameters from measured
retention curve data, so that the output parameters could
be defined for the same matric potentials. The limit of
—1000 cm was chosen to avoid great extrapolations for some
soil samples with higher observed matric potentials. Fitting
was carried out by the RETC software [20].

Fitted values of water contents were also employed and
tested by Koekkoek and Booltink [21] for Dutch soils and
Santra and Das [22] fitted the van Genuchten parameters in
order to take the porosity equal to the saturated water content
as an input parameter in their PTFs.

2.2. Artificial Neural Networks (ANNs). A model of artificial
neural network usually consists of several layers, input, hid-
den, and output ones, connected via parameters and called,
in analogy with the natural neural networks, the synaptic
weights. The training provides the ability of approximating
the relationship between the inputs and the corresponding
outputs. After having been duly submitted to a training
process, the ANN is able to generalize the learned relation to
other samples in the same domain.

The number of hidden layers in a multilayer neural
network can vary, depending on the complexity and nature
of the problem to be modelled. The main function of this
layer is to allow the network to capture both weak and
strong nonlinear relationships between inputs and outputs.
In the present context, we are interested in translating basic
information from the input layer, for example, particle-
size distribution, bulk density, and so forth, into, not easily
measurable data of the output layer, the soil water retention
curve (SWRQ).

It is necessary to go through a “learning” or training
process involving the adjustment of the synaptic connections
(weights and biases). The most widely used training scheme is



25

Applied and Environmental Soil Science

20 A
15 +

(%)

10 +

Clay Clay Loam Loamy Sand Sandy Sandy Sandy Silt  Silt
loam sand

Silty ~ Silty
clay loam loam clay clay
loam loam

Textural class

FIGURE 2: Textural composition of the dataset.

the back-propagation algorithm, which basically involves two
steps: the first one is the forward phase, when the activations
of the neurons are propagated from inputs to outputs, and
the second one consists of the back-propagation [23] to the
inner layers of the errors between the observed and estimated
values in the output layer and modifying the weights and
bias coefficients through the use of the delta rule [24], given,
respectively, by the following equations:

e, =T, -0, (2)

where e is the error of the output layer and T and O, are,
respectively, the target and the calculated outputs for this
layer;

e = Z (Vvsesas) > 3)

where ey, is the error of the hidden layer and W, e, and 6 are,
respectively, the weights, the errors, and the derivatives of the
activation function of the next layer;

Wi = Wi + 1,6, Bp, 4)

where, to a generic layer and considering successive cycles
(each iteration over all the patterns) of the training sample,
W, are the resulting weights; 7 is the learning rate; e, is the
vector of errors in the output of this layer; &, is the derivative
of the activation function; and P, are the inputs of this layer
in the cycle k.

The forward phase starts based on a random “initial
condition” of the weights and biases connecting all layers,
being the net input in each layer through the ANN given by

n
net; = » w;P, +bj, ()

i=1
where net; is the net input (sum of the weighted input
received from the preceding layer with n neurons) of the
neuron j, P, represents the output of the ith neuron in the
previous layer, w;; is the weight between the ith neuron in the
previous layer and the j neuron, and b; is the bias coeflicient

of the neuron j.

The response O; given by hidden or output neurons is
calculated by an activation function, providing the input to

the next layer. In our case, the log-sigmoid transfer function
was considered for the hidden and output layers:

1
j = 1 +efnetj : (6)

For all the three ANNs developed in this study, a multi-
layer perceptron neural network was used, which trains the
networks employing a back-propagation algorithm. The ini-
tial coefficients w and b were randomly initialized following
a normal distribution.

2.3. Models. The first model applied is called the reference
model (ANN,) and is analogous to the pseudocontinuous
approach introduced by Haghverdi et al. [4], except for the
use of different input parameters as shown in Table 1. The
method consists of adding the natural logarithm of matric
potential as input parameter, as depicted in Figure 3. As a
consequence, only one output neuron is needed, correspond-
ing to the measured water contents at the whole range of the
considered matric potentials. The approach could be seen as
a sequential adjustment of the soil water retention curves,
whereas point ANNS try to fit these curves in parallel using
several output neurons. The impact on the input parameters
matrix is that for each sequence of matric potentials (each
SWRC) all other input parameters are repeated, resulting in
a higher number of available data for adjusting the same
number of outputs. That is the reason why this method is
believed to be useful for developing ANN-based PTFs under a
limited number of soil samples, chiefly because all measured
SWRC points could be used in spite of their corresponding
distinct matric potentials.

The other two models were developed to test their
performances of using fitted data against the use of measured
data (ANN,). The first model (ANN 1) consists of a point
neural network of nine output neurons, each one predicting
the water contents related to a different matric potential as
presented in Table 1, while the first six input parameters in
this table were used.

The ANN 2 model, actually, is a set of different ANNs of
only one output neuron. Hence, for each ANN;, the same six
input parameters as in ANN 1 model were used, but water
contents of only one matric potential was considered at a
time. The structures of all ANNs are presented in Figure 3.
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FIGURE 3: Models diagrams of the ANNs developed in this study. Bulk density (Bd), particle density (Pd), total porosity (P), and sand, silt,
and clay percentages are the common input predictors of the three models. In ANNs 1and 2, ; (fori = 1---9) are the water content at the
matric potentials 0, —10, —20, —30, —50, —100, —200, —500, and —1000 cm, respectively. In ANN 3, the matric potential (—h) was considered as
an additional predictor for estimating the corresponding water content 6(—h).

Direct utilization of the input parameters does not pro-
vide good estimates of water contents because there is a
significant difference in the magnitude of inputs. Thus, a
preliminary linear transformation was carried out, resulting
in all input properties varying between 0 and 1. The same
process was performed with the outputs and then the values
were back-transformed to calculate the error estimates.

To prevent data from overfitting, the technique of cross-
validation or “early stopping” is used. Such a method consists
of monitoring the error on the validation dataset; that is,
when the validation error increases for a specified iteration,
the training process is terminated and the weights and bias
coeficients are assumed to generate the outputs.

The algorithms of the developed ANNs (including the
reference model) executed 20 different trainings with cross-
validation and simultaneously tested the number of neurons
in the hidden layer. Each training performed the number
of 1000 iterations, assuming as “the best model” the model
corresponding to the best combination of number of neurons,
training realisation, and minimum validation error. The
number of 1000 was chosen after observing that training
usually stopped before such quantity of iterations, while
several trainings were carried out in order to avoid the

influences of random initial weights and biases, which could
prematurely stop in a local minimum on the error surface.

The error surface corresponds to the objective function to
be minimized during the network training, given by

m

(Tsn - Osn)2 > (7)

n=1

E =

Mz

©
Il
—

where N is the number of input and output samples; m is the
number of neurons in the output layer; T,,, is the target value
of the nth neuron for the sth sample; and O, is the output of
the nth neuron for the sth sample. All ANN constructions and
calculations were conducted in the MatLab programming
language written by the authors.

2.4. Statistical Performance Criteria of ANNs. ANN perfor-
mances were assessed in terms of the agreement between
the predicted and measured water contents for each matric
potential. Different statistical indexes were used so that some
distinct characteristics of the models could be evaluated and
interpreted. The chosen indexes were the root mean square of



error (RMSE), the coefficient of determination (R*), and the
geometric mean error ratio (GMER), expressed as

j 2
J
7 (0, - P
o1 % 8)
i=1 (Ol - O)

GMER = ex liln(ﬂ)
“lis o))

i=1

where j is the number of samples; O; and P, are the observed
and predicted water contents, respectively; and O is the mean
of the observed data.

The RMSE is a measure for the accuracy of the estimations
in terms of standard deviations, whilst R* indicates how
much of the variance between measured and estimated
water contents could be explained by the ANNs. The last
index (GMER) was selected instead of using the correlation
coefficient (R) because R index only indicates that the scatter
plot falls almost along a straight line with positive or negative
slope, but nothing is explained about the inclination of
this line; that is, measured data could be any multiple of
estimated data and R keeps being approximately 1. Diversely,
GMER equal to 1 corresponds to an exact matching between
measured and predicted data [25], and values less or greater
than 1 indicate under- or overestimation of the measured
water contents. The means of predicted and measured data
were also compared.

Thus, the statistical indexes of ANN, will serve as refer-
ence to assess the performance of the other two ANN models.
After proving their capability of predicting water contents,
ANN 1 and ANN 2 will be confronted in terms of their
structures, deciding which one is more suitable.

2.5. Sensitivity Analysis. In order to assess the importance of
each input parameter to the overall model performances of
individual output, the sensitivity analyses were conducted.
Many researchers [4-6, 9, 10, 22] have usually proposed
the combination of single-parameter influences for assessing
their importance.

The applied method is an improvement of the classical
stepwise method and consists of replacing step by step one
input predictor by its mean value and assessing the change
in any statistical index. Thus, this is an approach to evaluate
the general influence of each input parameter on the model
performance, detecting which are the most important to be
considered or rejected. The accuracy and precision of this
method, among others, were evaluated by Gevrey et al. [26]
and Olden et al. [27] and correspond to one of the most
suitable approaches suggested by these authors for more
accurate quantifying of the importance of variables.
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3. Results and Discussions

3.1. Model Performances. The statistical indexes for assessing
ANN performances are presented in Table 2 and refer to
the process of verification only. The results obtained for the
reference model (ANN,)) provided RMSE of 0.088 cm®em™3,
which could be considered satisfactory when compared to
other studies. The R index revealed that most of the variance
of the phenomenon could be captured by the model. On
the other hand, the GMER index showed a significant and
meaningful water contents underestimation expressed by a
value lower than 1. This fact can be confirmed by the scatter
plots presented in Figure 4. These graphics refer to predicted
and fitted/measured water contents of all matric potentials of
the verification dataset.

For ANN 1 and ANN 2, the statistics are shown for
each matric potential and the means were taken so that they
could be compared to ANN_. It is important to mention that
all results presented herein for fitted data refers to fittings
with regression coefficients R greater than 0.99. RMSE values
varied from 0.050 to 0.083 and from 0.054 to 0.098 cm® cm >
for ANN 1 and ANN 2, respectively, being the minimum
values corresponding to the matric potentials =50 cm (ANN
1) and —10 cm (ANN 2) and the maximum values to the matric
potentials =500 cm (ANN 1) and —200 cm (ANN 2). These
RMSE values are comparable to those found by Puhlmann
and von Wilpert [3], Liao et al. 28], and Baker and Ellison
[17] and are much better than those obtained by Koekkoek
and Booltink [21]. These last authors also applied fitted water
contents to their ANN models, but values of RMSE higher
than 2.64 cm® cm™ were found.

When the results of ANN 1 and ANN 2 are compared
to those obtained by the method of Haghverdi et al. [4],
an opposite behaviour was found, since they achieved lower
RMSE values at lower (more negative) suctions.

One possibility for this fact is that porosity was also added
as predictor in the present study and could be an important
parameter for accounting for the greater variation of water
contents in wet regime, since this section is hardly governed
by soil structure.

Mermoud and Xu [29] confirmed it mentioning that soil
structure is crucial in characterizing hydraulic behaviour
in macropore flow region, whilst the flow in micropores is
highly influenced by texture.

For all matric potentials, values of GMER near to 1 were
obtained, which means that good matching was provided by
both ANN 1and ANN 2. Again, better performances resulted
from the wet section of the retention curve. This index also
reflects that ANN 1 and ANN 2 slightly overestimate target
values (GMER > 1), while ANN_ underestimates (GMER <
1) them. This fact could be also confirmed in the scatter plots
presented in Figure 4.

Finally, analysing all ANNs together and assuming the
mean values of the statistic coefficients of ANN 1 and ANN
2 to compare each of them with ANN, (Table 2), similar
performances were found, except for the higher RMSE index
obtained by ANN,. Comparing ANN 1 and ANN 2, the best
performance seems to be the one given by the neural network
whose structure trains all matric potentials together (ANN
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FIGURE 4: Scatter plots of fitted (ANN 1and ANN 2 models) and observe
potentials.

1) and, probably, may be more capable of capturing more
accurately the behaviour of the retention curve even for drier
conditions. Yet, the pseudocontinuous method developed
by Haghverdi et al. [4] was only slightly better than the
other point and parametric PTFs they have tested, indicating
that the results in this study are in concordance with those
presented by these authors.

Performances of ANN 1 and ANN 2 models are very
similar and, in general, ANN 2 model performed slightly
better than ANN 1 for matric potentials corresponding to wet
conditions as reflected by all statistics. Additionally, it could
be noted also that both models can more accurately explain
the variability of the wet regime of the retention curve than
for dry water contents, according to the index R”.
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The water content overestimation in drier condition
happened for soils samples with higher sand percentages,
whose water retention curves were almost vertical, abruptly
decaying. Yet, for these soils, the measured points of the
retention curve did not contemplate the whole range of
matric potentials considered for fitting (no measure points
were available for conditions drier than —200 cm), so larger
errors resulted for these suctions. For sand soils with other
measured points beside —200 cm, the overestimation was
lower than for the former (e.g., for the sand soil code 2562,
there were measured points till the range of about =700 cm).
Additionally, as it can be seen in Figure 2, sandy soils have
only few samples, making it more difficult to model this
type of soil. Thus, one reason for overestimation is the
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FIGURE 5: Observed and predicted water contents obtained by
ANN, for soils from the verification dataset.

underrepresentation of some classes of soil textures in the
verification dataset (Figure 1). One possibility for precluding
this drawback is selecting other subsets for training, valida-
tion, and verification processes, since Figure 4 refers to soil
samples of verification dataset only.

Figures 5, 6, and 7 present predicted water contents
given by the developed ANNs, from where we can verify a
good visual matching of the predicted and target (fitted or
measured) water contents. In Figure 5, each segment of ups
and downs corresponds to a different retention curve.

Worse performances for soil samples from 25 to 200 in
ANN, probably are due to the fact that most of the soils
from this range contain larger percentages of sand (sand and
sandy loam soils) and even because measured water contents
contemplate a smaller range of matric potentials. For these
soils, an abrupt decay in water contents is observed and none
of the ANNSs was able to capture it properly. Notice that the
range of soil samples from 25 to 200 in ANN,, is equivalent to
the range from 7 to 16 in ANN 1 and ANN 2.

In order to illustrate the ANN performances in estimating
the soil water retention curve, Figure 8 presents some curves
obtained for all soil types included in the verification dataset.
It is clear that all ANNs performed well near saturation.
From most of the cases, ANN 1 gave the best agreement
with observed data, whereas ANN 2 displays a surprising
behaviour for matric potentials between —200 and —400 cm,
for which the graphic suffers a small curvature.

One reason for that behaviour could be the lack of
information for characterizing the input parameters that
more markedly affect water contents associated with these
suctions, once the network has trained each matric potential
singly. Therefore, this kind of ANN should not be a good
choice. This fact could be better understood by performing
the sensitivity analysis of each input predictors on each
output, as discussed in the next section.

The ANN, model reproduced the curve shapes very
similar to ANN 1, sometimes overestimating it and some-
times underestimating it. However, it is extremely difficult to
establish a pattern from inputs followed by good fittings of
outputs. Some general remarks that could be drawn from the
results are as follows: (1) both high and low silt percentages

provided good estimates; hence, it is believed that silt could
be of lower importance than the other parameters; (2) the
best agreement was found for very low sand percentages and
high percentages of silt and clay; (3) the worst results were
given by the combination of high percentages of sand and
very low percentages of clay. It is also worth noting that these
conclusions are in concordance with those stated by Romano
and Santini [30], who argued that the largest deviations
between fitted and PTF-estimated water contents are mainly
in consequence of those samples showing lower sand content
(about 11%) or low values of bulk density (about 1.19 g/ cm?).
In our study, worse deviations were found for bulk densities
lower than 1,34 g/cm’. The authors also mentioned that it is
not the influence of these properties alone that are important
in causing poor results but their simultaneous occurrence.
Additionally, some poor results could be associated with the
effect of underrepresentation of some classes of soil textures
in the dataset, such as high sand and low clay percentages.
Comparisons of target mean values and estimated mean
values (report to Table 2) are in good agreement for all ANNs,
showing that all developed models are able to reproduce the
central tendency of target data, being the greatest deviation
from ANN_ model. All these results reflect that observed data
is not necessarily the only way to train an ANN, once we not
only are interested in predicting the individual water contents
but also are trying to develop PTF-based models which are
efficient in accurately predicting the shape of the retention
curve. In the present study, this characteristic was more effec-
tively achieved by ANNs trained with fitted data. These ANNs
could be seen as the inverse process of a parametric PTE
when we firstly fit any model parameters and train the PTF to
latter estimate water contents using such predefined equation.
In both cases, water contents are being predicted based on
fitted parameters for deriving the soil water retention curve.

3.2. Sensitivity Analysis. Evaluation of PTFs is generally
based on statistical criteria that compare predicted results
and experimental data, but nothing is mentioned about what
is contributing to the performance of the models or about
their predictive behaviour in estimating hydraulic properties.
Yet, when any method of sensitivity analysis is carried out,
the most common technique consists in simply constructing
several PTFs with different combinations of input parameters
and checking the change in a specific statistical index, which
is labour- and time-consuming. In order to preclude these
drawbacks, we employed the improved stepwise method
aforementioned.

In Table 3, the results expressed in terms of the percentage
variation of RMSE index are presented. In this table, “model’s
RMSE” is the index of prediction of each output (matric
potentials) given by ANNs, while the “RMSE” for each
parameter reports to the resulting performance when such an
input is replaced by its mean. Thus, positive Var (%) indicates
that this ANN perturbation was reflected by an increase of the
error, consequently, by a decrease in predictive performance,
and vice versa.

For ANN 1 and ANN 2 models, wet regime is more
strongly influenced by bulk density and porosity, while
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the range of intermediate matric potentials seems to be
highly and significantly dependent of only sand percentages,
followed by clay more evident in ANN 2. In our analysis,
we considered a RMSE variation higher than 5% to be
significant. For drier conditions, sand and clay are the inputs
that most affected the predictions. This fact confirms what
was previously mentioned that when flow in macropores
dominates the processes (wet regime), soil structure is more
relevant, while texture becomes important during micropores
flow. Still, as already expected, silt did not cause significant
changes in models performances for any range of matric
potentials or ANN model, as well as particle density, probably
due to its almost uniform distribution.

Analysing the ANN, model, which included one more
input parameter and has a single output, only a general
inference on model performances could be done, since it is
not possible to distinguish between distinct ranges of matric
potentials. Thus, for this model, the most important input
parameter was the natural logarithm of matric potentials,
causing a decrease in model performances similar to those
caused by bulk density in ANN 1 and ANN 2. Besides such
an input, bulk density is the only other parameter that highly
influenced ANN, performance.

The objective of the sensitivity analysis was simply to
prove which of the input parameters are more relevant and
then exclude those which are not. For example, most studies
presented in this study applied only bulk density in their
PTFs. But we can cite the work of Bayat et al. [5] who
used bulk density and total porosity in their PTFs and the
work of Zacharias and Wessolek [7] who added the organic
matter content to their PTF and proved that this parameter
does not contribute to model’s performance and that there
is no need for using it to determine the soil water retention
curve (although this parameter is extensively used in the
literature with this purpose). It was expected that matric
potential would be the most important parameter of the
model of Haghverdi et al. [4], since it is well known that
water content is directly influenced by the soil pressure
head. But even in their model, bulk density was significant
when compared to the other input parameters. One may
note that is not possible to identify the range of matric
potential for which the bulk density is important in their
model, whereas, in ANN 1 and ANN 2, we could detect that
bulk density is not relevant in drier conditions. The main
point is that adding the matric potential as input parameter,
the ANN, model provided equivalent performance to our
models, which need no information about the pressure head
(we may not forget that the relation between water content
and matric potential is not easy to be determined in the
field or in laboratory). In summary, based on the sensitivity
analysis, we may conclude that a new ANN model can be
constructed only with sand, silt, clay, and bulk density, even
though it may give satisfactory performance comparable to
the model trained with measured data.

The results deserve a closer and more critical analysis of
how many input parameters are really necessary for develop-
ing PTFs. For instance, the best RMSE values published in
the researched literature presented in this study were found
by Jain et al. [10], whose ANN was constructed solely by
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one input parameter, the measured matric potentials, and
one output, the water contents. Other input combinations
consisted of including previous points of suctions of the
retention curve. This PTF was able not only to accurately
predict the retention curve but also to decide which branch
of the hysteresis to follow. On the other hand, the ANN,
model is believed to generate better performances because
it dispenses any fitting and is applied only with measured
points, which is a worthy question to verify.

4. Conclusions

Two different ANN models were developed for estimating
the soil water retention curve using fitted data in contrast
to measured data. This study was an attempt to investigate
if employing fitted data from observed values was suitable
for training ANNs. It was found that the ANN with fitted
data and one output neuron for each matric potential, placed
together in the same ANN structure, was the most accurate
model and provided performances comparable to those
presented in the literature. The results were even better than
those obtained by the model trained with observed data, the
pseudocontinuous method.

It is important to mention that this work did not aim to
compare ANN structures and decide which one was the best
among them. Instead, it aimed to show that fitting data could
also be a satisfactory option to deal with small datasets beside
the approach proposed by Haghverdi et al. [4]. Yet, it was
assumed that fitting a water retention model to the measured
data takes out some of the variability of the phenomenon,
including measurement errors. Thus, it is possible that the
uncertainties added by the van Genuchten model could be
lower than measurement errors that are being corrected by
fitting. That is the reason why ANN models trained with
fitted data provided similar or even better performances
than the pseudocontinuous method, which was trained with
measured data.

ANNEG trained with fitted data could be an alternative to
parametric PTF (which also firstly needs to fit the parameters
of a predefined model) and still find satisfactory predictions.
An important drawback of parametric PTF models is that
eventually some fitted parameters should be set constant or
zero, as it is the case of the residual water content. This dif-
ficulty makes estimates with parametric PTFs generally less
accurate than point PTFs. Additionally, better performances
of the developed models could possibly be achieved if a
larger dataset was used. As a suggestion for future researches,
fitted data for training ANNs could be tested and compared
to parametric and point ANNs and applied with a huge
database. The tested ANNs in the present study tried to
make it possible to develop PTF models incorporating whole
available datasets, instead of considering only retention curve
data that were obtained for the same chosen matric potentials.

In summary, this paper demonstrated not only that the
neural networks trained with fitted data provided good
predictions of the soil water retention curve but also that
these models permit the identification of the most important
input parameters, which was revealed to be not possible to be
done with the pseudocontinuous method.
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